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Abstract

We discuss the production of two hadrons ine+e− annihilation within the framework of perturbative QCD. The cross sec
for this process is calculated to next-to-leading order accuracy with a selection of variables that allows the conside
events where the two hadrons are detected in the same jet. In this configuration we contemplate the possibility that th
come from a double fragmentation of a single parton. The double-fragmentation functions required to describe the tran
parton to two hadrons, are also necessary to completely factorize all collinear singularities. We explicitly show that fact
applies to orderαs in the case of two-hadron production.
 2003 Elsevier B.V. All rights reserved.

1. Introduction

The production of one hadron ine+e− annihilation has been studied in much detail in perturbative QCD
The corresponding cross section for the processe+e− → γ ∗(Q)→H(P)+X is usually expressed as a functi
of the variable

(1)z= 2P ·Q
Q2

representing the energy fraction carried by the hadron. In this case the cross section can be written as a co
of the (perturbative computable) partonic cross sectionσ i and the (non-perturbative) fragmentation functio
DHi (x) giving the probability of finding a hadron in the parton with momentum fractionx, as

(2)
dσH

dz
=

∑
i

σ i ⊗DHi .
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The cross section has been computed to next-to-leading order (NLO) accuracy in [1] and to next-to-
leading order (NNLO) accuracy in [2]. Furthermore, several analyses of the available data have been pe
in the last years and, as a result, fragmentation functions for several hadrons have been extracted with v
precision.

Higher order QCD corrections (NLO) to the cross section for the production of two hadrons ine+e− annihilation
have been computed in [1] in the particular case when the two hadronsH1 andH2 are selected from differen
parton jets. While a symmetric extension of the one-hadron case to two hadrons would correspond to ex
the differential cross section in terms of the momentum fractions of each hadron defined by

(3)z1 = 2P1 ·Q
Q2 , z2 = 2P2 ·Q

Q2 ,

the authors in [1] introduced a different set of variables

(4)z= 2P1 · q
Q2 , u= P1 · P2

P1 ·Q .
While z in Eq. (4) coincides withz1, the momentum fraction of hadronH1, the second variableu depends on

both the momentum fraction of hadronH2 and the angleθ12 between the hadrons observed from the center of m
system as

(5)u= z2 1

2
(1− cosθ12),

such thatu is approximately zero when the angle between the hadrons is small. Therefore, configuration
both hadrons are in the same parton jet corresponds tou ≈ 0. Consequently, by considering events werez andu
are not too small one can ensure that the two hadrons are produced from the hadronization of different pa
the cross section can be reduced to the product of the fragmentation functionsDHi associated to each hadron [1
In this way, the possibility of a double fragmentation from a single parton is excluded and the expression
cross section gets simplified.

In this work we are interested in extending the calculation for the two-hadron cross section in the ful
space, including the configurations were both hadrons are produced collinearly. In order to be able to
those events we will express the cross section in terms of the momentum fractions in Eq. (3).

With the use of these variables it is possible to contemplate simultaneously two extreme configurations:
one corresponds to the case when the two hadrons are produced in opposite directions (or at least wi
angular separation) and therefore belonging to different jets (Fig. 1(a)). Hadrons in this configuration can
originated from the fragmentation of different partons. The second one corresponds to the case of both
produced in the same direction, such that they are detected in the same jet (Fig. 1(b)). In the last case
could be originated from the fragmentation of two collinear partons or by the double fragmentation of the

Fig. 1. (a) Represents hadrons in the first kinematical configuration. (b) Represents hadrons in the second configuration, belonging
jet.
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parton. The price one has to pay to fully account for the second configuration is the introduction of a new
non-perturbative phenomenological functions [3–5] to describe the possibility of the transition from a single
to two hadrons.

One needs to introduce, then,the double-fragmentation functions DDH1H2
p (x1, x2),1 as the probability tha

a partonp fragments into the hadronsH1 andH2 with energy fractionsx1 and x2. The cross section for th
production of two hadrons ine+e− annihilation can therefore be written in the following schematic way

(6)
dσH1H2

dz1dz2
=

∑
ij

σ ij ⊗DH1
i ⊗DH2

j +
∑
i

σ i ⊗DDH1H2
i ,

whereσ ij is the partonic cross section for the production of partonsi andj andσ i the cross section for partoni.
The cross section is separated in two terms corresponding to the contribution of the mechanisms respo
two-hadron production: single fragmentation of two partons, and double fragmentation of a single parton.

At leading order, the first term only contributes to the first configuration, since the two partons that u
hadronization are produced back-to-back. At next to leading order there is one extra parton which could be
collinearly to one of the others, giving also origin to hadrons in the second configuration. Therefore, at ordeαs and
beyond, hadrons in the second configuration could be originated from any of the two fragmentation mech
being not possible to separate the contribution of each term in Eq. (6), unless an additional (unphysical)
introduced. Only the sum of both contributions has physical sense.

The presence of collinear partons at orderαs gives origin to collinear singularities in the cross section, wh
are manifested in the form of poles inε = (4 − N)/2 when dimensional regularization is used. By means of
usual redefinition of theDHi functions, singularities due to collinear partons that give origin to hadrons in
first configuration can be absorbed. However, there appear singularities corresponding to hadrons belong
second configuration, originated from collinear partons emitted in the same direction. Since at lowest orderDHi
functions only participate in processes associated with the first configuration, such singularities cannot be
in the single fragmentation term. We will show that with the redefinition of theDD

H1H2
i functions in the double

fragmentation term all singularities are factorized. In this sense, the role played by theDD
H1H2
i functions ine+e−

annihilation is similar to the one offracture functions in DIS processes [7–11]. For a formal point of view, it
possible to interpret the double-fragmentation functions as the time-like version of fracture functions.

Double-fragmentation functionsDDH1H2
i fulfill sum rules in analogy to the sum rules for the us

fragmentation functions [1]. Momentum conservation requires

(7)
∑
H1

∫
P
µ
1
dσH1H2

dP1 dP2
dP1 = (

Qµ −Pµ2
)dσH2

dP2
,

beingQ the initial total momentum, where the right-hand side is proportional to the total free momentum av
for the production of hadronH2. In particular, energy conservation implies [4,5]

(8)
∑
H1

1−z2∫
0

dz1 z1DD
H1H2
i (z1, z2)= (1− z2)DH2

i (z2),

relating the second moment of the double-fragmentation function to the single one.

1 We have slightly modified the original notation introduced in [3,4] for the double-fragmentation functions to make more notice
difference with the usual ones
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2. Two-hadron production in e+e−

In order to formalize the convolution products in Eq. (6) we define the partonic energy fractions ass
to each fragmentation mechanism. For the single fragmentation term two partons fragment independent
fraction of the parent parton energy given by

(9)xi = 2pi ·Q
Q2

,

with pi the momentum of the partoni = 1,2. At leading order both variables are fixed to one since no extra g
radiation is allowed.

The convolution product in the single fragmentation term of Eq. (6) is expressed in terms of a double
in x1 andx2 with integration intervals determined by the kinematical region allowed for the partonic process
implies

(10)0� x1 � 1 and z1 � x1, 1− x1 � x2 � 1 and z2 � x2.

The integration zone for the single fragmentation term has to be divided into the two regionsA andB indicated
in Fig. 2.

In the case of the double fragmentation term only one parton fragments. We define the partonic variable
by

(11)x = 2p ·Q
Q2 ,

with p being the momenta of the fragmenting parton. With this, it is possible to write the second term of Eq
a single convolution product with integration limits coming from the requestz1/x + z2/x � 1.

Fig. 2. Integration regions for the variablesx1 andx2 in the single fragmentation term.
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Using those conditions we can express Eq. (6) as

dσH1H2

dz1dz2
=

∑
ij

1−z2∫
z1

dx1

x1

1∫
1−x1

dx2

x2

dσ ij

dx1dx2A
D
H1
i

(
z1

x1

)
D
H2
j

(
z2

x2

)

(12)

+
∑
ij

1∫
1−z2

dx1

x1

1∫
z2

dx2

x2

dσ ij

dx1dx2B
D
H1
i

(
z1

x1

)
D
H2
j

(
z2

x2

)
+

∑
i

1∫
z1+z2

dx

x2

dσ i

dx
DD

H1H2
i

(
z1

x
,
z2

x

)
,

where to NLO accuracy

(13)
dσ i

dx
= dσ i

dx

(0)

+ αs

2π

dσ i

dx

(1)

,
dσ ij

dx1dx2K
= dσ ij

(0)

dx1dx2K
+ αs

2π

dσ ij
(1)

dx1dx2K
,

andK =A,B indicating the integration zone in the single fragmentation term. In Eq. (12) we have conside
case when 1− z2 � z1. This impliesz1 + z2 � 1, which corresponds to the kinematical region where the do
fragmentation mechanism can also contribute. Ifz1 + z2 > 1 the cross section is reduced only to the second t
of Eq. (12).

Some of the partonic cross sections obey symmetry relations that allow to reduce the number of inde
quantities to be computed. Due to invariance under charge conjugation

(14)
dσ iq

dx1dx2
= dσ iq̄

dx1dx2
,

dσ qi

dx1dx2
= dσ q̄i

dx1dx2
.

To NLO accuracy it is necessary to obtain only three different partonic cross sectiondσqq̄/dx1dx2,
dσqg/dx1dx2 anddσgq/dx1dx2.

At leading order the only non-vanishing terms are2

(15)
dσq

dx

(0)

= e2
qσ0δ(1− x), dσqq̄

(0)

dx1dx2K
= e2

qσ0δ(1− x1)δ(1− x2),

whereσ0 = 4πα2
s

3Q2 .
The partonic cross section at orderαs is obtained by evaluating the real and virtual diagrams indicated in F

and integrating over the phase space of the final partons expressed in terms ofx1, x2, such thatdσ ij = dσR + dσV .
We compute the metric and longitudinal contributions to the partonic cross section obtained, as usual, by r
the sum over the polarization states of the virtual photon by the corresponding projectors

(16)P (M)µν = −gµν,

(17)P (L)µν = Q2

(p2 ·Q)2p2µp2ν.

The longitudinal contribution has been calculated projecting in the direction of hadronH2. In the following, we
will present in detail the results for the metric contribution, since at NLO singularities of interest occur only o
projection of the cross section. Using dimensional regularization [12,13] we obtain for the real part

(18)dσ
(M)
R = e2

qσ0
αs

2π
CF

(
4πµ2

Q2

)ε 1

*(2 − ε)
(

1− z2
4

)−ε
x−2ε

1 x−2ε
2 F(x1, x2) dx1dx2,

2 In this work we restrict the analysis to the case of pureγ ∗ exchange. The extension toZ-boson production can be easily performed.
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Fig. 3. Virtual and real diagrams contributing to orderαs .

with

(19)F(x1, x2)=
[
(1− ε)2 x2

1 + x2
2

(1− x1)(1− x2)
− 2ε(1− ε) (2− 2x1 − 2x2 + x1x2)

(1− x1)(1− x2)

]
,

andµ being the dimensional regularization scale. The result for the virtual contribution is

(20)dσV = e2
qσ0

αs

2π
CF

(
4πµ2

Q2

)ε *(1 + ε)*2(1− ε)
*(1 − 2ε)

[
−3

ε
− 2

ε2 − 8+ π2
]
δ(1− x1)δ(1− x2) dx1dx2.

In the previous equations we have labeled the quark as parton 1 and the anti-quark as parton 2. Th
part does not exhibit singularities beyond those already regularized in the form of poles inε. In the real part the
divergences appear when the denominators of the functionF(x1, x2) vanish. These infrared divergences can
regularized by means of the usual+ prescription, which can be easily implement by multiplying and dividing
(1− xi)1+ε , and considering this expression as a distribution inxi

(21)(1− xi)−1−ε = −1

ε
δ(1− xi)+ 1

(1− xi)+[0,1]
− ε

(
log(1− xi)

1− xi
)

+[0,1]
+O

(
ε2),

whereF(x)+[a,b] is defined as usual by

b∫
a

dx f (x)F (x)+[a,b] =
b∫
a

dx
[
f (x)− f (b)]F(x).

The range of integration is indicated as a subscript; furthermore, the subtraction point is underlined.

For dσqq̄
(1)
/dx1dx2 the singularities of the functionF(x1, x2) occur atx2 = 1 in zoneA, and atx1 = 1 and

x2 = 1 in zoneB. Applying the+ prescription as indicated, the following expression is reached

dσqq̄
(1)

dx1dx2K

(M)

= σ0e
2
q

[
Pqq(x1) log

(
Q2

µ2

)
δ(1− x2)+ Pqq(x2) log

(
Q2

µ2

)
δ(1− x1)

(22)+ 1

ε̂
Pqq(x1)δ(1− x2)+ 1

ε̂
Pqq(x2)δ(1− x1)+ f (M)qqK(x1, x2)

]
,

where 1/ε̂ = −1/ε(4π)ε*(1−ε)/*(1−2ε)= (−1/ε+γE− log4π)+O(ε),Pij (x) are the usual Altarelli–Paris
splitting kernels [14] and the functionsfMij K are presented in Appendix A.

Theqg partonic cross sectiondσqg(1)/dx1dx2 can be obtained from theqq̄ one relabeling the parton index
by a x2 → 2 − x1 − x2 substitution in the matrix elements. In this caseF(x1, x2)→ F(x1,2 − x1 − x2) which
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develops singularities atx1 = 1 in zoneA, and atx1 + x2 = 1 in zoneB. Proceeding like in the previous case a
ignoring terms containing distributions without support in the analyzed zones, we obtain

dσqg(1)

dx1dx2K

(M)

= σ0e
2
q

[
P̂
g
qq(x1) log

(
Q2

µ2

)
δ(x1 + x2 − 1)+ P̂ qgq(x2) log

(
Q2

µ2

)
δ(1− x1)

(23)+ 1

ε̂
P̂
q
gq(x1)δ(x1 + x2 − 1)+ 1

ε̂
P̂
q
gq(x2)δ(1− x1)+ f (M)qgK(x1, x2)

]
,

where the functionŝPkji are the real LO Altarelli–Parisi kernels, with the indexk labeling the third particle in the
vertexi→ jk.

In thegq partonic cross sectiondσgq(1)/dx1dx2, x1 is assigned to the gluon andx2 to the quark. Performing
the substitutionx2 ↔ x1 in the matrix element used indσqg(1)/dx1dx2, F(x1,2− x1 − x2)→ F(x2,2− x1 − x2)

which develops singularities atx2 = 1 andx1 + x2 = 1 in zoneA, and atx2 = 1 in zoneB. The singularities in
zoneA will give origin to two different distributions, one associated to the singularity atx2 = 1 and another to th
singularity atx1 = 1− x2. The result can be expressed as

dσgq(1)

dx1dx2K

(M)

= e2
qσ0

[
P̂
q
gq(x1) log

(
Q2

µ2

)
δ(1− x2)+ P̂ gqq (x2) log

(
Q2

µ2

)
δ(x1 + x2 − 1)

(24)+ 1

ε̂
P̂
q
gq(x1)δ(1− x2)+ 1

ε̂
P̂
q
gq(x2)δ(x1 + x2 − 1)+ f (M)gqK(x1, x2)

]
.

This result completes the presentation of the partonic cross sections that participate in the single fragm
term.

For the double fragmentation term, the cross sections for the production of a single partondσ i/dx are required
These are exactly the same as the ones appearing in one-hadron production [1]. As a cross-check of our c
we have re-obtained those coefficients by applying the momentum conservation relation in Eq. (7) resultin

dσq(1)

dx

(M)

= dσ q̄(1)

dx

(M)

= e2
qσ0

[
Pqq(x) log

(
Q2

µ2

)
+ 1

ε̂
Pqq(x)+ f (M)q (x)

]
,

(25)
dσg(1)

dx

(M)

= 2e2
qσ0

[
Pgq(x) log

(
Q2

µ2

)
+ 1

ε̂
Pgq(x)+ f (M)g (x)

]
,

with f (M)i given in Appendix A.
As indicated above, the longitudinal part does not contribute to the singular structure of the cross se

NLO accuracy. The corresponding NLO corrections to the singlef
(L)
ij and doublef (L)i fragmentation mechanism

are shown in Appendix A.

3. Factorized fragmentation functions

The factorization of the bare fragmentation functionsDHi at NLO is done in theMS factorization scheme in th
standard way [1]. The expression for the bare functions in terms of the factorized ones at the scaleM2 is

(26)DHi (z)=
1∫
z

du

u

[
δ(1− u)δij + αs

2π

[
log

(
µ2

M2

)
− 1

ε̂

]
Pji(u)

]
D
H(NLO)
j

(
z

u
,M2

)
,

where the factorized distributions are labeled by the upper index (NLO).
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It is easy to notice that not all the singularities in the partonic cross-section are canceled after the facto
of the fragmentation functions is performed. Singularities belonging todσqg(1)/dx1dx2 and dσgq(1)/dx1dx2
in zoneA still remain. They correspond to terms with 1/ε poles proportional toδ(x1 + x2 − 1), arising from the
hadronization of a gluon being emitted collinear to a quark (or anti-quark) that also undergoes hadronizatio
as a final product two hadrons in the same jet. Those singularities clearly cannot be absorbed the factori
theDHi functions, since a configuration with two collinear hadrons is not allowed in the single fragmentatio
at the lowest order. However, this is exactly the configuration corresponding to the double fragmentatio
indicating that these singularities could be absorbed by the appropriate factorization of theDD

H1H2
i functions.

The expression for the bare double-fragmentation functionsDD
H1H2
i (x, y) in terms of the NLO factorized one

DD
H1H2(NLO)
i (x, y,M2) can be obtained by requiring that all remaining collinear singularities in the par

cross section are absorbed into the factorized distributions. The expression in theMS factorization scheme, vali
to O(αs), is

DD
H1H2
i (x, y)=

1∫
x+y

du

u2

[
δ(1− u)δij + αs

2π

[
log

(
µ2

M2

)
− 1

ε̂

]
Pji(u)

]
DD

H1H2(NLO)
j

(
x

u
,
y

u
,M2

)

(27)+ αs

2π

[
log

(
µ2

M2

)
− 1

ε̂

] 1−z2∫
z1

du

u(1− u)
[
P̂ kji (u)D

H1
j

(
x

u

)
D
H2
k

(
y

1− u
)]
.

The factorization relation in Eq. (27) contains two terms with different origins. The first one just relat
factorized and bare double-fragmentation functions, and corresponds to the standard factorization proc
the emission of collinear partons in the double fragmentation part of the cross section, exactly as it oc
one-hadron production. The second ‘inhomogeneous’ term relates the single and double-fragmentation
and is needed to absorb the remaining singularities discussed above.

Rewriting the bare distributions in terms of the factorized ones in Eq. (12), and fixingM2 =Q2, we obtain the
final NLO expression for the factorized cross section for the production of two hadrons as

dσH1H2

dz1dz2

(M)

= 3σ0

1−z2∫
z1

dx1

x1

1∫
1−x1

dx2

x2

×
∑
q

e2
q

{
αs

2π
f
(M)
qqA(x1, x2)

×
[
DH1(NLO)
q

(
z1

x1
,Q2

)
D
H2(NLO)
q̄

(
z2

x2
,Q2

)
+DH2(NLO)

q

(
z2

x2
,Q2

)
D
H1(NLO)
q̄

(
z1

x1
,Q2

)]

+ αs

2π
f
(M)
qgA (x1, x2)

[
DH1(NLO)
q

(
z1

x1
,Q2

)
+DH1(NLO)

q̄

(
z1

x1
,Q2

)]
DH2(NLO)
g

(
z2

x2
,Q2

)

+ αs

2π
f
(M)
gqA(x1, x2)

[
DH2(NLO)
q

(
z2

x2
,Q2

)
+DH2(NLO)

q̄

(
z2

x2
,Q2

)]
DH1(NLO)
g

(
z1

x1
,Q2

)}

+ 3σ0

1∫
1−z2

dx1

x1

1∫
z2

dx2

x2
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×
∑
q

e2
q

{[
δ(1− x1)δ(1− x2)+ αs

2π
f
(M)
qqB (x1, x2)

]

×
[
DH1(NLO)
q

(
z1

x1
,Q2

)
D
H2(NLO)
q̄

(
z2

x2
,Q2

)
+DH2(NLO)

q

(
z2

x2
,Q2

)
D
H1(NLO)
q̄

(
z1

x1
,Q2

)]

+ αs

2π
f
(M)
qgB (x1, x2)

[
DH1(NLO)
q

(
z1

x1
,Q2

)
+DH1(NLO)

q̄

(
z1

x1
,Q

)]
DH2(NLO)
g

(
z2

x2
,Q2

)

+ αs

2π
f
(M)
gqB (x1, x2)

[
DH2(NLO)
q

(
z2

x2
,Q2

)
+DH2(NLO)

q̄

(
z2

x2
,Q2

)]
DH1(NLO)
g

(
z1

x1
,Q2

)}

(28)

+ 3σ0

1∫
z1+z2

dx

x2

∑
q

e2
q

{[
δ(1− x)+ αs

2π
f (M)q (x)

]

×
[
DDH1H2(NLO)

q

(
z1

x
,
z2

x
,Q2

)
+DDH1H2(NLO)

q̄

(
z1

x
,
z2

x
,Q2

)]

+ 2
αs

2π
f (M)g (x)DDH1H2(NLO)

g

(
z1

x
,
z2

x
,Q2

)}
.

The longitudinal contribution is obtained by replacingf (M) → f (L) and omitting the corresponding LO term
proportional toδ(1− x1)δ(1− x2) andδ(1− x).

While the dependence on the momentum fractions of the double-fragmentation functions cannot be c
within perturbative QCD, the factorization scale dependence is driven by the evolution equations. As
ordinary fragmentation functions, these equations can be obtained by requiring that the bare functionsDD

H1H2
i do

not depend on the factorization scale

(29)
d

d logM2
DD

H1H2
i (x, y)= 0.

ReplacingDDH1H2
i (x, y) from Eq. (27) we obtain

d

d logM2
DD

H1H2(NLO)
i

(
x, y,M2)

(30)

= αs

2π

1∫
x+y

du

u2 Pji(u)DD
H1H2(NLO)
j

(
x

u
,
y

u
,M2

)
+ αs

2π

1−z2∫
z1

du

u(1− u)
[
P̂ kji(u)D

H1
j

(
x

u

)
D
H2
k

(
y

1− u
)]
.

The first term in the right-hand side corresponds to the usual homogeneous evolution of the fragm
functionsDHi . It indicates that the probability of obtaining the hadronsH1 andH2 from the partoni is affected
by the possibility of the emission of a partonj with momentum fractionu, which can produce two hadrons by
double fragmentation. The second term, on the other hand, is inhomogeneous and it is not present in the
equations of theDHi functions. It corresponds to the case of a partoni that evolves emitting the partonsj and
k with fractionsu and 1− u respectively, which can also give origin to two hadrons, but now by means o
mechanism of single fragmentation form each one of them. Both terms are represented symbolically in th
These equations fully agree with the ones originally proposed in [4,6].

The presence of these two terms in the evolution equations evidences the fact that, within the precisio
possible detector, it is physically impossible to determine which mechanism, either single or double fragme
has been responsible for the production of two hadrons when they are found in the same jet. In the sa
and beyond LO accuracy, only the sum of the two terms in Eq. (6) associated to each one of the mec
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Fig. 4. Graphic representation for the evolution of theDD
H1H2
i . The first diagram corresponds to the first term in Eq. (30). The last one t

inhomogeneous term.

that contributes to the cross section, has a physical meaning. In this sense, the similarity with the situatio
fracture functions [7] in DIS appears again.

4. Conclusion

In this work, the cross section for the production of two hadrons ine+e− annihilation is calculated to orde
αs considering events that include the possibility that both hadrons appear in the same jet. For this
it is necessary to extend the fragmentation model including a new type of functions, the double-fragm
functionsDDH1H2

i , that describe the transition of a parton into two hadrons. These functions, along w
single-fragmentation functionDHi , allow an unified treatment for the description of two-hadron productio
e+e− annihilation.

While at leading order theDDH1H2
i functions are necessary to contemplate the possibility of the do

fragmentation, at next-to-leading order and beyond, they are required to perform the factorization of dive
that cannot be absorbed in the single-fragmentation functions. As a result, they obey the inhomogeneous
equations in Eq. (30), where the two mentioned mechanisms of fragmentation are involved. We showed
first time, that introducing the double-fragmentation functions the usual factorization procedure can be e
consistently for the production of two hadrons to orderαs , reobtaining the evolution equations originally propos
in [4,6].

Appendix A

The NLO(MS) corrections to the single fragmentation term are given by

f
(M)
qq̄A (x1, x2)= 4

3

x2
1 + x2

2

(1− x1)(1− x2)+[0,1]
+

[
P̂qq(x1) log

[
(1− x1)x1

] + 4

3
(1− x1)

]
δ(1− x2),

f
(M)
qq̄B (x1, x2)= 4

3

x2
1 + x2

2

(1− x1)+[0,1](1− x2)+[0,1]
+ 4

3
δ(1− x1)δ(1− x2)

(
π2 − 8

)

+
[

4

3

(
1+ x2

1

)( log(1− x1)

1− x1

)
+[0,1]

+ 4

3
(1− x1)+ P̂qq (x1) logx1

]
δ(1− x2)

+
[

4

3

(
1+ x2

2

)( log(1− x2)

1− x2

)
+[0,1]

+ 4

3
(1− x2)+ P̂qq (x2) logx2

]
δ(1− x1),

f
(M)
qgA (x1, x2)= 4

3

x2
1 + (2− x1 + x2)

2

(1− x1)(x1 + x2 − 1)+[1−x2,1]
+

[
P̂qq(x1)

[
log(1− x1)x

2
1

] + 4

3
(1− x1)

]
δ(x1 + x2 − 1),
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f
(M)
qgB (x1, x2)= 4

3

x2
1 + (2− x1 − x2)

2

(1− x1)+[0,1](x1 + x2 − 1)
+

[
P̂gq(x2)

[
log(1− x2)x2

] + 4

3
x2

]
δ(1− x1),

f
(M)
gqA(x1, x2)= 4

3

x2
2 + (2− x1 − x2)

2

(1− x2)+[0,1](x1 + x2 − 1)+[1−x2,1]
+

[
P̂gq(x1)

[
log(1− x1)x1

] + 4

3
x1

]
δ(1− x2)

+
[
P̂gq(x1)

[
log(1− x1)

2x1
] + 4

3
x1

]
δ(x1 + x2 − 1),

f
(M)
gqB (x1, x2)= 4

3

x2
2 + (2− x1 − x2)

2

(1− x2)+[0,1](x1 + x2 − 1)
+

[
P̂gq(x1)

[
log(1− x1)x1

] + 4

3
x1

]
δ(1− x2),

fqq̄
(L)
A/B(x1, x2)= 8

3

(
x1 + x2 − 1

x2
2

)
,

fqg
(L)
A/B(x1, x2)= 16

3

(
1− x2

x2
2

)
,

fgq
(L)
A/B(x1, x2)= 8

3

(
1− x1

x2
2

)
.

The corresponding corrections to double fragmentation are

f (M)q (x)= 4

3

[(
1+ x2)( log1− x

1− x
)

+[0,1]
+ 2

(
1+ x2

1− x
)

logx − 3

2

1

(1− x)+[0,1]+ − 3

2
x + 5

2

+
(

2π2

3
− 9

2

)
δ(1− x)

]
,

f (M)g (x)= P̂gq(x)
[
log(1− x)x2],

f (L)q (x)= 4

3
,

f (L)g (x)= 8

3

(
1− x
x

)
.
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