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Dynamics of solid growth under a gravitational field: Influence of the formation of a diffusive layer
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We discuss the gravitational sedimentation of particles in terms of a stochastic model considering, in view of
experimental evidence, that the aggregation to the growing suf@@p®sij is mediated by the formation of a
layer of suspended particles subject to gravitational forces, thermal agitation, as well as aggfegatax}
forces. The aggregation of such partially buoyant particles is ruled by the rates of occurrence of the different
stochastic events: incorporation to the layer of suspended particles, sedimentation, and gravitationally biased
diffusion. The model introduces bridges across different standard solid on solid deposition models which can
be considered as limit cases of the present one. Analytical and numerical results show that faefihs
deposits there are different regimes of aggregation including situations in which the deposit is grown com-
pletely during the transient time of the system.
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[. INTRODUCTION into evaporation when the average deposition rate is sub-

tracted from the modgl However, it cannot account for the

The growth of solids by sedimentation of particles hasdiffusive layer which has no room in this _cla_ss of setting_s.
practical and theoretical relevance. From a theoretical point N the present work we introduce an indirect deposition

of view the mechanism of gravitational deposition of par-Model in which particles are incorporated at random to a

: ; : .. _suspended layer of almost buoyant particles which in turn
ticles ranks among the simplest forms of growing a solid in & an stick to the surface or bounémost likely downhill

controlled situation and as such it represents a test bench f(glong the surface

dn‘fgrent SO'.'d on solid(SO3 [1,2] deposition models and The model is framed in the standard population dynamics
their analysis. . . . . setting, i.e., as a Markov system with density dependent tran-
From a technological point of view, the preparation of gjiqn probabilitied6] and, as such, it contrasts with standard
“supercrystals”[3] by aggregation of nearly monodispersed o5 modelg7,8] since the certainty of deposition rules is
nanoparticles or microparticles has attracted considerable i'&'ompletely avoided.
terest. Crystals formed by the aggregation of CdS,Sey Furthermore, our aim is to understand the role of the dif-
and FgO3 nanospheres with appealing optical and electricakysive layer in the growth of opals as well as to characterize
properties have been prepared and characterized. Howevelifferent experimental situations that can potentially affect
synthetic opals constructed by sedimentation of submicrothe properties of the supercrystal. We will constrain our
silica, SiQ,, particles remain the most popular and paradig-study to finite-size and finite-time growth processes com-
matic supercrystals. pletely avoiding thelcumbersomginfinite-size and infinite-
Particles in supercrystals are held together by van detime singular(and noncommutinglimits.
Waals forces. Silica self-assembling to produce good quality A second and important purpose of this work is to im-
opals requires small rates of particle aggregation which argrove the standard analysis of stochastic models of crystal
close to the thermodynamical equilibrium. In such situationsgrowth which could be later applied to other real and more
aggregation does not happen unavoidably upon contact (gom_plex situations. In this sense, the ghscgssmn |r_10Iudes
the particles with the growing interface. In practical terms,Sc@ling laws but moves beyond them estimating the times at
the growth of these opals requires several days and procee$&lich crossovers from one scaling law to another will hap-

with the formation of a “white clue,” a diffusive layer of PEN due to the prevalence of differethinds of events.
particles close to the growing surfap#. The paper is organized as follows: Section Il introduces

The interface dynamics of this system has been studied b he Sto?haSt'C nsod(faléhSegs. =V dlscgss S|mple I"m't cl?ses,
atomic force microscopy imaging, and interpreted using dy- € main aspects of the dynamics, and numerical results, re-

namic scaling arguments. Experimental results show that thgpectlvely, while Sec. Vi presents the summary a_nd conclud-
9 remarks. The Appendix presents exact solutions for the

supercrystals become rougher with increased deposite . g :
height in a form thatwhen restricted to a proper spatial and case where there is no sensitivity to the deposited topogra-

temporal regionis compatible with the scaling relations de- phy.
termined for random incorporation followed by relaxation
models, such as the Edwards-Wilkins¢&W) model [5].

This model accounts of the preferential growth of the surface We consider particles in a fluid media moving towards a
at valleys and the inhibition of growth at peaksansformed solid surfacgthe substratedriven by the gravitational force.

Il. MODEL DESCRIPTION
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TABLE |I. Stochastic events considered, their effect, and transition rates 1/]Ps+ (1
—Pg) (exd —K(h; 1 —h)]+exd —K(h_1—h)]].

Event Effect Transition rate
Ra|n Ci ~>Ci + 1 R
R movement {ci,Ciz1}—{ci—1ci;1+1} G A(L—Pg)exd —K(h;1—h)]
L movement {ci,ci_1}—{ci—1c;_,+1} G A(1—Pg)exd —K(h—1—h)]
Deposition {ci ,hi}—{ci—1h;+1} ¢ APg

The particles are not immediately aggregated to the subat the sitei is proportional to the local concentration of par-
strate; rather, they have a certain probability of remaining irticles in the diffusive layer.

the interface, diffusing preferably to the sites(lafcal) mini- The time between events is assumed to be exponentially
mum of potential energyvalleys. Particles will eventually distributed with densitywexp(—1t), wherev=(RL+C) is a
attach to the substrate in an irreversible way. At the titne characteristic frequency arm=Echi . This time distribution
there will be a numbe€(t) of particles that have come close corresponds to the usual assumptions of population dynam-
to the substrate but still have not been deposited. We say thads.

these particles form the diffusive layer. There are three free parameters in the moBelK, and
We formulate a minimal model that resembles the ob-P_. These parameters play the following role.
served physics in terms of a stochagMarkov) system suit- (@) Ris the rate at which particles are incorporated in the

able for computer simulations but also intended to be amediffusive layer.
nable to non-numerical analysis. We will try to keep the (b) We will show that the form in which the topography of
number of free parameters in the model as small as possibtee deposit influences the diffusive layer dynamics is con-
to simplify as well as to clarify the analysis. trolled by K. For K>0 the particles are prone to accumulate
Leti=1,... L label theith site in a one-dimensional in the regions corresponding to the valleys, 00 they
lattice. Consider the stochastic variables: number of particlegend to accumulate at the potential energy maxipeaks,
above theith site in the diffusive layerg;; number of par-  while for K=0 the diffusive layer dynamics is independent
ticles deposited on theh site,h;. h; is measured in lattice of the interface shape. Thuk,is related to the competition
units. One lattice unit in our model is equivalent to our par-between gravitational and thermal energies.
ticle width. (c) The parametePg, normalized so that€Ps<1, rep-
The evolution of the populations; ,c; responds to sto- resents the probability that a particle sticks to the deposit
chastic events which can be classified in two large groupsonce it impinges upon itP therefore is related to the rela-
(a) incorporation to the diffusive layeiparticle rain or just tive occurrence of left or right movements within the diffu-
“rain” ) and(b) transitions. sive layer in contrast with deposition events. As such, it con-
(a) Particle rain events consist in the incorporation of atrols the mean path traveled by the particles in the diffusive
particle into the diffusive layer at a constant r&etrans-  |ayer before attaching to throzen substrate.
forming ¢;—c;+1, and leaving the remaining variables un- |n particular, in the absence of gravitational effecks (
changed. =0), the particles perform atunbiased random walk that
(b) Transition events in the diffusive layer alter the statejs interrupted by deposition events. In this case, the mean
of the system but not the number of particles being considfree path of a particle is directly related to the parameter
ered. Consider a particle incorporated into the diffusive layer,
The transition events are of three different kinds: deposithere are three possible events: deposit, and movement either
tion at a sitei, and particle movement in the diffusive layer to the left, or to the right. The latter are performed with

from sitei either to the left or to the right. probability
The different kinds of events and their transition rates are
summarized in the Table | and illustrated in Fig. 1. 2(1—-Py)
Note that the total transition rate for the transition events p= 2_—Ps (1)

is ¢, i.e., we assume that the likelihood of a transition event
The probability for the particle to makesteps in any direc-

FREE FALLING PARTICLES If particle rain tion before depositing is
incorporation 1 d
DIFFUSIVE LAYER 4_?_, ditusion l Pg=(1-p)p". 2
(BUOYANT PARTICLES) g
aggregation Since each step is an independent event, and the probabil-
DEPOSIT . . . -
(FROZEN PARTICLES) ity of moving either to the left or to the right are equal, the

mean free path is

FIG. 1. Schematic illustration of the different events and their
influence on the dynamics. A=\(d®=\p(p+1)/(1—p)°. 3
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The mean free path traveled by a particle in absence of gravi 5 - T - T ' T

tational effects is then given by L | 4 L=50 stochastic rule l
4 1.=50 deterministic rule 9400°%8
4| = L=100 stochastic rule 28335°86000]
2(1-Py)(4—3Py) o L=100 deterministic rule 930'9
A= s S (4) | | ® L=400 stochastic rule o ..889
p2 ! o 1=400 deterministic rule | 8
s N —_

where distances are measured in terms of lattice units. Wk |

see that wherP,— 1, we havex —0, while for P,—0, the N _

mean distance traveled grows to infinity. e

This picture does not remain valid €>0 (K<0) since
in such a case the particles tend to remain confined to the 1
valleys (peaks, in which case\ is expected to be related to
the distance between valleygeaks. . | . |
Part of the discussion of results will refer to the roughness ‘% 50 100
of the deposit, a quantity of relevance in experiments and time
applications that consequently has received much theoretical FIG. 2. Quadratic roughness as a function of time for our model
attention. The roughness of the interfabes defined as the (filled symbols and for a deterministic modé¢hollow symbol$ of

root mean square of the deviations from the mean value ddeposition on semistable sites, for different lattice sifess0.95,
the site heights, i.e., R=10"°, andK=6.

|
150 200

WAL, ) =((hi() = (hi() 1)), )  travel across the surface until they find the first semistable
(i.e., with h[i]<h[i*=1]) site where they are aggregated to
the surface.” The unit of time is chosen as that necessary to
incorporate the equivalent to 1 ML of particles to the system.
. ELEMENTARY ANALYSIS AND LIMIT CASES The scaling exponents of the adatom model are in good
greement with those from other random deposition models
present model is in correspondence with simpler models. ased on _surface re_Iaxati{)h], as We”. as those found for the
P.=1: There is no diffusion. The variables at each siteEW equatlor[_5]. While much .theoret|cal work has been per-
are independent. At each site there is random deposition méc_)rmed pertaining to deposition models, related experiments

diated by the suspended phase. Hence, the deposition procé:g]iem"}gddepos'gqnfOf cotI'I0|daI|suspftnS|ons arz erW’ to
will be Poisson distributedsee the Appendix for an analyti- our knowledge, and information refevant o our model even
cal deduction and after a transient time it will behave as SCarCer- Xin-Ya Leet al. [10] investigate polymer deposition

random deposition. in a (1+1)-dimensional system—they only analyze results
K=0: The dynamics in the diffusive layer is not affecte

g in the final, apparently stationary, regime. Salvareetal.
by the substrate topography. This implies that growth of €POrt I (2+1)-dimensional experiments, scaling expo-
roughness will be essentially the one that corresponds to

tHaents consistent with the EW equation. Their roughness is
random deposition case, since the diffusive layer will aver-

measured as a function of average deposit thick{iessbut
age to a homogeneous layer. This case can be solved analyfi®

t of time.
cally (see the Appendix In the remainder of this work, we will focus our analysis
K<0: There will be a tendency for particles to move

on the implications of the existence of a diffusive layer, with-
towards local maxima where they will aggregate resulting inout limiting our analysis to asymptotic properties. We have
the formation of sharp peaks where the particles will accu-

no knowledge of experiments performed in this general case.
mulate, separated by regions where the diffusive layer is ver

he aim of what follows is therefore to allow experiments to
thin (the probability of aggregating in the valleys is lower e planned in the more frequently achieved transient regime.
than at the pealksand the deposits are negligible. In this

case, the roughr_1ess inc_reases quadratically with the total \, THE DIFFUSIVE LAYER AND DEPOSIT KINETICS
number of deposited particl¢8].

R<1, K>1: In this case, the rain of particles is very Particles are constantly incorporated to the diffusive layer
slow in comparison with the aggregation process, hence, as a result of the particle rain, while at the same time the
rarefied diffusive layer is expected. For sufficiently large val-diffusive layer is depleted by the deposition process. Being
ues ofK, lateral movements in the diffusive layer will outrate the aggregation rate proportional to the number of particles
the deposits, and the particle is expected to explore largi the diffusive layer, we can expect that, on an average, a
regions of the surface being deposited with larger probabilitypalanced situation is reached.
in those sites with(local) minimal gravitational energy. In If C(t) stands for the total number of particles in the
Fig. 2, we compare the evolution of the roughness in a typidiffusive layer, the expected average number at a site will be
cal realization of the stochastic process with an essentiallg(t)=C(t)/L. The average number of aggregated particles
deterministic model ruled by a single specification: “Par-will be calledh(t).
ticles are initially deposited on a siteandomly chosenand In theK=0 case, the average width of the diffusive layer

where the bracket), denotes lattice average.

There are four regions in parameter space in which th
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FIG. 4. Quadratic roughness vs mean deposit thickness, for two
FIG. 3. Evolution of the mean substrate thickness as a functiorxtreme values of diffusive layer width.=100, K=0.5, average
of time: analytical resultK=0), and simulations foPs=0.2 and  over 100 independent runs. Inset: Growth of the deposit roughness
P,=0.8 with differentK values.L=100, R=10 for an average vs rain rate.
over 100 independent runs. The time unit corresponds to the incor-
porat_lon of 1 ML of_ particles. Inset: Steady state concentration as a V. NUMERICAL RESULTS
function of P4 for differentK.
A. Roughness at saturation
in the steady state is;c=R(2— Pg)/Ps (A15), while the

- . In this section, we show how both the characteristic scales
average deposit height evolves as

associated with the different power law regimes, and their
crossovers, are affected by the presence of a diffusive layer,
meaning that, under certain circumstances that could be met
in experimental work, an adequate estimation of the width of
assuming an initial condition corresponding to a homogethe diffusive layer might be more relevant to nanotechnologi-
neous stat¢c(0)=h(0)=0]. cal processes than the universal exponents in the asymptotic

Note that fort>(2—P;)/Pg, the mean height of the de- regime.
posit grows linearly with timeh~t, a relation that is as-  The basic process that introduces smoothness into the de-
sumed in most models studied in the literature. Howeverposit consists in the accumulation of particles in correspon-
whent=(2-Pg)/Ps, the average height grows hs-t. dence with the valleys, and the rarefaction of the diffusive

In Fig. 3, we present results corresponding to Montelayer in correspondence with the peaks of the deposit, as a
Carlo simulations for the cage+ 0. Two families of curves result of a biased diffusion process. The smoothing process
are shown. The first one correspondsfig=0.8, while the enters in competition with the intrinsic fluctuations due to the
second family corresponds By=0.2. We can verify that for  rain process. We estimate the size of these fluctuations to be
the family with P=0.8, the average deposit decreases withof the order ofc?, with ¢ the mean width of the diffusive
K for any fixed time, while on the contrary, féts=0.2, the layer.
deposited height increases wkhfor any fixed time. We can We further expect that in the limit case in whichs very
see that even after a deposit of 500 Mh real situations, a large, the biased diffusion will result inefficient to compen-
width in the micrometer scaleexpression(6) represents a sate the size of the fluctuations. Because of this, we expect
good approximation to the evolution of the deposit, even forthe evolution of roughness to be affected by the width of the
large values oK. diffusive layer. Evidence of this effect can be found in Fig. 4

The result suggests that when the diffusion of particles isvhere we can see that with a very thick diffusive layer the
slow (Pg=~1), the diffusive layer is rarefied in the valleys, random-deposition regime survives even after a deposit of 20
delaying the deposition process, while at the same tim@r 30 ML, in contrast to the situation where the diffusive
deposition at the peaks is increasingly inhibited by increastayer is thin and the random-deposition regime ends soon
ing the values oK. after the first monolayer is deposited.

WhenP¢~0, most of the particles are available for depo-  The saturation value for the roughness of the interface as
sition at the valleys and the effect of increasiigs to in-  a function of the rain rate is shown in Fig. (fhseb. As a
crease the effective deposit rate. result of the balance between smoothing and fluctuations de-

Evidently, there is a value d®g for which the situation is  scribed, the saturation values of the roughness will depend
intermediate between both extreme cases. The situation @n the rain ratethe slower the particle rain, the better the
shown in the inset of Fig. 3. Fd?;~0.3, it can be seen that film quality, a conclusion that seems to be intuitive for sedi-
the concentration of the steady state is practically indepermmentation models but has not been accounted for by other
dent ofK. models and/or studies.

(h)=Rt—cg1—e [Ps/(2-PIlty, (6)
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B. Influence of the diffusive layer on the characteristic
exponents 1

.
-
.

In most of the models studied in the literatuigg] it is '
found that the roughness satisfies the dynamic scaling hy
pothese$11] implying that the dependence W? on time is Nao-l

?

T ||||rI'I'| T |||||IT|
1 ||||u,|,| 1 ||||||,|,|

of the form — slope=0.95
~t if t<tq 0.01 —-- slope=0.45
WA(L,t)=4 ~t?# if te<t<ty(L) .
const if tl(L)<t, ERETT B AR Rt IR RTT BERE R R TTT B ARt
0'0%1.001 0.01 0.1 1 10 100
<h>

where B is a characteristic exponent of the system. It is ex-
pected that characteristic exponents be invariant in front of
changes in the rules that define the model, as long as th
basic underlying physics is preserved.

However, the fact that in our system the deposit does nol_ 0.1
(initially) grow linearly with time, Fig. 5, implies that the B
graph of W? against time is not in agreement with the stan- — slope=1.82
dard picture. 0.01 —-- slope=0.95

The initial transient timety roughly corresponds to the
time for depositing 1 ML and is characterized by the absence
of correlations among sites. The evolution of the roughness ¢ 001 crvennl 0 il M EEET
is then expected to match that corresponding to randor 1 10 ti 100 1000

N > ime
deposition, i.e.W-(L,t)«t.

However, the presence of a diffusive layer, introduces a FIG. 5. Quadratic roughness as a function of the mean height
characteristic time scalf that corresponds to the time re- (uppe and as a function of timdower) in theh~t2 region, show-
quired to reach the steady state concentration. Fron(@q. ing the (approximatg doubling of the scaling exponents= 100,
we can estimate this time dg=(2—Ps)/Ps. The observ- Ps=0.2, R=500, K=5, average over 100 independent runs. The
able exponents correspondingw? vst associated with the time unit corresponds to the incorporation of 1 ML of particles.
different regimes will depend on the valuetgfcompared to
the other time scales present such@&leposit of 1 M) and  sjtuations which are observationally different as, for ex-
t;, the saturation time of the deposit in terms of the rough-ample, those situations where a white clue is formed, and
ness. This means that different scaling laws will emerge fromhose of extremely rarefied diffusive layers which cannot be
the W? vs t plots depending on whethég<t,, to<t,<ty, directly observed.
or ty<ty. The present work focuses in growing thin layers and as

In particular, it can be seeffrig. 5 that for times shorter such the question of the “universality class” of the model
thant, (the situation in whichh~t?), andto<t,<t;, the lies beyond the scope and possibilities of the present study.

1 1 IIIIII| 1 1 IIIIII| 1 1 ll'j.lv‘l
-
"
‘f’
-~

K
L~

|||un?—|—|

|||||rI'I'|
1 ||||u,|]

|||||rI'I'|
|||||u,|,|

observed exponents in thé&/? vs t curves are(approxi- Nevertheless, observed values of critical exponents com-

mately doubled with respect to those observed inWévs  puted during the simulations are compatible with the
h curves. “Edwards-Wilkinson” class. It is worth noticing that the

time required by the system to abandon the “random-

V1. SUMMARY AND CONCLUDING REMARKS deposition” transient strongly depends on the thickness of

the diffusive layer.

We have introduced a simple model for sedimentation Among the important features of the present model and its
where only gravitational forces and diffusion effects are in-mathematical study, we emphasize on the following points.
cluded. The model describes both the particle aggregation (a) There is a single model for several different situations.
and a layer of buoyant particles that we have named th®ifferences are managed through continuous changes in pa-
diffusive layer. rameter values rather than in sharp changes of rules.

The model introduced follows the standard formulation of (b) The limit case where there is no sensitivity to the
population dynamics and as such can be analyzed. In thideposit topography can be solved in exact form, opening the
context, it is important to notice that most results will be in possibility of applying(developing perturbation theory to
terms of statistical estimators, for example, the asymptoticases with weak dependence on the deposited profile.
value of the mean thickness of the diffusive layer can take (c) The model at no point assumes a linear relation be-
any real value. An average number of fOparticles can tween time and average deposited height, and predicts a
only be interpreted as a buoyant particle ever§ dites, i.e., slower buildup of the deposit at the beginning of the depo-
a lonely particle trying to find the proper place where tosition process. Furthermore, for any given deposit thickness
attach to the surface. it is possible to make the full deposition process in the tran-

By changing parameters, the model can bridge betweesitory regime.
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(d) It is possible to estimate, within the approximate .
model, times for the prevalence of one or another class of ‘1’=R( 2 an—L
events. The prevalence of different events will be apparent in A
the rate of change of different statistical estimators as, for
example, crossover of scaling exponents. —(2B+A)On+AS [ (A3)
(e) The model predicts a dependence of the final smooth- Gn
ness with the particle incorporation rate not present in previ- | gt ¢ =e®. The corresponding equation fdr reads
ous models.
(f) The model predicts a complete statistical equivalence .
of the depositias a function of timgin all the cases where o= R( 2 gn—L
no sensitivity to the topography of the deposit is presemt "
the particle rain is homogeneoushis fact suggests that ex- d®
periments trying to probe the underlying physics might ben- _(ZB+A)qn+ASn]ﬁ- (A4)
efit from an inhomogeneous rain of particles which is defi- "
nitely not recommended if a smooth homogeneous surface is since (A4) is a quasilinear equation, its solutions can be

\P+§ [B(On—1+0n+1)

+§n: [B(On-1t+0n+1)

the final objective. obtained by the method of characteristi¢s].
The system of characteristic equations associated to Eg.
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APPENDIX: ANALYTICAL SOLUTION FOR K=0
In this section, we explore analytical solutions for the case Aftér integrating Eq(AS), we get
K =0 (no sensitivity to the topography of the deppsit R R
b= KQ+ K(S—L)Ile—S| +G(vq, ...v), (AB)
1. Derivation of the probability generating function

The stochastic variables are the concentration at the diwhereQ==2q;, S=ZXs;, G is a function to be determined

ferent sitesc; with i=1,... L, and the number of depos- using the initial conditions, and; are the integral surfaces
ited particlesh; on each site. corresponding to thelL characteristic equations, i.e.,
The master equation reads v;(g;(t),t)=consf wheng;(t) satisfies
L
P(c,h,t) 2 [RP(c,—1)+B(ci+1)P(c;_;—1¢+1) BE Mija;+A(Gi— ). (A7)
+B(c;+1)P(cit+1,ci,1—1)+A(c;+1)P(c; Here,M;; are the elements of dn? matrix defined as
L
Mij =26j;— 6i(j—1 modL) ~ Si(j+1 modL) » (A8)

+1h—1)]-|LR+(2B+A) >, ¢;|P, (A1) !
=t M is symmetric and non-negative matrix, with eigenvalues

where 2k
ANe=2 1—005(—) , (A9)
1-Pg s L

B= 5_p and A= 5_p
s s each one with degeneration two. The corresponding eigen-
vectors read

On the right side of Eq(Al), we have highlighted the nota-

tion including only the arguments of the probabilitieghat 2

change with the event associated to the term. Tnj=exr< I~ (n=1)(j - 1)) : (A10)
The generating function is defined by2]

with k=1,2, ... L (there is an arbitrary election within the
W(g,5t)= . .q%s™. . s"p(cht), (A2 degenerated subspages
(@st) {%} G- Aos; LPEht), (A2 Equation(A7) is solved using standard methodsaria-
tion of the constants, for examplgarriving in this form to
and satisfies the partial differential equation: the general solution of EqA4) that reads
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d(t)= R + R S—L)l S
()_KQ K( —L)In[Q—§|

+6]e OB Ty e |, (A1)
J

wherec; satisfiesZ;(BM;;+Adj;)c;=As .

Considering the initial condition that corresponds to the

certainty of havingci0 particles in the site of the diffusive
layer, andh? particles deposited in the site

®(0)=2, (c%ng,+hns,), (A12)

we obtain the expression @ for this family of initial con-
ditions

1 2
G(vy,0, .. ,UL)=EK (cﬁln|; (Eexp[—iTW(k—n

X(n—1)

Un) +cyt +hlIn sk)

R R
- K(Ul'f' S)_ K(S_ L)|n|U1|.

(A13)

Finally, the generating function with the initial configura-

tion c?,h? is

R
‘If(q,s,t)=ex;{K(Q—S)(1—e‘At)+Rt(S— L)

L
1. )
> ~ el @mL)(n-1)(—K)
11, (2 ;

nj
xe (ABig + S éei(ZTr/L)(n—l)(j—k)
iTe L

(1_ e (A+)\nB)t)

Ck hO
Sj| (sK)'k

2. Particular cases
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<C>=0§=§(1—e““). (A15)

<h>=aﬁ:Rt—§(1—e*At). (A16)

(b) No diffusion caseP,=1.
In this caseB=0 andA= 1. The generating function is then

L
Vp-1= kﬂl exd R(gx—sK)(1—e™ ")

ho 4 0
+Ri(s,—L)Is e (dk—sK) + i,

(A17)

which factorizes with respect to the site variables as a mani-
festation that the sites become statistically independent when
there is no diffusion.

(c) Asymptotic limitt—oo.
The marginal distributions in the—c limit are

R
fasymp{qn):exiz(qn_l)) ) (A18)

(s)"™

gasymp{sn) = eXF{ Rt(sp,— 1)( 1—;)

2w
ex IT(j —-1)(n—Kk)
f B

1
XHE

k

X(sp—1)+1 (A19)

We see that the diffusive layer variables evolve to the sta-
tionary state distribution losing “memory” of the initial

We §‘hal| briefly e>§p|0re thg meanir_lg qf the results Qb-state. In contrast, the marginal generating function for the
tained in the preceding section considering the followingdeposited particle®l,symp{Sn). is still dependent on the ini-

cases.

(a Initially there is no particle in the systena?=0h?
=0.
In this case the marginal distributiorf§c) and g(h) are
Poisson-like with mean values given by

tial conditions.

Roughly speaking, we can say that, for very large times,
the initial condition will only be reflected in the statistical
properties of the deposited layer, and not in those of the
diffusive layer.
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