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Sheet Excitability and Nonlinear Wave Propagation
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In the Xenopus laevis oocyte, calcium ion channels are clustered in a thin shell. Motivated by this
morphology, we study a general class of reaction-diffusion systems that include most of the well-known
models that support wave propagation but restricting excitability to a ‘‘sheet’’ of codimension 1. We find
waves that undergo propagation failure with increasing diffusion coefficient and a scaling regime in
which the wave speed is independent of it.
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also of great physical interest. In this Letter, we first treat
this problem using an extension of the fire-diffuse-fire

such that u�xi; z � 0; t	 � 1. The length scale d is the
separation between the release sites, and
Living organisms use excitable nonlinear waves to
transport information. Waves of electrical activation in
the heart [1] and of Ca2� release during fertilization [2]
are two such examples. Excitability [3,4], a property of
various chemical, physical, and biological systems,
makes these nonlinear waves possible. The paradigmatic
example of excitability is the propagation of action po-
tentials in nerves [5]. In some nerve fibers, the excitability
of the medium is not spatially uniform but limited to
narrow regions called the nodes of Ranvier [6]. This gives
rise to saltatory propagation, in which the wave undergoes
rapid jumps at the nodes [7]. Cells have evolved to opti-
mize their properties: The wave speed in nerve fibers with
nodes is higher than in spatially uniform ones. Ca2�

waves, another common cell signaling mechanism [8],
can also be saltatory [9–11]. Intracellular Ca2� waves
involve Ca2� release from internal stores through Ca2�

channels, the subsequent diffusion of Ca2� in the cytosol
and the ‘‘recapture’’ by various pumps and buffers. These
processes occur in different cell types [2,12,13]. In all of
them, the cytosol acts as an excitable medium because the
open probability of the Ca2� channels depends on the
cytosolic Ca2� concentration, resulting in calcium in-
duced calcium release [14]. In most cases, the Ca2� chan-
nels are distributed nonuniformly. Consequently, there
are various spatially localized Ca2� signals [12,13] and
Ca2� waves can be saltatory or continuous [9–11].We may
thus conclude that dynamics and geometry combine to
provide the cell with a flexible signaling repertoire.

In this Letter, we consider another geometric property
that affects excitable wave propagation. Motivated by the
observation that Ca2� channels in the �1 mm diameter
Xenopus oocyte lie in a thin shell about 6� thick [13], we
study wave propagation when the excitability of the sys-
tem is restricted to a sheet of codimension one. This
morphology, which has not been previously considered,
has ramifications for Ca2� signaling. The more general
problem of nonlinear waves generated by sources lying in
a lower dimensional space than the embedding medium is
0031-9007=03=91(25)=258101(4)$20.00 
(FDF) model [9–11] of [Ca2�] waves in which the signal-
ing agent diffuses in three-dimensional space but is re-
leased from point sources located in a two-dimensional
sheet. We also present a general analysis for the case in
which the source is continuous over the sheet. Diffusion
plays a dual role here. It is necessary for wave propagation
but also acts as a sink by removing the signaling agent
from the sheet. We thus find waves that undergo propaga-
tion failure with increasing diffusion coefficient and an
asymptotic regime in which the wave speed is indepen-
dent of the diffusion coefficient. Waves in homogeneous
media do not share these counterintuitive properties.

In the FDF model, clusters of channels are represented
by point sources separated by a distance d, which ‘‘fire’’
when the Ca2� concentration at the site reaches a thresh-
old. This last condition is meant to mimic excitability.
The sites fire for a time, �, releasing a total, �, of Ca2�

ions. Ca2� diffuses between clusters with diffusion co-
efficient, D, on top of a basal concentration, �Ca2��B.
Here we modify the FDF model so that all the release
sites are located on the z � 0 plane and look for waves
that travel in the x direction. As in [11], we consider only
the discreteness of release sites in the direction of propa-
gation, treating both the solution and the distribution of
release sites as y independent. We define a dimension-
less concentration u by dividing the dimensional one
(�Ca2�� � �Ca2��B in the case of Ca2�) by the threshold
concentration, uc, and dimensionless space and time co-
ordinates, x ! x=
, z ! z=
, and t ! Dt=
2, with 
 a
distance scale that we discuss later. In these variables, the
evolution equation reads
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where H is the Heaviside function [H�x	 � 0, for x � 0
and 1 for x > 0], � 
 d=‘, and ti is the minimum time, t,
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‘ 
 Ducd
2�=�: (2)

In order to minimize the number of parameters, we either
set 
 � d or 
 � ‘. In both cases, the resulting evolution
equation depends only on � � D�=d2 and �. In what
follows, we will take 
 � d except in the limiting case
� ! 0 in which case we take 
 � ‘.

We seek propagating solutions such that ti � xi=c with
c a dimensionless constant velocity. This does not mean
that the solution propagates without deformation, but that
the time interval between adjacent firings is unchanging.
The formal solution to Eq. (1) for t�1 < t � 0 and c > 0,
at x � 0, z � 0, is u�0; 0; t	 �

P
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��dt0	=�t� t0	� expf��x2i =4�t� t0	�g. Given � and �,
u�0; 0; 0	 is a function of c:

f�c	 
 u�0; 0; 0	 �
�

4�

� X1
n>��c�

Ei��qn	 �
X1
n�1

Ei��pn	
�
;

(3)

where Ei��x	 �
R
1
x dte

�t=t, pn 
 nc=4, and qn 
 �n2c	=
�4n� 4c�	. Since u�0; 0; 0	 � 1, then c � f�1�1	 with c
depending on � and �. Figure 1(a) is a plot of f�c	=� vs c
for different values of �. We see that f�c	=� has a
maximum, A��	, for all values of �. Therefore f�1 exists
only in the region of the �� � parameter space where
1 � �A��	. Figure 1(b) is a plot of A��	 in which it is
shown that for a given value of � there is a solution to
f�c	 � 1 for � > �min��	 with �min��	 a decreasing
function of �. As shown in Fig. 1(b), we can approximate
the curve by simple scaling relationships over certain
intervals. We can also observe in Fig. 1(a) that, for the
allowed values of � and �, f�1�1	 has two values. Only
the one that corresponds to the largest c (or to the mini-
mum time at which u � uc at the site) is the traveling
wave solution. The existence of another c value that
satisfies f�c	 � 1 is related to the fact that u � uc twice
at each release site, once on the way up and once on the
way down. The same behavior is observed in the original
FDF model only when pumps that remove Ca2� are taken
into account [9].

As in the original FDF model, the discreteness of the
release sites is either manifest or not, depending on the
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FIG. 1. (a) f�c	=� for various �. (b) The maximum value of
f�c	=�, A, as a function of �. The dashed lines are the
approximations A � �=6 and A � :25�1=2 for small and large
�, respectively.

258101-2
value of �, as shown in Fig. 2. These plots display the so-
lutions in the traveling frame ( 
 x� ct), with c ob-
tained by solving f�c	 � 1. In the original model, the
traveling pulse left a high concentration behind. In
the current case, the solution decays to zero far behind
the traveling front because diffusion removes the signal-
ing agent from the excitable region (i.e., the sheet z � 0).
This is similar to the behavior of the original FDF model
when pumps are included.

The wave velocity scales differently with D depending
on whether the propagation is saltatory or continuous.
This can be seen from Fig. 3, where we plot v�=d, with
v the dimensional velocity of the wave, as a function of �
for various values of ��. Taking �� fixed while varying
� is equivalent to varying only the diffusion coefficient,
D. Thus, the scaling of v�=d vs � is the same as the
scaling of v vs D. We can deduce from Fig. 3 that v�D
for small enough �. This corresponds to the extremely
saltatory case and the scaling is similar to the one of the
usual FDF model. As D is increased, the slope of the
curve decreases and the velocity reaches a maximum
value. Eventually the traveling wave solution ceases to
exist. The end points of the curves at large values of D
correspond to the disappearance of the solution. The
occurrence of propagation failure with increasing D is
not observed in the usual FDF model and is a conse-
quence of the role of diffusion as a sink: The larger D the
more efficient the sink is, and this eventually leads to the
disappearance of the solution. More surprisingly, for large
enough ��, the curve displays a plateau spanning several
decades inD. Thus, there is a regime in which the velocity
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FIG. 2. Profile of u as a function of  
 x� ct and t [(a),(c)]
and corresponding space-time plots along the  axis [(b),(d)]
for � � 0:001, � � 2
 106 [(a),(b)] and � � 50000, � �
0:04 [(c),(d)]. The speed is c � 33:9 in (a),(b) and c �
0:0126 in (c),(d). The propagation is saltatory in (a),(b) and
continuous in (c),(d). These plots were made with finite spatial
resolution thus mimicking real data.
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of the wave, which propagates solely by diffusion, is
independent of the diffusion coefficient. This surprising
result is again due to the role of diffusion as a sink. This
behavior takes place in the continuum limit, and we will
show that it occurs in more general cases.

There are two limits in which the v dependence on
D can be deduced with simple scaling arguments. The
extreme saltatory case corresponds to the limit � ! 0,
� ! 1 while the product �� � �=�ucd3	 
 � remains
finite. For these values of �, A��	 � �=6, so that �� > 6
in order for the traveling wave solution to exist. In the
saltatory limit, Eq. (1) becomes
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��x� i	��t� ti	; (4)

where u�i; 0; ti	 � 1. The boundary conditions are u ! 0,
as jxj; jzj ! 1 so that c is a function of � only. The
dimensional velocity is

v � c��	
D
d
; (5)

which explains the linear scaling in the small � region of
Fig. 3.

In the original FDF model, the continuum limit cor-
responds to d=

�������
D�

p
! 0 and �=d3 finite, so that the sum

of � functions over active release sites can be replaced by
an integral. In the present case, the continuum limit
corresponds to � ! 0 and �=d2 finite. Then the sum on
the right-hand side of Eq. (1) (with 
 � ‘) becomes an
integral over the active sites along the direction of propa-
gation x and a two-dimensional release density over the
z � 0 plane, �=d2, exists. In this way ‘ remains finite
even though d ! 0. Taking the limit and nondimension-
alizing Eq. (1) with 
 � ‘ yields

@u
@t
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@x2
�
@2u

@z2
� ��z	H�x� x̂x1	H�x̂x2 � x	: (6)

Here x̂x2 and x̂x1 are functions of time defined implicitly
through u�x̂x2; t	 � 1 and u�x̂x1; t��2�	 � 1. Thus, x̂x2
and x̂x1 delimit the region with active sites. For the travel-
ing wave solution, these spatial points travel with the
258101-3
wave at speed ~cc so that the dimensionless front width is
ŵw 
 x̂x2 � x̂x1 � ~cc�2� [15]. The traveling wave solution is
further characterized by the boundary conditions: u ! 0,
jxj, jzj ! 1. Since Eq. (6) depends only on �2� and
given the boundary conditions, it follows that the dimen-
sionless velocity, ~cc, is a function of �2�. The dimen-
sional velocity, v, is then given by

v �
D
‘
~cc��2�	 �

�

uc�d2
~cc��2�	: (7)

As previously mentioned, for small �, there is a travel-
ing wave solution only for large enough �. In that region
of � values, A��	 � 0:25

����
�

p
(see Fig. 1). Thus, �2� > 16

in order for the traveling wave solution to exist. Now, if
�2� � 1 then ŵw � 1, i.e., the trailing edge of the active
region is far from the leading edge. Then ~cc becomes
insensitive to �2�. From Eq. (7), it then follows that v
is effectively independent of D in this limit, which ex-
plains the plateau in Fig. 3. This result is also easy to
derive from the expression f�~cc	 in the continuum limit.
The existence of the additional length scale, ‘, is ulti-
mately responsible for the occurrence of this peculiar
behavior in which a diffusion-driven wave travels at a
speed that is independent of the diffusion coefficient.

We now show that the existence of diffusion-driven
waves with a D-independent velocity is a general feature
of reaction-diffusion systems in which diffusion occurs
in the full space while the reactions are restricted to a
codimension one ‘‘sheet.’’ Consider, for example, a bi-
stable reaction-diffusion system of the form ~uu~tt �
D~rr2~uu� ��~zz	�LU=T	f�~uu	, where all variables are dimen-
sional with the exception of f, which is assumed to be
dimensionless. In that way L, U, and T are parameters
that give the right dimensions of the ‘‘reaction term,’’ the
presence of the ��~zz	 indicates that it is different from zero
only on the z � 0 plane and the product UL is a two-
dimensional density on that plane (e.g., in the FDF model
these parameters correspond to L � �=ucd2, U � uc,
T � �). If this system possesses a traveling wave solution
that tends to a fixed point of f as x; z ! �1, its velocity
is independent of D. To show this, we define dimension-
less variables: u 
 ~uu=U, x 
 ~xx=
, z 
 ~zz=
, t 
 D~tt=
2

with 
 � DT=L. Then the evolution equation becomes
ut � r2u� ��z	f�Uu	 which implies that the dimen-
sionless velocity c does not depend on D. It follows that
the dimensional velocity v is D independent: v �
Dc=
 � Lc=T. The same result applies if u and f are
vectors instead of scalars. A somewhat similar result is
obtained for two-variable excitable systems of the form
~uu~tt �D~rr2~uu���~zz	�LU=T	f�~uu; ~hh	, ~hh~tt � �H=T0	g�~uu; ~hh	 with
a single spatially homogenous stationary solution.
Systems of this type include the two-variable reduction
of the Hodgkin-Huxley model [7] (i.e., the FitzHugh-
Nagumo model), or of the DeYoung-Keizer model of
intracellular Ca2� dynamics [14,16], when the ion
channels are restricted to the z � 0 plane. Proceeding
258101-3
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as before (with h � ~hh=H), we obtain the dimensionless
equations ut�r2u���z	f�Uu;Hh	, ht��DT2=L2T0	

g�Uu;Hh	. In this case, if there is a pulse that tends to the
fixed point of the system as x; z ! �1, the dimension-
less solution, in principle, depends on D. However, if
DT2=�L2T0	 � 1, then we may assume that h is approxi-
mately constant while v varies significantly. In this limit,
which holds if D is not too large, the dimensionless
traveling pulse solution and the dimensional velocity
are D independent. This is a consequence of the behavior
we found for the bistable case, since in this limit the front
dynamics can be described, as usual, replacing the excit-
able system by a bistable one [7]. On the other hand, if D
is large enough, we expect propagation failure as in the
continuum limit of the FDF model.

We now use the FDF model to give heuristic explana-
tions for the scalings discussed in this Letter. Fick’s law
states that diffusive fluxes are given by Dru. Thus, a
mean velocity can be defined as v�D=Lu with Lu a
characteristic length scale of variation of u. In order to
estimate Lu, we need to distinguish between continuum
and saltatory propagation. In the saltatory case, sites are
distinguishable and Lu � d. Thus, v�D=Lu � D=d. In
the continuum case, sites begin to fire when they are on
the edge of the active region which is effectively a source
of u. Then, we estimate Lu using the diffusion equation in
the presence of a source, s: @u=@t � s�Dr2u and con-
sidering its stationary solution s � �Dr2u. Thus, we can
estimate Lu �

������������
Du=s

p
, with u a characteristic concentra-

tion. At the leading edge, u � uc, so Lu �
��������������
Duc=s

p
. It

then follows that the speed of propagation goes as v�
D=Lu �

��������������
Ds=uc

p
. In the original FDF model, the source

is uniformly distributed along the front and s � �=�d3�	.
Thus, Lu �

�����������������������
Ducd

3�=�
p

�
�������������
D�=�

p
and the speed scales

as v�D=Lu �
�������������
�D=�

p
. In the model discussed in this

paper, the source is localized: s � ���z	=�d2�	. For this
calculation, we will consider it to be spread over width Lu
in the z direction so that s � �=�d2Lu�	. Now, since Lu ���������������
Duc=s

p
�

����������������������������
Ducd

2Lu�=�
p

, we get Lu � Ducd
2�=� � ‘.

Thus, because of the diffusive spread in the direction
perpendicular to the plane of release sites, Lu � ‘�D
and v�D=‘ � �=�ucd2�	 is independent of D. The limit
in which v�D=‘ requires that d � ‘ and �2� �
D�=‘2 � 1, which is equivalent to d � ‘ � w 
 ŵw‘.
This means that the active region needs to be very large
to sustain the wave which is depleted by diffusion. In the
original FDF model, propagation failure occurs when the
ratio of the release density, �=d3, to the excitability
threshold, uc, is not large enough. In the current model,
propagation failure also occurs when a ratio of release
density to threshold (�2� � �=�ucd2

�������
D�

p
) is not large

enough but now with a release density that accounts for
the spread of the signaling agent over a distance

�������
D�

p

while the site is active.
In systems that are excitable in a sheet of lower dimen-

sionality than the embedding space, diffusion plays a dual
258101-4
role, serving as both transport mechanism and as a sink
by removing the signaling agent from the excitable sheet.
Waves in homogeneous media do not share these proper-
ties. Inhomogeneities imply the possibility of additional
wave-speed scalings beyond the D1=2 one considered in
the biological literature [17]. The cell is a complex place;
it would be surprising were it to single out the trivial
square root scaling. We have demonstrated wave speeds
that scale as v�D) for all ) in 0 � ) � 1. In particular,
we can expect v�D0 to occur whenever the sheet of
excitability is of codimension 1.We have not analyzed the
codimension q � 1 problem in detail, but it seems likely
that other unexpected scalings will be encountered.
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