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Abstract

Based on Maldacena’s description of an eternal AdS-black hole, we reassess the Thermo Field

Dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied

here involves the maximally extended AdS-Schwarschild solution and two (non-interacting) copies

of the CFT associated to the global AdS spacetime, along with an extension of the string by

imposing natural gluing conditions in the horizon. We show that the gluing conditions in the

horizon define a string boundary state which is identified with the TFD thermal vacuum, globally

defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this

picture with unitary SU(1,1) TFD formulation and we show that information about the bulk and

the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD

formulation, a canonical prescription for calculating the worldsheet real time thermal Green’s

function is made and the entropy associated with the entanglement of the two CFT’s is calculated.
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I. INTRODUCTION

Since its advent, the holographic AdS/CFT correspondence has been exploited to study

the physics of non-Abelian quark-gluon plasmas at finite temperature from bulk gravita-

tional physics[1–4]. More recently, it has been emphasized that one can also exploit the

gravitational description to understand the hydrodynamic regime of the quark-gluon plasma

and the quark Brownian motion in a conformal fluid [5]. In these applications, the string

propagates in an asymptotically AdS space containing black holes, and the quark physics

is described by an open string stretching from the horizon up to a probe brane placed to a

short distance (related to the ultraviolet cut-off) from the conformal boundary. The quark

is naturally identified with the end of the string on the boundary, while near the Black

Hole horizon it is supposed to end on an effective membrane with thermal and dissipative

properties, called stretched horizon. In this scenario, the Hawking radiation induces ran-

dom motion on the string end point. Then, the motion of the quark in the quark-gluon

plasma is assumed to be described by a Langevin equation, whose parameters can then be

deducted by bulk calculations. In principle, such investigations would require an exact first

quantization of the string in an AdS black hole, which in general is a very difficult task.

In spite of this problem, much progress has been made by studying small perturbations of

the Nambu-Goto action up to quadratic order.1 This approximation corresponds to the non

relativistic limit and, in this context, the relativistic dynamics of the quark-gluon plasma at

finite temperature cannot be described.

In general, since the bulk geometry has an event horizon, the induced metric on the string

worldsheet also corresponds to a black hole geometry [8] and, owing to Hawking radiation,

the problem of studying small fluctuations of the Nambu-Goto action in AdS black holes

reduces to the dynamics of two dimensional quantum field at finite temperature. So, in order

to understand completely how the AdS/CFT at finite temperature works, it is necessary to

understand this thermal field theory on the worldsheet. In [9] a prescription was formulated

for computing the real-time Green’s functions at finite temperature. This was realized in

the context of the Schwinger-Keldysh formalism, by using the Kruskal extension of the AdS

Schwarzschild spacetime. In addition to Schwinger-Keldysh formalism, there is another

real time formalism appropriated to explore the present context; it is the Thermo Field

1 See [6], [7] and references therein.
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Dynamics (TFD) formalism [10]. TFD provides a picture where the degrees of freedom

behind the horizon play an important role, which should be applied to describe strings in

AdS black holes. This point of view was noticed by Israel [11], and put forth by Maldacena

in the holographic context [12]. This is the picture that we intend to study here.

TFD is a real time formalism conceived originally to deal with thermal systems approach-

ing them directly on their Fock space. The Takahashi and Umezawa original proposal con-

sists of a canonical quantum field theory that reproduces the statistical averages of any

system’s observables [10]. In fact, from the statistical mechanics point of view, considering

an observable operator Q, its statistical average is defined by the functional ω(Q) = Tr(ρQ)

as

〈Q〉 = ω(Q)

ω(1)
=

Tr[Qρ]

Tr[ρ]
(1)

where ρ is the density operator of the system. Such functional is recognized as a state in

the algebraic statistical mechanics with the operators obeying a C∗ algebra. In this point

of view, the algebra equipped with a functional admits a reducible representation of the

Hilbert space such as a Fock space [13–20] and the statistical average in TFD is written as

〈Q〉 = ω(Q)

ω(1)
= 〈0(β)|Q|0(β)〉 , (2)

with |0(β)〉 being the TFD thermal vacuum. More generally, the central idea is to construct

a quantum field theory whose vacuum contains the information about the environment

under which the system is subjected. Once observed that temperature is introduced as an

external parameter, it is verified that the thermal vacuum appears as a boundary state in

the doubled Fock space composed by the physical space of the system and a copy of it. The

expression defining such a state is called thermal state condition [21] and it must contain

all the information about the system to be considered. Starting from a physical system at

zero temperature, TFD’s general procedure consists of the doubling of degrees of freedom of

the system and a suitable Bogoliubov transformation to entangle such duplicated degrees of

freedom. With the doubling, one obtains an enlarged Hilbert space composed by the original

and an auxiliary space, which is identical to the original one and related to the so called tilde

system. The enlarged Hilbert space is denoted by a hat and is given by Ĥ = H ⊗ H̃. The

original and tilde systems are related by a mapping called tilde conjugation rules associated

to the application of the Tomita-Takesaki modular operator of the statistical mechanics

algebraic approach [15, 16].
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The Bogoliubov transformation is obtained using a generator in such a way that, in a

finite volume limit, the transformation is unitary and preserves the tilde conjugation rules.

The thermal effects arise from the vacuum correlation introduced by the transformation over

the enlarged system vacuum. This construction was the first one for TFD; however, one can

find a set of generators that maintains the thermal nature of the transformation. The set

of generators constructed to this end is shown to be a linear combination of operators that

forms an oscillator representation of SU(1,1) group for bosons and SU(2) for fermions [21, 22].

These sets for fermionic and bosonic systems can be combined in at least two different ways,

providing generalizations of the TFD approach. In one case the tilde conjugation rules

are preserved but the transformation, even in a finite volume limit, is non-unitary. This

construction was largely developed and its connection with other thermal field theories is

clear as one can see, for example, in Refs. [21] and [24]. In the second case the transformation

is unitary in a finite volume limit, but the tilde conjugation rules are not preserved. This is

the so called general unitary TFD formulation, and it is still under investigation.

Effectively, the general unitary formulation was applied to a physical system in [25], where

it was perceived that a systematic study about the formulation’s implications was necessary.

In references [26–29] such analysis are carried out and the formulation was successfully

applied to describe superstrings at finite temperature2. Recently the general unitary for-

mulation was also applied in Refs [59, 60], but considerations about interacting systems,

dissipation, possible connection with other real time formalisms and with quantum statisti-

cal mechanics’ algebraic approach appear as open questions. Here we go forward towards a

better understanding of these constructions.

In this work we show that the SU(1,1) TFD formulation arises naturally for strings

propagating in an AdS black hole geometry. This is achieved noting that, by gluing the

string defined on the left quadrant of the Kruskal diagram (with the string defined on the

right one), we get a string boundary state, which is exactly the thermal vacuum of TFD.

This is in fact an entangled state and in the context of AdS/CFT, it is an entanglement

of the two CFTs defined by the Kruskal extension of the AdS black hole. We explore the

general unitary SU(1,1) formulation of TFD to show that all information of the system is

present in the Bogoliubov parameters. Also the TFD entropy operator is used to obtain the

2 It is important to draw attention that TFD was also applied to string theory in many others contexts in

addition to those already mentioned [30–58].

4



entropy of the system, associated here to the presence of the horizon. Its high temperature

limit is shown to be in agreement with the Cardy formula.

Keeping in mind this whole framework and the motivations mentioned above, we organize

the present paper according to the following outline: in Section II, we present the model

(described originally in [5]) and implement the Kruskal extension. In section III, in the spirit

of reference [6] we present the suitable generalization of the analytic continuation required

to circumvent the conical singularity, and then define a string in all spacetime by gluing up

the strings of the left and right quadrant. It is shown that the boundary state resulting from

this procedure is an entangled state of elements of the two CFTs. In Section IV, the general

unitary SU(1,1) TFD formulation is presented, and it is shown that the obtained vacuum

state matches the boundary state coming from the gluing, which has the information about

the conditions imposed over the string defined in all spacetime. The entropy is calculated

and it is interpreted as a result of the entanglement of the CFTs; also, the thermal two-point

functions are obtained. Finally, our final considerations and perspectives are presented in

section V.

II. OPEN STRING IN THE ADS BLACK HOLE

In this section we describe the basic features of the scenario that we are studying; a

detailed discussion can be found in ref [5]. The model consists of putting a probe funda-

mental string stretched from the boundary to the horizon of the following three dimensional

asymptotically AdS black hole geometry:

ds2 = −r2 − r2H
ℓ2

dt2 +
r2

ℓ2
dX2 +

ℓ2

r2 − r2H
dr2 (3)

which is in fact the metric for a non rotating BTZ black hole. Here t and X are boundary

coordinates. In this coordinate system, the open string is suspended from the boundary

at r = ∞ and straight down along the r direction into the horizon at r = rH . Although

we are focusing in this simple three dimensional case, in [5] the results are generalized for

d-dimensional spacetimes. The Hawking temperature is

T ≡ 1

β
=

rH
2πℓ2

, (4)

where ℓ is the AdS radius.
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Let us now write the string sigma model. For general planar d-dimensional AdS black

holes, the metric can always be written as follow

ds2 = gµνdx
µdxν +GIJdX

IdXJ , (5)

where both gµν and GIJ are independent of XI and xµ = t, x. In the gauge that we are going

to use, the worldsheet coordinates are identified with the spacetime coordinates t and x and

only the transversal modes XI = XI(t, x) are dynamical. In this gauge, the Nambu-Goto

action can be written as

SNG = − 1

2πα′

∫ √
det γµν , (6)

where the induced metric is γµν = GIJ∂µX
I∂νX

J . By expanding the Nambu-Goto action, we

get a power series of ∂tX and ∂xX which produces worldsheet interactions. As we are going

to study only small fluctuations of the equilibrium value XI = 0, only quadratic terms in

the action are considered. Since this approximation implies the regime |∂tXI | << 1 of small

velocities, we are in fact taking the non-relativistic limit. In the quadratic approximation,

the Nambu-Goto action can be written as

SNG ≈ − 1

4πα′

∫ √
g(x)gµν(x)GIJ(x)∂µX

I∂νX
J (7)

where g(x) = det gµν .

Following reference [5], one returns to AdS3 case, where there is only one transversal

variable X , and writes the metric in terms of the tortoise coordinate r⋆,

ds2 =
r2 − r2H

ℓ2
(−dt2 + dr2⋆) +

r2

ℓ2
dX2,

r⋆ ≡
ℓ2

2rH
ln

(
r − rH
r + rH

)
=

β

4π
ln

(
r − rH
r + rH

)
(8)

In this coordinate system, we can write the equations of motion in the quadratic approxi-

mation used in (7) as
[
−∂2

t +
r2 − r2H
l4r2

∂r(r
2(r2 − r2H)∂r)

]
X(t, r) = 0 (9)

Defining dimensionless quantities

ρ ≡ r

rH
, ν ≡ l2ω

rH
=

βω

2π
, (10)

the linearly independent solutions to (9) are given by

X(t, r) = e−iωtgω(r), (11)
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with

g(±)
ω =

1

1± iν

ρ± iν

ρ

(
ρ− 1

ρ+ 1

)±iν/2

=
1

1± iν

ρ± iν

ρ
e±iωr⋆ (12)

Because the string extends from the horizon of the black hole to the boundary, a cut-

off is needed to prevent UV divergences in the boundary. Also, we need to regularize IR

divergences at the horizon.

The UV divergences are controlled by imposing a Neumann boundary condition ∂rX = 0

at the cut-off surface:

ρ = ρc ≫ 1 or r = rc ≡ rHρc (13)

Solving for ∂ρfω|ρ=ρc = 0, we find the value of B in (19):

B =
1− iν

1 + iν

1 + iρcν

1− iρcν

(
ρc − 1

ρc + 1

)iν

≡ eiθω (14)

which is a pure phase. Next it is necessary to regulate the IR divergence at horizon (ρ = 1).

This is achieved by putting an IR cut-off at ρs = 1 + 2ǫ, with ǫ << 1. As argued in [5], the

effect of this regulator is to discretize the continuum spectrum which naturally occurs when

considering horizon dynamics.

After regularizing the theory, we can find a normalized basis of modes and start quantizing

X(t, r) by expanding it in those modes:

X(t, r) =
∑

ω>0

[aωuω(t, ρ) + a†ω[uω(t, ρ)]
∗] (15)

where

uω(t, ρ) =

√
α′β

2ℓ2ω ln(1/ǫ)
[g(+)

ω (ρ) + eiθωg(−)
ω (ρ)]e−iωt (16)

and the coefficients of the expansion aω satisfy the relations:

[aω, aω′ ] = [a†ω, a
†
ω′ ] = 0 [aω, a

†
ω′] = δωω′ (17)

Near the horizon (ρ ∼ 1), the metric becomes plane and the solution (12) behaves like

g(±)
ω ∼ e±iωr⋆ (18)

So, near the horizon the solutions are written in terms of ingoing and outgoing plane waves:

XR(t, r) =

√
α′β

2ℓ2ω ln(1/ǫ)

∑

ω>0

{aω[e−iω(t−r⋆) + eiθωe−iω(t+r⋆)]}. (19)
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Let us now further develop this model in order to show how the TFD structure rises naturally

in this scenario. The solution (15) can be written in terms of Kruskal coordinates, where

the structure of the full Penrose diagram for this AdS space becomes apparent. Outside

the horizon, there are two causally disconnected spacetime geometries (both of which are

asymptotically AdS), defining two CFTs. In the Kruskal plane, the solutions are uniquely

determined by their boundary conditions at the two Minkowski boundaries, in the right (R)

and, respectively, left (L) quadrants of the Kruskal diagram. Also, in order to define the

string in all spacetime, it is necessary to perform an appropriate analytical continuation in

the Kruskal variables U and V . The Kruskal coordinates are defined in terms of t and r⋆ by

the transformation

t = ln

(
V

−U

)
r⋆ = ln(V (−U)) (20)

where (U, V ) are defined such that (V > 0, U < 0) in the right quadrant and (V < 0, U > 0)

in the left quadrant.

Note that, as any function of t and r can be written in terms of U and V , we don’t need

to write the metric in terms of U and V and solve again the equation of motion. We can

solve the string equation of motion separately in the R and L quadrants and obtain one set

of mode functions in each quadrant. So, if we define the solution (15) in the R quadrant,

we just need to write the respective solution in the L quadrant defining it as a copy of the

R solution:

XL(t̃, r) =
∑

ω>0

{ãωũω(t̃, ρ) + ã†ω[ũω(t̃, ρ)]
∗} (21)

where

ũω(t̃, ρ) =

√
α′β

2ℓ2ω ln(1/ǫ)
[g(+)

ω (ρ) + eiθ̃ωg(−)
ω (ρ)]eiωt̃ (22)

In order to relate these solutions, we need to impose boundary conditions at the horizon

U = V = 0, where the transformation (20) is singular. This is the topic of the next section.

By doing the Kruskal extension, we have defined two CFTs. Although classically these

CFTs are causally disconnected, we are going to show in the next sections that states of a

CFT defined in one quadrant play a particular role in the expectation values of observables

defined in the other quadrant.
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III. BUILDING UP THE EXTENDED STRING FROM GLUING

The Kruskal extension defines two asymptotically AdS spaces and two causally discon-

nected CFTs. By defining the string in all spacetime, we can quantum connect these two

CFTs. In particular, we are going to show now that the string vacuum is an entangled state

of states of the two CFTs and it is the thermal vacuum of the TFD.

In order to define continuously the string in all spacetime by connecting the solution in

the L quadrant to that in the R quadrant, we need to avoid the singularity at U = V = 0 by

performing a well known analytic continuation. In terms of the old coordinates, this analyt-

ical continuation relates t̃− t = iβ
2
, where t̃ is the time coordinate of the L quadrant of the

spacetime. The resulting thermal field theory ultimately reproduces the contour correlation

functions for a specific choice of the Schwinger-Keldysh contour. As pointed out in [6], this

analytical continuation can be generalized in order to take into account deformations of the

usual Schwinger-Keldysh contour. Inspired by that observation, but taking in mind the

TFD approach, our proposal is considering t̃ − t = iαβ, for α a complex parameter. As it

will be clear in the next section, the unitarity of the SU(1,1) TFD formulation will imply in

α+α∗ = 1. Also, this constraint ensures the Kubo-Martin-Schwinger (KMS) condition and

therefore the usual time periodicity of the correlation functions.

Near the horizon (ρ ∼ 1), the solutions (15) and (21) simplify to

XR(t, r) =

√
α′β

2ℓ2ω ln(1/ǫ)

∑

ω>0

{
aω

[
e−iω(t−r⋆) + eiθωe−iω(t+r⋆)

]

+a†ω
[
eiω(t−r⋆) + e−iθωeiω(t+r⋆)

]}
, (23)

XL(t, r) =

√
α′β

2ℓ2ω ln(1/ǫ)

∑

ω>0

{
ãω

[
eiω(t̃−r⋆) + e−iθ̃ωeiω(t̃+r⋆)

]

+ã†ω

[
e−iω(t̃−r⋆) + eiθ̃ωe−iω(t̃+r⋆)

]}
. (24)

Note that owing to reverse clockwise direction of the L quadrant, while the a operator

annihilates outgoing modes at the horizon in R quadrant, the a operator annihilates ingoing

modes in the L quadrant. We are going to impose gluing conditions on a state called |Bhor〉,
which represents that the string in the R quadrant is connected with its dual copy in the L

quadrant. These conditions are

(XL(t, r)|ρ=1 −XR(t, r)|ρ=1) |Bhor〉 = 0 (25)
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We avoid the singularity at ρ = 1 using Kruskal coordinates and performing the analytic

continuation t̃ = t+ iαβ. Solving for the gluing conditions, we have

(
ãωe

−ωαβ − a†ω
)
|Bhor〉 = 0

e−iθω
(
ãωe

−ωαβ − a†ω
)
|Bhor〉 = 0

(
aω − ã†ωe

ωαβ
)
|Bhor〉 = 0

eiθω
(
aω − ã†ωe

ωαβ
)
|Bhor〉 = 0 (26)

The state |Bhor〉, which satisfy the equations (27), is:

|Bhor〉 = N exp

[
∑

ω

e−αβωa†ωã
†
ω

]
|0, 0̃〉, (27)

where N is a normalization factor.

The boundary sate |Bhor〉 is a string entangled state, which entangles string states defined

in the L and R quadrants. In the AdS/CFT context, this state entangles the two boundary

CFTs, in particular the heavy quark states defined by the endpoint of the string at the two

asymptotic boundaries.

Notice that these states are built up by imposing boundary conditions, referred here as

gluing conditions. A similar construction in the Minkowski spacetime was done in Ref. [61].

It has been also argued that these states are equivalent to ordinary boundary states in the

closed string Hilbert space under a worldsheet transformation of the one-loop diagram in

Euclidean time [61].

In the next section we are going to show that |Bhor〉 can also be interpreted as the thermal

vacuum in the point of view of Thermo Field Dynamics (TFD), where the equilibrium

temperature is the Hawking temperature. Expectation values of the R string states on

this state correspond to statistical averages in an ensemble of open string states. In the

context of the AdS/CFT conjecture, this imply that we can calculate non-perturbatively

thermodynamical properties of the CFT through the calculation of the expectation values

in this state.
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IV. THE BOGOLIUBOV TRANSFORMATION, ENTROPY OPERATOR AND

THERMAL TWO POINT FUNCTION

Let us show now that the boundary state defined in the previous section can be achieved

from a Bogoliubov transformation and that this state is also defined by an entanglement

entropy operator. Indeed, the TFD approach appears naturally in this scenario. As a

matter of fact, the general unitary SU(1, 1) TFD formulation will be used in order to fit the

generalization proposed for the analytic continuation.

The presence of the horizon defines two string Hilbert spaces, related to the two regions L

and R. In the following we will refer to the elements of these regions as tilde and non-tilde,

respectively. The total Hilbert space is the tensor product of the two spaces Ho⊗H̃o, where

in this case Ho is the Hilbert space built with cyclic applications of the operators aω, a
†
ω

while the H̃o Hilbert space is related to the ãω, ã
†
ω operators. The standard vacuum in this

extended theory is defined by

aω |0〉〉 = ãω |0〉〉 = 0, (28)

with |0〉〉 = |0〉 ⊗ |0̃〉 as usual.
Owing to the reverse clockwise direction of the L quadrant, the total worldsheet Hamilto-

nian is defined as Ĥ = H−H̃ , where the H Hamiltonian is proportional to number operator

Nω = a†ωaω and H̃ is proportional to Ñω = ã†ωãω. The transformation generator that will be

considered here is [21, 22, 25]3.

G (θ) =
3∑

i=1

gi (θ) , (29)

with,

g1 (θ) = −
∑

ω=1

θ1ω
(
aωãω + ã†ωa

†
ω

)
, (30)

g2 (θ) = −
∑

ω=1

iθ2ω
(
aωãω − ã†ωa

†
ω

)
, (31)

g3 (θ) = −
∑

ω=1

θ3ω
(
a†ωaω + ãωã

†
)
. (32)

Here θjω , j = 1, 2, 3 denotes the set of transformation parameters. The generators written

3 It must be noticed that the generator used here corresponds to the one that generates the inverse Bogoli-

ubov transformation in [25] and [26], for example.
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in the last equations satisfy an su(1,1) algebra, and (29) can be rearranged as

G(γ) = −
∑

ω=1

[
γ1ω ã

†
ωa

†
ω − γ2ωaω · ãω + γ3ω

(
a†ωaω + ãωã

†
ω

)]
, (33)

where the γ’s coefficients are defined as

γ1ω = θ1ω − iθ2ω , γ2ω = −γ∗
1ω , γ3ω = θ3ω . (34)

This generator carries out a unitary and canonical transformation, such that the creation

and annihilation operators transform according to [26]

 aω(γ)

ă†ω(γ)


 = e−iG


 aω

ã†ω


 eiG = Bω


 aω

ã†ω


 ,

(
a†ω(γ) −ăω(γ)

)
=

(
a†ω −ãω

)
B
−1
ω , (35)

where the SU(1, 1) matrix transformation is given by

Bω =


 uω vω

v
∗
ω u

∗
ω


 , |uω|2 − |vω|2 = 1, (36)

with elements [25]

uω = cosh (iΓω) +
γ3ω
Γω

sinh (iΓω) , vω = −γ1ω
Γω

sinh (iΓω) , (37)

and Γω is defined by the following relation

Γ2
ω = γ1ωγ2ω + γ2

3ω . (38)

A quite convenient way to write the Bogoliubov transformation matrix (36) arises if we make

the polar decomposition uω = |uω|eiϕω , vω = |vω|eiφω , and rewrite the matrix elements in

terms of the new parameters

fω =
|vω|2
|uω|2

, αω =
log(vω

uω
)

log(fω)
=

1

2
+ i

(φω − ϕω)

log(fω)
, sω = iϕω =

1

2
log

(
uω

u
∗
ω

)
. (39)

In fact, with these steps we can present the Bogoliubov matrix as [21, 24]

Bn =
1√

1− fω


 esω −fαω

ω esω

−f
α∗
ω

ω e−sω e−sω


 , (40)

with αω + α∗
ω = 1.
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As the Bogoliubov transformation is canonical, the gamma dependent operators obey the

same commutation relations of (17). One can define a vacuum state for the transformed

system as the state satisfying

aω(γ) |0(γ)〉 = ãω(γ) |0(γ)〉 = 0. (41)

This expression, together with (39) and (40), gives rise to the following conditions:

esω
[
aω − fαω

ω ã†ω
]
|0(γ)〉 = 0, (42)

e−sω
[
ãω − fα∗

ω

ω a†ω
]
|0(γ)〉 = 0, (43)

At this moment, it is already possible to compare the conditions presented above with those

defining the state |Bhor〉 in (26). However, let us explore a bit more the TFD formalism

used here. The inverse of the Bogoliubov transformations (35) allow one to obtain that the

number of modes of the string defined in the R quadrant is

N̄ω(θ) =
〈
0(β)|aωa†ω|0(θ)

〉
= |vω|2 =

γ1ωγ2ω
Γ2
ω

sinh2(iΓω) =
fω

1− fω
(44)

and similarly for the modes of type ãn in the L quadrant. The transformation also entangles

the states of the two independent Hilbert spaces [62, 63], and gives us a structure to the

new vacuum, |0(γ)〉, as follows

|0(γ)〉 = eiG |0〉〉 =
∏

ω=1

[
e−sω

√
1− fω ef

αω
ω a†ω ã

†
ω

]
|0〉〉 . (45)

For a suitable parameter choice, the state (45) is the string state defined in (27), and

the relations (42), (43) are the relations (26), called thermal state conditions in the TFD

formulation. Indeed, transformation parameters, as expected, encode information about

the environment under which the system is subject (in our study, information about the

model presented). Furthermore, TFD general approaches usually consider the sω and αω

parameters as being the same for all modes and deal with them as free parameters that can

be fixed suitably for each situation. For the application considered here, it will be possible

to verify that the sω parameter is no longer free, once it seems to contain information about

the CFT boundary conditions. Note that sω is related to θω, which defines the Neumann

boundary conditions at cut off surface ρ = ρc. The α parameter is the only one that can be

considered free in some sense. Rather, it is possible to consider it as being the same for all

string modes (αω → α) but also constrained by the relation α+α∗ = 1, that comes directly
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from the general TFD construction. From the thermo field point of view, the α constraint

guarantees the KMS conditions as it can be verified directly following the proof for the non-

unitary TFD formulation in [21], which might be useful in order to simplify the treatment

of more engaged situations such as those where interactions or non-equilibrium effects are

explicitly considered, as it is the case of the parameters’ choice of the non-unitary TFD

formulation.4 On the other hand, from the geometry’s perspective, this constraint ensures

the appropriate time periodicity, which is necessary to circumvent the conical singularity.

Furthermore, α is related to the trace cyclicity in thermal statistical averages, as it seems

to be the case here.5 However, as it will be shown, the expectation value of the system’s

observables at thermal equilibrium does not depend on α. Finally, the fω parameter will

contain information about the thermal distribution of the string modes, as it will be noticed.

Before specifying the parameters, let us introduce a very interesting operator which arises

in this formalism. Consider the following gamma dependent operators defined on the R and

L sectors, respectively

K = −
∑

ω=1

[
a†ωaω ln

(
γ1ωγ2ω
Γ2
ω

sinh2 (iΓω)

)
− aωa

†
ω ln

(
1 +

γ1ωγ2ω
Γ2
ω

sinh2 (iΓω)

)]
, (46)

K̃ = −
∑

ω=1

[
ã†ωãω ln

(
γ1ωγ2ω
Γ2
ω

sinh2 (iΓω)

)
− ãωã

†
ω ln

(
1 +

γ1ωγ2ω
Γ2
ω

sinh2 (iΓω)

)]
, (47)

These operators are the entropy operators for the general unitary TFD formulation [28]. The

extended operator K̂ = K − K̃ commutes with the Bogoliubov transformation generator

(33).

The expectation value of the operator K evaluated at the gamma dependent vacuum

state can be calculated by usual methods and the result is given below:

S(γ) = 〈0(θ)|K |0(θ)〉 =
∑

ω=1

{
(1 + N̄ω) ln(1 + N̄ω)− N̄ω ln N̄ω

}
, (48)

where N̄ω was defined by (44); a similar expression is obtained for the L quadrant. The

vacuum state (45) can be rewritten using these operators as follows6

|0(γ)〉 = eαKe
∑

ω=1
a†ω ã

†
ω |0〉〉 = eαK̃e

∑
ω=1

a†ω ã
†
ω |0〉〉 . (49)

4 In fact, the non-unitary TFD formulation and that presented here share many formal features as it was

pointed out in references [22] and [27] for instance.
5 Notice that in expression (1), Tr[Qρ] = Tr[ρ(1−α)Qρ(α)].
6 Effectively, the state obtained using theK operator differs from that arising from the use of the Bogoliubov

generator by a phase, as it was pointed out in [28].
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or

|0(γ)〉 =
∑

ω=1

Wω
α |ω, ω̃〉 , (50)

with

Wω =
∏

n=0

(|vω|2)nω

(|uω|2)nω+1 = (1− fω)
∏

n=0

(fω)
nω ,

∑

ω=1

Wω = 1, (51)

and (48) assumes the following form

S(γ) = −
∑

ω=1

Wω lnWω (52)

As those results can be obtained by using K̃, we have the entropy operator defined in both

quadrants. The whole vacuum |0(γ)〉 is an entanglement of states from both quadrants

as it can be noticed explicitly in (50), and therefore expectation value of K furnishes the

entanglement entropy of the system.

The expressions presented earlier show that the presence of a horizon produces string

entanglement entropy and the origin of the entanglement is the environment, in contrast

with the usual quantum mechanical point of view, which attributes to the environment the

loss of the entanglement. In this picture, the origin of macroscopic dissipation in the CFT

side is related to the open string entanglement entropy caused by the AdS geometry.

Finally, the vacuum can be completely defined by minimizing the free energy

F = U − 1

β
S (53)

with respect to the transformation parameters [10], defining the open string thermal vac-

uum. Here U is given by the vacuum expectation value of the open string Hamiltonian in

the thermal vacuum and S is the entropy given in (48). The solution for the Bogoliubov

transformation parameters is given by the Bose-Einstein distribution. In fact, in this context

fω = e−βω, and the expression (44) is now given by

N̄ω(β) =
e−βω

1− e−βω
. (54)

Taking into account these solutions and further relating the sω parameter in (39) with

θω defined in (14), the state (45) is written as

|0(β)〉 =
∏

n=1

e−iθn
√

1− e−βn exp

[
∑

ω=1

e−αωβ a†ωã
†
ω

]
|0〉〉 , (55)
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(compare with that proposed in (27) as a solution of the gluing condition), and it is in fact

the open string thermal vacuum for the system under consideration. Even knowing that

the parameters θω are phases and α does not interfere in the thermal physics, the TFD

general formulation shows itself quite fancy since it furnishes naturally a state with all the

information of the model.

Also notice that once the Bogoliubov transformation parameter has been fixed as above,

the expression (48) for the entropy takes the following form:

S(β) =
∑

ω=1

βωN̄ω + lnZ, (56)

with

Z =
∏

ω=1

1

1− e−βω
. (57)

Finite temperature supposedly violates conformal invariance; however, we expect that for

any ordinary QFT, a conformal phase should exist for very high temperature. Following

[64], for β ≪ 1 we can consider [65, 66]

∞∑

ω=1

βω

eβω − 1
→

∫ ∞

0

dx

β

x

ex − 1
=

π2

6β
, (58)

∞∑

ω=1

ln
(
1− e−βω

)
→

∫ ∞

0

dx

β
ln
(
1− e−x

)
= −π2

6β
, (59)

and (56) becomes

S(β ≪ 1) =
π2

3β
= 2π

√
N̄

6
, (60)

where we have defined

N̄ =
∑

ω

ωN̄ω = −∂ lnZ

∂β
, (61)

for N̄ω given in (54). The expression (60) is compatible with the Cardy formula for a central

charge c = 1. This reflects the fact that the conformal phase of the system is recovered in

this limit and the value of the central charge corresponds to the single effective degree of

freedom of a D − 1-brane on which the string ends.

Once one has the general structure presented earlier, it is possible to obtain the free

propagators for the model. Considering a fixed ρ and following the TFD procedure, the
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propagators can be arranged as a matrix

D(t− t′, ρ; γ) =




〈0(γ)|T [X(t, ρ)X(t′, ρ)]|0(γ)〉 〈0(γ)|T [X(t, ρ)X̃(t′, ρ)]|0(γ)〉

〈0(γ)|T [X̃(t, ρ)X(t′, ρ)]|0(γ)〉 〈0(γ)|T [X̃(t, ρ)X̃(t′, ρ)]|0(γ)〉


 , (62)

where T stands for the time ordering of the worldsheet operator products in such a way

that, as usual,

T [X(t, ρ)X(t′, ρ)] = Θ(t− t′)X(t, ρ)X(t′, ρ) + Θ(t′ − t)X(t′, ρ)X(t, ρ) (63)

where Θ(t − t′) is the Heaviside step function. As before, X(t, ρ) and X̃(t, ρ) denote the

solutions for the L and R quadrants, respectively. Using (15) and (21), the matrix entries

are written in terms of the following propagators

D11(t− t′, ρ; γ) = 〈0(γ)|X(t, ρ)X(t′, ρ)|0(γ)〉

=
∑

ω>0

1

1− fω
{uω(t, ρ)u

∗
ω(t

′, ρ) + fω u
∗
ω(t, ρ)uω(t

′, ρ)} , (64)

D12(t− t′, ρ; γ) = 〈0(γ)|X(t, ρ)X̃(t′, ρ)|0(γ)〉

= −
∑

ω>0

1

1− fω

{
e2sωfα

ω uω(t, ρ)ũω(t
′, ρ) + e−2sωfα∗

ω u∗
ω(t, ρ)ũ

∗
ω(t

′, ρ)
}
, (65)

D21(t− t′, ρ; γ) = 〈0(γ)|X̃(t, ρ)X(t′, ρ)|0(γ)〉

= −
∑

ω>0

1

1− fω

{
e2sωfα

ω ũω(t, ρ)uω(t
′, ρ) + e−2sωfα∗

ω ũ∗
ω(t, ρ)u

∗
ω(t

′, ρ)
}
, (66)

D22(t− t′, ρ; γ) = 〈0(γ)|X̃(t, ρ)X̃(t′, ρ)|0(γ)〉

=
∑

ω>0

1

1− fω
{ũω(t, ρ)ũ

∗
ω(t

′, ρ) + fω ũ
∗
ω(t, ρ)ũω(t

′, ρ)} . (67)

Considering the worldsheet defined in the boundary ρ → ρc, the solutions (15) and (21)

become

X(t, ρc) =
∑

ω>0

√
2α′β

ℓ2ω log(1/ǫ)

[
1− iν

1− iρcν

(
ρc − 1

ρc + 1

) iν

2

e−iωtaω

+
1 + iν

1 + iρcν

(
ρc − 1

ρc + 1

)−iν

2

eiωta†ω

]
, (68)

for the R quadrant and

X̃(t, ρc) =
∑

ω>0

√
2α′β

ℓ2ω log(1/ǫ)

[
1 + iν

1 + iρcν

(
ρc − 1

ρc + 1

)−iν

2

eiωtãω

+
1− iν

1− iρcν

(
ρc − 1

ρc + 1

) iν

2

e−iωtã†ω

]
, (69)
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for the L one. Therefore

uω(t, ρc) = ũ∗
ω(t, ρc) =

1− iν

1− iρc

(
ρc − 1

ρc + 1

)i ν
2

e−iωt, (70)

u∗
ω(t, ρc) = ũω(t, ρc) =

1 + iν

1 + iρc

(
ρc − 1

ρc + 1

)−i ν
2

eiωt, (71)

Replacing the expressions written above in the propagators, we have

D11(t− t′, ρc; γ) =
2α′β

ℓ2 log(1/ǫ)

1 + ν2

1 + ρ2cν
2

∑

ω>0

1

ω

{
e−iω(t−t′) + 2

fω
1− fω

cos (ω(t− t′))

}
(72)

D12(t− t′, ρc; γ) = − 2α′β

ℓ2 log(1/ǫ)

1 + ν2

1 + ρ2cν
2

×
∑

ω>0

1

ω

1

1− fω

{
e2sωfα

ω e
−iω(t−t′) + e−2sωfα∗

ω eiω(t−t′)
}

(73)

D21(t− t′, ρc; γ) = − 2α′β

ℓ2 log(1/ǫ)

1 + ν2

1 + ρ2cν
2

×
∑

ω>0

1

ω

1

1− fω

{
e2sωfα

ω e
iω(t−t′) + e−2sωfα∗

ω e−iω(t−t′)
}

(74)

D22(t− t′ρc; γ) =
2α′β

ℓ2 log(1/ǫ)

1 + ν2

1 + ρ2cν
2

∑

ω>0

1

ω

{
eiω(t−t′) + 2

fω
1− fω

cos (ω(t− t′))

}
(75)

The expression (72) is the propagator commonly used when thermal equilibrium is given.

For example, making fω = e−βω and t′ = 0, we have (72) in a perfect match with the

worldsheet thermal two point functions derived in [5] and considered in the calculation of

the displacement of string endpoint, establishing the connection with the standard Brownian

motion.

V. CONCLUDING REMARKS

In this work we have studied the string propagating in an AdS Schwarzschild spacetime

from the point of view of a thermal theory in the worldsheet. In particular, the approach to

the Brownian motion of a quark in a CFT fluid at finite temperature developed in Ref. [5]

was reinforced in this work since the main computations were reproduced. The construc-

tion presented here is based on Israel-Maldacena’s picture, where the AdS-Schwarzschild

spacetime is maximally extended along with the fundamental string solution: we have ex-

tended it through natural gluing conditions imposed on an effective surface near the event

horizon. We have pointed out that the gluing conditions of the string at the horizon de-

fine a boundary state, which is exactly the thermal vacuum of the Thermo Field Dynamics

18



(TFD), and the connection of this point of view with unitary SU(1,1) TFD formulation

was emphasized here. It was shown that all information about the bulk and the board are

present in the SU(1,1) parameters. As the string boundary state is an entangled state, we

calculated the entanglement entropy, which in this case coincides with the thermodynamic

entropy. We show that in, the high temperature limit, the result agrees with the Cardy for-

mula, reflecting the fact that the conformal phase is recovered at high temperatures. Also,

the canonical approach of TFD was explored to calculate the worldsheet real time thermal

Green’s functions. An important aspect of the framework explored here is the presence of

a string boundary state. This kind of state can be used to study the precise microscopic

structure of the stretched horizon. In fact, as noticed in Ref. [59], this state approaches the

following pure but coherent one:

|0(γ)〉 ∼ e
∑

ω=1
a†ω ã

†
ω |0〉〉 , (76)

in the limit K → 0 (or α → ∞) of (49), so it describes a macroscopic (semiclassical) object.

Because the open string ends on this surface, we can go to the closed string channel and this

state can clearly be identified with the state of a Dp-brane (p = D−1) [61], which reinforces

the idea that the stretched horizon may be described as a real Dp-brane. A similar scenario

was studied in Ref. [56] in the context of pp-wave time-dependent background, where it

was shown that, for asymptotically flat observers, the closed string vacuum close to the

singularity appears as a boundary state, which is in fact a D-brane described in the closed

string channel.

In a forthcoming work we shall try to describe the Brownian motion and the stochastic

effects (ruled out by a Langevin equation) in terms of microscopic aspects of the string

gluing, and by considering interaction between both strings in the contact (horizon) surface.

In fact, the velocity of the string endpoint is high if it does not fall into the black hole, so

more than the quadratic order should be taken into account in the Nambu-Goto action as

the parameter ǫ(≡ ρ − 1) approaches to zero. A sketch to argument dissipative effects as

ǫ → 0 in this framework is indeed the following: non-gaussian terms in the action are not

invariant under Bogoliubov transformations in general; so for generic frames (accelerated

with respect to the horizon), products of tilde with non-tilde fields are induced by the

Bogoliubov transformation of these terms, which typically describes dissipation in TFD,

[8, 58, 67–69]. A similar idea was applied to construct a string vertex state for a Rindler
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horizon [8].

We conclude this work by pointing out that some more refined interpretations arise from

the present construction. For instance, it suggests that the dual picture of the AdS stretched

horizon might be described as an entangled state of two (decoupled) heavy quarks in the

hydrodynamic regime of CFT’s fluids.
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