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We present an analytic solution to one-particle Schrödinger equation for an electron in a quantum dot with
hard-wall confining potential in the presence of both magnetic field and spin-orbit coupling. Wave-functions,
energy levels, and spin-flip relaxation times are calculated to all orders in the spin-orbit coupling and the
magnetic field. Without the orbital contribution of the magnetic field, we find that the effective gyromagnetic
ratio is strongly suppressed by the spin-orbit coupling. The spin-flip relaxation rate then has a maximum as a
function of the spin-orbit coupling and is therefore suppressed in both the weak- and strong-coupling limits. In
the presence of the orbital contribution of the magnetic field the effective gyromagnetic ratio changes sign in
some cases.

DOI: 10.1103/PhysRevB.70.115316 PACS number(s): 71.70.Ej, 72.25.Rb, 73.21.La

I. INTRODUCTION

In recent years there has been an explosive development
of research in spin physics in semiconductors. Most of it is
focused on spin-related optical and transport properties of
low-dimensional semiconductor structures. In particular, the
spin-orbit(SO) interaction has attracted a lot of interest as it
enables optical spin orientation and detection.1 The SO cou-
pling is (in most cases) responsible for spin relaxation. Be-
sides, it makes the transport and spin phenomena interdepen-
dent.

SO interactions can arise in quantum dots(QDs) by vari-
ous mechanisms related to electron confinement and symme-
try breaking and are generally introduced in the Hamiltonian
via the Rashba2 and Dresselhaus terms.3 The strength of
these interactions not only depends on the characteristics of
the material but can be controlled by an external electric
field.

For most experimental realizations, quantum dots can be
described as effectively two-dimensional systems in a con-
fining potential that is usually modelled as hard-wall or har-
monic confinement. In the absence of SO interactions, the
effect of confinement is easily accounted for by the use of
the well-known Fock-Darwin basis(harmonic potential4) or
by an extension of the Landau problem eigenfunctions5 to
the disk geometry(hard-wall).6

Most of the existing theoretical studies of the spin-orbit
effects in QDs rely on various perturbative schemes or nu-
merical simulations.7,8 For zero-magnetic field case and a
hard-wall confining potential the exact analytical results have
been obtained by Boulgakov and Sadreev.9 Following the
general theoretical framework of Ref. 9, we shall show in
this paper that in the case of a hard-wall confinement the
problem of combined spatial confinement, external magnetic
field, and the SO interaction also admits an exact analytic
solution. Our solution contains, as limiting cases, the
Bychkov-Rashba solution(no spatial confinement),2,10 the
Bulgakov-Sadreev solutions(no external magnetic field),9

and the Geerinckxet al. solution (no SO effects).6

The outline of the paper is as follows. We define the prob-
lem in Sec. II. In Sec. III we present an analytic solution to
the problem neglecting the orbital contribution of the mag-
netic field(orbital effects), valid for relatively small dots. We
use this solution to calculate the spin-flip relaxation rate.
Next, in Sec. IV, we generalize our solution so as to include
the magnetic field effects on the orbital motion of the elec-
tron. A short summary of our results is offered in Sec. V.
Some more mathematical results, on the comparison of the
exact solution with perturbative series and on the properties
of wave functions in the presence of the orbital field, are
relegated to Appendixes A and B.

II. STATEMENT OF THE PROBLEM

We consider a quasi-two-dimensional quantum dot nor-
mal to thez axis. The one-particle Hamiltonian describing an
electron in such a dot is of the form

H =
p2

2m
+ Vsx,yd + aRspxsy − pysxd + 1

2gmBBsz, s1d

wherem is the effective electron mass,g is the gyromagnetic
ratio, mB is the Bohr magneton,aR is the strength of the
spin-orbit coupling, andVsx,yd is the confining potential. A
constant magnetic fieldB (parallel to thez axis) is introduced
via the Zeeman term above and the Peierls substitution,
p=−i ¹−se/cdA. The Pauli matrices are defined as standard5

and we set"=1. Below we use the axial gauge,x=r cosw,
y=r sin w, Ar=0, andAw=Br /2. The confining potential is
assumed to be symmetric,Vsx,yd=Vsrd. In this paper we
mainly consider a hard-wall confining potential, i.e.,Vsrd
=0 for r,R andVsrd=` for r.R, R being the radius of the
dot, which is neccessary to obtain the exact solution[but we
present some perturbative results for generalVsrd].

We have chosen to include the Rashba term rather
than the Dresselhaus term, which would be of the form
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aDspxsx−pysyd. The two terms transform into each other
under the spin rotation:sx↔sy, sz↔−sz. So our results
will only need a trivial modification in the case when a solo
Dresselhaus term is present. The Rashba interaction usually
dominates in quantum dots obtained in a
heterostructure.7,8,11,12 There are situations when both the
Rashba and the Dresselhaus terms can be included13 but

those are outside the scope of this work. Typical values of
the parameters characterizing various quantum dot materials
are listed in Table I. Besides, values of theg factor reported
for InGaAs QDs19 and InAs QDs20 are also given, since they
differ strongly from the bulk values.

Hamiltonian(1) rewritten in cylindrical coordinates is of
the form

H = 3 hsBd + 1
2gmBB, aRe−iwS−

d

dr
+

i

r

d

dw
+

eB

2c
rD

aReiwS d

dr
+

i

r

d

dw
+

eB

2c
rD , hsBd − 1

2gmBB 4 , s2d

where the diagonal term

hsBd = −
1

2m
F1

r

d

dr
Sr

d

dr
D +

1

r2

d2

dw2G −
i

2
vc

d

dw
+

1

8
mvc

2r2,

s3d

andvc is the cyclotron frequency.
Hamiltonian (1) and (2) commutes with thez projection

of the total momentum operator,

jz = lz + 1
2sz, lz = − i]w

(assuming the axial gauge). The operatorjz is therefore con-
served. The physical reason is that both the Rashba interac-
tion and the magnetic field normal to the disk preserve the
axial symmetry. The eigenfunctions of the total momentum
operator, with a half-integer eigenvaluej , are of the follow-
ing form:

c jsr,wd = Feis j−1/2dwf jsrd
eis j+1/2dwgjsrd G . s4d

Note that, despite the presence of the spin-orbit coupling, the
variables separate in the cylindrical coordinates. This is due
to the conservation of the momentumjz. If we had included

the Dresselhaus term instead of the Rashba coupling, then
the operatorlz−

1
2sz would have been conserved and the vari-

ables would still separate. In zero field there is an additional
symmetry jz→−jz related to time inversion. The states with
the projections of momenta equal toj and −j are Kramers
doublets.5 When the spin-orbit coupling is also switched off
then the operatorslz and 1

2sz are conserved separately(with
eigenvaluesl ands= ±1/2, j = l +s).

The spinor components in(4) satisfy the following system
of second-order ordinary differential equations:

D j−1/2
sBd f j + 2mfE − 1

2gmBB − Vsrdg f j − 2maR¹−,j+1/2
B gj = 0,

D j+1/2
sBd gj + 2mfE + 1

2gmBB − Vsrdggj − 2maR¹+,j−1/2
B f j = 0,

s5d

where the spin-orbit operators are

¹±, j
sBd = ±

d

dr
−

j

r
+

eB

2c
r,

and the operator

D j
sBd =

1

r

d

dr
Sr

d

dr
D −

1

r2S j −
eB

2c
r2D2

is the two-dimensional Laplace operator projected onto the
state with a given momentumj in the presence of the mag-
netic field in the axial gauge. In our convention the electron
charge ise=−ueu, so that the cyclotron frequency is defined
asvc=−eB/mc and the magnetic length isaB=Îc/ ueuB.

III. SPIN-ORBIT COUPLING AND THE ZEEMAN
TERM

In this section we shall neglect the orbital contribution of
the magnetic field. We leave for next section the discussion
of the magnetic field effects on the orbital motion of the
electron (orbital effects). Hence,p=−i¹ and we keep in
Hamiltonian (1) and (2) only the Zeeman term, so that the

TABLE I. QD parameters.(Bulk material constants ofm/me

andg are taken from Ref. 14, the Rashba parameters are taken from
Refs. 15–18 and reported values ofg for QDs are adopted from
Refs. 19 and 20.)

QD Material aRsmeV nmd m/me g

GaAs 2a 0.067 −0.44

InGaAs 10b–63c 0.041 −4.5,−0.8e(QD)

InAs 9b 0.0231 −15,1f(QD)

InSb 25d 0.0139 −50.6

aRef. 15
bRef. 16
cRef. 17

dRef. 18
eRef. 19
fRef. 20
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off-diagonal elements in Hamiltonian(2) contain no
B-dependent terms.

It will be convenient to work with the dimensionless co-
ordinatex=r /R. The system of equations(5) now becomes

sD j−1/2
s0d + e − hdf j − bR¹−,j+1/2

s0d gj = 0,

sD j+1/2
s0d + e + hdgj − bR¹+,j−1/2

s0d f j = 0, s6d

supplemented by the boundary conditionsf js1d=gjs1d=0.
We have introduced two dimensionless parameters,

bR = 2aRmR, h = mgmBR2B s7d

characterizing the strength of the spin-orbit coupling and the
Zeeman term, respectively. The energy parameter ise
=2mER2.

(a) Bulk solution: In the absence of the Rashba term and
confinement potential(i.e., in the bulk), the solutions regular
at the origin are simply f jsxd,Jj−1/2skxd and gjsxd
,Jj+1/2skxd with k2=e±h, whereJlsxd are the Bessel func-
tions. The Rashba term in(6) simply acts as rising or lower-
ing operator on the Bessel function’s basis2 since the follow-
ing standard recurrence relations hold:

S d

dx
+

j + 1/2

x
DJj+1/2skxd = kJj−1/2skxd,

S d

dx
−

j − 1/2

x
DJj−1/2skxd = − kJl+1/2skxd.

This is a crucial property which allows to obtain an exact
analytical solution. Indeed, the following ansatz:

F f jsxd
gjsxd G = Fd1Jj−1/2skxd

d2Jj+1/2skxd G s8d

solves the bulk problem in the presence of the spin-orbit
coupling, provided that the coefficientsd1,2 satisfy the eigen-
value equation:

Fk2 − e + h − bRk

− bRk k2 − e − h
GFd1

d2
G = 0. s9d

(b) Disk solution: When considering the electron confined
to the disk, it is seemingly impossible to impose the vanish-
ing boundary conditions on the ansatz(8) as Bessel functions
with different indices are involved. Note, however, that as
long as eitherbR or h is nonzero, the bulk spectrum has two
branches:

e = k2 ± ÎbR
2k2 + h2.

Therefore for a given value ofe there are, in fact, two non-
trivial solutions for the momentumk,

k±
2 =

s2e + bR
2d ± ÎbR

4 + 4ebR
2 + 4h2

2
,

wherek+ corresponds to a spin-down statess=−1/2d andk−

corresponds to a spin-up statess=1/2d in the bR→0 limit.
In order to trace the evolution of states with increasingbR,

we choose the amplitude ratios asd1
+/d2

+=a+ andd2
−/d1

−=a−,
where

a±se,bR,hd =
bRk±

k±
2 − e ± h

.

We are now able to satisfy the boundary conditions by com-
bining these two linearly independent degenerate solutions,

F f jsxd
gjsxd G = d+Fa+Jj−1/2sk+xd

Jj+1/2sk+xd G + d−F Jj−1/2sk−xd
a−Jj+1/2sk−xd G .

Indeed, the requirement thatf js1d=gjs1d=0 leads to another
eigenvalue equation

Fa+Jj−1/2sk+d Jj−1/2sk−d
Jj+1/2sk+d a−Jj+1/2sk−d GFd+

d−G = 0.

This equation fixes the allowed energy eigenvalues as solu-
tions to the determinant equation

Fse,bR,hdJj−1/2sk+dJj+1/2sk−d + Jj−1/2sk−dJj+1/2sk+d = 0,

s10d

where the functionF is defined by

Fse,bR,hd = −
bR

2k+k−

sk+
2 − e + hdsk−

2 − e − hd
.

We wish to remark that in the energy region −h,e,h,
the momentumk− becomes purely imaginary. One should
then replacek−→ ik−, k− being a real number. The respective
Bessel function becomes a modified one,Isk−xd. We have
found numerically that such solutions do indeed exist. These
are interesting states which cannot be reached with a pertur-
bative expansion inbR.

For completeness we first discuss the zero-field limit al-
ready considered in Ref. 9. Indeed, in the absence of the
Zeeman term we havek±=Îe+bR

2 /4±bR/2 and d1
±= ±d2

±

(i.e., F=1), so that Eq.(10) simplifies to

Jj−1/2sk+dJj+1/2sk−d + Jj−1/2sk−dJj+1/2sk+d = 0, s11d

which is the equation obtained by Bulgakov and Sadreev.9

This equation is invariant under the changej →−j reflecting
the Kramers degeneracy. AtbR=0 all states withl Þ0 are
fourfold degenerate, whilel =0 states are doubly degenerate.
According to the standard analysis,5 the spin-orbit coupling
splits all the l Þ0 states into two Kramers doublets withj
= l +1/2 and j = l −1/2, while l =0 states naturally remain
Kramers doublets. The specifics of the Rashba term is that, at
small bR, the spin-orbit splitting(or Rashba splitting) starts
at the orderbR

2.
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We have analyzed Eq.(10) numerically, labeling the en-
ergy eigenstates ass j ,nd wheren is a non-negative integer
such thatEj ,n,Ej ,n+1 at bR=0. The evolution of the first few
energy levels with the parameterbR is shown in Fig. 1.(See
also Ref. 9, where quite a similar evolution was found.)

In the limit bR→0 the energy states shown in these fig-
ures are traced as follows:s1/2,0d corresponds tol =0
(ground state), s3/2,0d and s1/2,1d correspond tol =1,
s5/2,0d ands3/2,1d corresponds tol =2, ands1/2,2d again
corresponds tol =0 (excited state). As one can see from Fig.
1, the levels with higherj go down in energy while the levels
with lower j (originating from the state with the samel at
bR=0) go up. The neighboring levels originating from the
state with differentl go towards each other, e.g., the levels
(d) and (c) in Fig. 1. The same occurs for the levels(e) and
(f) at bR,3. ForbR,3, these levels are very close and they
diverge for largerbR manifesting an avoided crossing, see
the right-hand side in Fig. 1.

As a useful consistency check, we have verified that the
bR

2 contribution to the energy levels calculated from the exact
solution coincides with that obtained via the standard pertur-
bation theory:

e j=l+1/2,n = el,n
s0d − 1

2sl + 1dbR
2, e j=l−1/2,n = el,n

s0d + 1
2sl − 1dbR

2 ,

s12d

where el,n
s0d are the energy levels atbR=0, that isel,n

s0d=kl,n
2 ,

Jlskl,nd=0 and the indexn=1,2, . . .numbers the zeros of the
l ’s function in the increasing order.(We leave the details of
the calculation for Appendix A.) A comparison of the exact
splittings to the perturbative results(12) is shown in Fig. 2.
As one can see from this figure, the first-order(in bR

2) per-
turbation theory seriously overestimates Rashba splittings
(by 20–30%) for bR,2. Note that, e.g., for the Rashba pa-
rameteraR=60 meV (realized in InGaAs dots, see Table I),
bR=Rsnmd /13, so that the perturbation theory in this case is
valid in small dots withR&13 nm only.

Upon inclusion of the Zeeman term, all Kramers doublets
are also split so that all the degeneracy is completely lifted.
Because of inherently small values of the gyromagnetic ratio
g in most semiconductor quantum dots(see Table I), the pure
Zeeman splittings are smalls10−1–10−2 meVd in comparison
to the characteristic energy separation between the levels of a
few tens of meV. AtbRÞ0 therefore all the(effective) Zee-
man splittings can be still regarded as linear in the magnetic
field,

de jsbRd = 2hFjsbRd,

where the functionFjsbRd fFs0d=1g plays the role of the
effective gyromagnetic ratio,geff=gFsbRd, which non-
trivially depends on the Rashba coupling. Indeed, expanding
Eq. (10) in h, we find the following analytic formula for the
gyromagnetic factors j .0d:

FjsbRd =
e + bR

2/4

bRe

4Jj−1/2sk+dJj+1/2sk−d
Jj−1/28 sk+dJj+1/2sk−d + Jj−1/2sk−dJj+1/28 sk+d + sk+ ↔ k−d

, s13d

FIG. 1. Dimensionless energye as a function ofbR for the states
s j ,nd (n is a non-negative-integer such thatEj ,n,Ej ,n+1 at bR=0):
s1/2,0d (a) (corresponds tol =0); s3/2,0d (b) ands1/2,1d (c) (cor-
respond tol =1); s5/2,0d (d) and s3/2,1d (e) (correspond tol =2);
and s1/2,2d (f) (excited-state corresponding tol =0). Rashba split-
tings of l Þ0 levels into Kramers doublets arise purely from the SO
coupling in zero magnetic fieldsB=0d.

FIG. 2. Rashba splittings ofl =1 andl =2 levels: energy differ-
encesEs1/2,1d−Es3/2,0d and Es3/2,1d−Es5/2,0d as a function
of bR. Dashed lines correspond to the same quantities calculated at
the second order of perturbation theory.(R=10 nm,B=0.)
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wheree andk± are solutions to Eq.(11). It is not difficult to
expand the above function inbR. So, for such states that
j .0 corresponds tos=1/2 (which include the ground
state), the result is

Fl+1/2sbRd = 1 −
el,n

s0d + 2l2 − 2

6el,n
s0d bR

2 . s14d

In particular, for the ground statel =0,

F1
2
sbRd = 1 −AbR

2, A =
e0,0

s0d − 2

6e0,0
s0d . 0.11. s15d

The universal functionF1
2
sbRd decreases monotonically(all

Fj’s do) from F1
2
s0d=1 vanishing at largebR. Note thatF1

2
=1/2 whenbR.2.3. The functionsFjsbRd are plotted in Fig.
3 for the first few levels. The fact that increasingbR sup-
presses the Zeeman splitting is hardly surprising. The physi-
cal explanation is as follows. The SO coupling entangles the
spin degree of freedom with the orbital one making it more
difficult to polarize the Kramers doublets, which become
completely rigid at large values ofbR.

As a useful consistency check, we observe that the Zee-
man splittings can alternatively be calculated in perturbation
theory inh (first-order correction). We then obtain

de jsbRd = 2hS1 − 4pE
0

1

x dxugjsxdu2D , s16d

wheregjsxd are zero-field wave functions. Formula(16) con-
stitutes an alternative definition of the functionFjsbRd and so
it must be equivalent to Eq.(13). For generalbR this equiva-
lence translates into a rather complicated statement about
intergals of Bessel function; we prove it, to the order ofbR

2,
in Appendix A.

When the magnetic field is applied parallel to the dot
plane,j z is not covserved and there is(to our knowledge) no
exact solution. Perturbation theory in the field still works and
after an elementary calculation leads to the following result:

de jsbRd = hf1 + FjsbRdg. s17d

For smallbR the SO correction to theg factor is therefore
twice smaller than in the case of the perpendicular field.
Notice also that for largeb the effectiveg factor is one-half

of its bare value, indicating that there is a polarizable in-
plane degree of freedom even in the case of a strong SO
coupling.

We now turn to an application of our method and calcu-
late the spin-flip relaxation rate. The SO coupling is the main
intrinsic mechanism for electron spin-flip transitions in
QDs.15 In previous calculations of the spin-flip rates, the
spin-orbit coupling was considered as a perturbation, so that
the electron spin and angular momentum were assumed to be
independently conserved. In the full theory this is not the
case. The spin-flip transitions in fact occur between the states
j and −j with opposite signs of the total momentum quantum
numbers. No such transition is possible within a degenerate
Kramers doublet(Van Vleck cancellation). In the external
magnetic field, the statesj and −j are split by the Zeeman
interaction. The SO coupling allows then for phonon assisted
transitions between the Zeeman sublevels(of a given Kram-
ers doublet).

In what follows, we concentrate on the most interesting
case and calculate the rate of the spin-flip transition between
the Zeeman sublevels of the ground states j = ±1/2d. Such
transition is accompanied by emission(absorption) of a pho-
non. Acoustic phonons dominate these processes at low tem-
peratures. Since the Zeeman energies are small, we consider
only piezoelectric interaction between the electrons and the
acoustic phonons. The coupling to the piezophonons is
known to be the most effective one in polar crystals for a
small energy transfer.21 Note also that we use the conven-
tional model of bulk phonons, since the two materials in
quantum dot systems usually have similar acoustic
properties.22 For the phonon modeqa (q is the phonon mo-
mentum,a= l for a longitudinal mode anda= t for a trans-
verse mode), the deformation potential applied to theq’s
Fourier component of the electron density is given by21

Uqa =
1

ÎV
Î "

2r0vqa

eAqaei q r ,

Aqa = zi zk bikj eqa
j ,

wherez=q /q sq= uqud, e is the polarization(unit) vector,r0

is the mass density,vqa=saq is the phonon dispersion rela-
tion, sl ,st are the(longitudinal and transverse) sound veloci-
ties. For crystals of interest without an inversion center(class
Td) the piezotensorbikj has only one independent component
bikj =h14, i ÞkÞ j . At zero temperature, the rate for the one-
phonon transition within Zeeman sublevels is given by the
Fermi golden rule:

Wsf =
2p

"
o

q
o
e,a

ukF−1/2
* sz,rWduUqauF1/2sz,rWdlu2dsDEZ − "vqad,

s18d

where DEZ is the energy difference between the states in-
volved. For GaAs-type structures(with typical Zeeman split-
tings of 10−1−10−2 meV), the dipole approximationseiqr

,1+iqrd can be used in the calculation of the electron-
phonon interaction matrix element entering Eq.(18). Indeed,
because of energy conservation, the matrix element in Eq.

FIG. 3. Effective gyromagnetic factor as a function ofbR for the
statess1/2,0d (full line), s3/2,0d (dotted line), s1/2,1d (dashed
line). (R=10 nm,B=1T.)
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(18) is evaluated at the phonon momentumq=DEZ/"s. For
typical values of s,53105 cm/s and DEZ
,10−1–10−2 meV, we have"s/DEZ,30–300 nm, whileR
is usually about 10–20 nm(the heightLz of a quantum dot is
normally much smaller thanR, about 2–3 nm).

Averaging over the orientation of thee vector and sum-
ming overq then yields

Wsf =
se h14 Rd2 DEZ

3

r0"4s5 F2 K, s19d

wheres−5=3/2sl
5+1/st

5, K=8/105p, and

F2 = UE
0

2p E
0

1

cosf c−1/2
* sx,fdc1/2sx,fdx2 dx dfU2

.

s20d

Checking the limiting case whenh and bR are small, we
obtain that the matrix element in Eq.(20) is linear overh and
bR, so that the transition rate isWsf,h5bR

2, in accordance
with the perturbative result of Refs. 15 and 22.

The evolution of the spin-flip transition rate given by Eq.
(18) with the parameterbR (at B=1.5 T) is shown in Fig. 4.
(Values of eh14=13107 eV/cm, s=53105 cm/s, andr0
=5.3 g/cm3 are used.) Dashed line in Fig. 4 presentsWsf as
a function ofbR calculated in the first order(in bR

2) of the
perturbation theory, while the exact calculations are pre-
sented by a dotted line. As one can see from Fig. 4, the
perturbation theory overestimates the transition rates for the
realistic values of the parameterbR. An interesting new fea-
ture of the exact solution is the emergence of a maximum in

the transition rate as a function of the spin-orbit coupling.
The physical explanation is that while the Zeeman energy
splitting decreases withbR, the electron-phonon matrix ele-
ment saturates.

Needless to say that the orbital effects of the magnetic
fields may become important(for small or moderateg’s) in,
e.g., determining the ground-state splitting, see the next sec-
tion. On the other hand, the orbital effects can be excluded
by applying the magnetic field in thex-y plane. Note also
that for the case of high magnetic fields(e.g., atB*10 T for
GaAs structures), the dipole approximation is not valid. In
this case the oscillatory behavior of the integrand in the ma-
trix element Eq.(18) results in a suppression of the spin-flip
rate.23 An analytic calculation of the spin-flip transition rate
in the presence of the orbital effects and beyond the dipole
approximation is an interesting problem, which we shall ad-
dress in a separate publication.24

IV. LANDAU-RASHBA PROBLEM IN DISK GEOMETRY

So far we have neglected the orbital contribution of the
magnetic field which is not necessarily justified for many
experimental setups. Fortunately, because of the very nature
of the Peierls substitution, which has to be performed both in
the kinetic energy term and in the spin-orbit term, the above
analytic solution can be generalized to this case. In this sec-
tion we proceed with such generalization.

(a) Bulk solution: It will be convenient to write the
Schrödinger equation(5) in terms of the dimensionless vari-
ablej=r2/ s2aB

2d,

D̃ j−1
2
f j + S E

"wc
−

gm

4me
D f j −

Î2mlbaR

"2 ¹̃−,j+1
2
gj = 0,

D̃ j+1
2
gj + S E

"wc
+

gm

4me
Dgj −

Î2mlbaR

"2 ¹̃+,j−1
2
f j = 0, s21d

where we have introduced the operators

D̃ j = j
d2

dj2 +
d

dj
−

s j + jd2

4j
, ¹̃±, j = ÎjS±

d

dj
−

j

2j
−

1

2
D .

The structure of Eq.(21) suggests the following ansatz:

F f jsjd
gjsjd G = F d1Fse0, j ,jd

d2Fse0 + 1,j + 1,jd G , s22d

where

Fse0, j ,jd =5S Gse0 + 1d
Gse0 − j + 1

2dD
1
2 1

s j − 1
2d!

js2j−1d/4 expS−
j

2
DMS j −

1

2
− e0, j +

1

2
;jD, j . 0,

SGse0 − j + 3
2d

Gse0 + 1d
D 1

2 s− 1d−j+1/2

s− j + 1
2d!

j−s2j−1d/4 expS−
j

2
DMS− e0,− j +

3

2
;jD, j , 0.

s23d

FIG. 4. The ground-state spin-flip relaxation rateWsf as a func-
tion of bR: exact calculations(dotted line), perturbative calculations
(dashed line).
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HereMsa,c;jd is the confluent hypergeometric series satis-
fying jM9+sc−jdM8−aM=0 (see Ref. 25). The prefactors
in (23) are inspired by those occurring in the standard Lan-
dau problem5 but it should be noted that the eigenfunctions
arenot normalized. The energy parametere0 is to be deter-
mined.

Clearly (23) solves (21) without the Rashba term. The
basic property which allows a simple solution is again that

the operators¹̃+,j−1/2 and ¹̃−,j+1/2, involved in the Rashba
term, act as rising and lowering operators on the proposed
eigenfunctions. Indeed, as shown in Appendix B,

¹̃+,j−1/2Fse0, j ,jd = − Îe0 + 1Fse0 + 1,j + 1,jd,

¹̃−,j+1/2Fse0 + 1,j + 1,jd = − Îe0 + 1Fse0, j ,jd. s24d

Therefore in the basis(22) and (23), the Schrödinger equa-
tion (21) reduces to an algebraic system,

Se− e0 − s gÎe0 + 1

gÎe0 + 1 e− e0 + s− 1
DSd1

d2
D = 0. s25d

The determinant equation of the form

se− e0 − sdse− e0 + s− 1d − g2se0 + 1d = 0 s26d

follows. We have introduced dimensionless parameterse
=E/vc−1/2 for the energy (not to be confused with the
electron charge), g=aRs2m/vcd1/2 for the spin-orbit coupling
(note that this parameter is different frombR previously de-
fined), ands=gm/ s4med for the Zeeman coupling. Hereme is
the electron mass, whilem is the effective electron mass for
the material in question.

Now in the bulk, a normalizable solution is obtained only
when Msa,c;jd reduces to a(Laguerre) polynomial, that is
when a=−nr, nr being a non-negative integer. The energy
parametere0 is therefore fixed ase0=nr+ j −1/2 for j .0 and
e0=nr for j ,0. It is easy to see that the energy spectrum is
then parametrized by a single positive integern=e0+1 and
the determinant equation(26) reduces to the expression

e= en = n − 1
2 ± Îss− 1

2d2 + g2n2, s27d

in full agreement with the known result.10 Note also thats
=1/2 is thesupersymmetric point of the Landau problem.

(b) Disk solution: Next we consider the disk geometry,
i.e., the boundary conditionf jsj0d=gjsj0d=0 fj0=R2/ s2aB

2dg
replaces the bulk requirement that the wave functions be nor-
malizable. There is therefore no simple restriction on the
parametere0. We can still proceed as in Sec. III because, for
a given value of the energye, there are two nontrivial solu-
tions for e0 of the determinant equation(26):

e0
± =

2e− 1 +g2 ± Îsg2 + 1d2 + 4eg2 + 4ss2 − sd
2

.

Hence, in the bulk, there are two degenerate solutions of the
Schrödinger equation that must be combined in the general
solution

Csjd = S d1
+Fse0

+, j ,jd + d1
−Fse0

−, j ,jd
d2

+Fse0
+ + 1,j + 1,jd + d2

−Fse0
− + 1,j + 1,jd

D .

The ratios of the amplitudes in the above equation are fixed
by Eq. (25) as

d1
±

d2
± = g

se0
± + 1d

1
2

e0
± − e+ s

still leaving two amplitudes arbitrary. Imposing the disk
boundary conditionCsj0d=0 gives yet another eigenvalue
equation, the determinant of which is

se0
+ + 1d

1
2

e0
+ − e+ s

Fse0
+,l,j0dFse0

− + 1,l + 1,j0d

−
se0

− + 1d
1
2

e0
− − e+ s

Fse0
−,l,j0dFse0

+ + 1,l + 1,j0d = 0. s28d

This equation is exact and provides(implicitly ) all the
information about the energy spectrum of the problem. We
have investigated Eq.(28) numerically for some characteris-
tic values of the parameters. For the values ofugu=0.44,m
=0.067me, andbR=3.35, the evolution of the first few energy
levels with the magnetic field is shown in Fig. 5. The energy
states shown in this figure are traced similarly as in the case
of Fig. 1. The main features of the energy spectrum in the
magnetic field are the following. The Kramers doublet split-
ting is pronounced even for the ground statel =0 [labeled as
the level (a) in Fig. 5]. The splitting energy in this case
reaches the value of,0.5 meV atB=1 T and strongly ex-
ceeds the pure Zeeman splitting equal tougumBB/2
,0.03 meV(for ugu=0.44 andB=1 T). In the absence of the
spin-orbit coupling, however, the only one reason to split the
ground state is the Zeeman interaction. Indeed, atbR=0 there
is no orbital contribution of the magnetic field for the states
with l =0.5 One can see in Fig. 5 also that for the levels
originating from the samel Þ0 (at bR=0), the Kramers dou-
blets splittings are different by values, which is not the case

FIG. 5. The energy spectrum calculated by using Eq.(28).
Energy as a function of magnetic fieldB for the states(degenerate
at B=0): s1/2,0d (a1) and s−1/2,0d (a2), s3/2,0d (b1) and
s−3/2,0d (b2), s1/2,1d (c1) and s−1/2,1d (c2), s5/2,0d (d1) and
s−5/2,0d (d2), s3/2,1d (e1) and s−3/2,1d (e2), and s1/2,2d (f1)
and s−1/2,2d (f2). (R=50 nm,bR=3.35.)
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again atbR=0.5 For example, the levels labeled as(b), (b1),
(b2) and(c), (c1), (c2) in this figure correspond tol =1, with
approximately 2 times larger splitting for the latter level than
for the former one(at B=1 T). It is therefore the combined
effect of the Rashba term and the orbital contribution of the
magnetic field that lifts the Kramers degeneracy and leads to
the above pecularities for the energy spectrum. So, the or-
bital contribution can clearly not be neglected in this case.

The SO effects on the pure Zeeman splitting were inves-
tigated in the preceding section, here we consider the split-
tings resulting from the orbital contribution of the magnetic
field. General analytic results can be obtained at the first
order in the magnetic field, to which case we restrict the
following calculations. Let us write down the part of the
Hamiltonian linear in the magnetic field,

HB =
1

2
gmBBsz +

1

2
vclz −

ueuB
2c

aRrssx cosw + sy sin wd.

s29d

The above perturbation results in the splitting between thej
and −j states, which is linear in the magnetic field. Its mag-
nitude is simply determined by the matrix elements ofHB
with respect to the zero-field wave functions(4),

de jsbRd = 2hFjsbRd +
h

2s
f1 − FjsbRdg −

h

s
RjsbRd +

h

s
s j − 1/2d,

s30d

wheres j .0d

RjsbRd = pbRE
0

1

x2 dxff j
*sxdgjsxd + gj

*sxdf jsxdg. s31d

Therefore the total ground-stateg factor, involving both the
pure Zeeman and the orbital contributions, and exact to all
orders in the SO coupling, is of the form

geffsbRd = gF1
2
sbRd +

g

4s
f1 − F1

2
sbRdg −

g

2s
R1

2
sbRd,

s32d

where the ratiog/ s4sd=me/m is positive while the bare
g-factor g can have either sign. The first term in(32) de-
scribes the suppression of the matrix elements ofsz by the
SO coupling as discussed in the preceding section. The sec-
ond term in(32) is a standard orbital contribution(vanishing
at bR=0) to theg factor and it is positive. This is because the
Rashba coupling mixes the statesl =0,s=1/2d with the state
sl =1,s=−1/2d and the statesl =0,s=−1/2d with the state
sl =−1,s=1/2d and therefore the average momentum
k1/2ulzu1/2l.0, while k−1/2ulzu−1/2l,0. The third term in
(32) is a mixed contribution to theg factor resulting from an
interplay between the orbital effect and SO coupling. The
mixed contribution turns out to be negative. In fact, for small
bR, the mixed contribution is exactlys−2d times the orbital
contribution thus effectively changing sign of the full orbital
term. This statement is true for any confining potential. In-
deed, the zero-field functionsf j and gj satisfy Eq.(5) with

B=0. Expanding this system of equations inbR one can
show that at the first order

gjsxd =
bRx

2
f j

s0dsxd, s33d

where f j
s0dsxd is the h=bR=0 solution of the problem with

arbitraryVsrd. Therefore

1 − FjsbRd = RjsbRd = pbR
2E

0

1

x3 dxuf j
s0dsxdu2

to the order ofbR
2.

For the particular case of the hard-wall potential,

f j=l+1/2
s0d sxd =

Jlskl,nxd
Îp Jl+1skl,nd

,

Rj=l+1/2sbRd =
bR

2

Jl+1
2 skl,nd

E
0

1

x3 dx Jl
2skl,nxd, s34d

where Jlskl,nd=0. As a result, for weak SO coupling theg
factor expands according to Eq.(15),

geffsbRd = gF1 −S 1

4s
+ 1DAbR

2G . s35d

For g,0 (small bR), the Zeeman and the(full ) orbital
contributions are both negative and so isgeffsbRd. ugeffsbRdu
increases or decreases withbR depending on the material
parameters being less or greater than 1/4. Ats,1/4,
geffsbRd is (almost) independent ofbR. In addition, whens
!1, the characteristic scale of the SO coupling, over which
geffsbRd changes fast, isbR,Îs/A. Note that the parameters
used in Fig. 5 are such thats is very small,s,0.03, and the
bareg factor is negativesg=−0.44d. For this case therefore
ugeffu increases withbR resulting in a large effective Zeeman
splitting of the ground statel =0 discussed above. Forg.0
the Zeeman and the orbital contributions compete. The or-
bital contribution is smaller than the Zeeman one at smallbR
but always prevails with increasingbR resulting in the
change of sign ofgeffsbRd. The change of sign occurs atb
.2.5 for s,1 and atbR,Îs/A for s!1.

Note that if we include the Dresselhaus term instead of
the Rashba term, then the unitary transformation

U =
1
Î2

ssx + syd

of Hamiltonian (1) with the Rashba term results into the
Hamiltonian UHU† which now involves the Dresselhaus
type term saR→aDd but the sign of the Zeeman term is
reversed. Therefore, in the presence of the solo Dresselhaus
term, formula(32) reads

geffsbDd = gF1
2
sbDd −

g

4sf1 − F1
2
sbDdg +

g

2s
R1

2
sbDd,

s36d

where bD=2aDmR. As mentioned above our solution fails
when both the Rashba and the Dresselhaus terms are present.
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It is clear, however, that there are no processes mixing them
up to and including the third order of perturbation theory in
bR,D, so we may write

geffsbR,bDd = gF1 −S 1

4s
+ 1DAbR

2 + S 1

4s
− 1DAbD

2G .

s37d

This perturbative formula is universal in the sense that only
the dimesionless constantA depends on the shape of the
confining potential. Similar dependence of the effectiveg
factor on the Rashba and the Dresselhaus coupling strength
was obtained in Ref. 23 for a parabolic confining potential.

We close this section by performing a consistency check.
Let us compare the exact result Eq.(30) with the standard
perturbation theory. We calculated the correction inbR andh
to the energy levels by means of the standard perturbative
expansion and found

e j=±l−1/2,n = el,n
s0d − hs1 − 8bR

2Sl,nd ±
lh

2s
±

1

2
bR

2sl 7 1d

+ 2bR
2 h

s
Sl,n,

e j=±l+1/2,n = el,n
s0d + hs1 − 8bR

2Sl,nd ±
lh

2s
7

1

2
bR

2sl ± 1d

− 2bR
2 h

s
Sl,n, s38d

where the object

Sl,n =
el,n

s0d + 2l2 − 2

48 el,n
s0d ,

is calculated in Appendix A. The resulting energy splittings
coincide with those given by formula(30) when expansion
(14) is used and with formula(12) at h=0.

V. CONCLUSIONS

We presented an analytic solution to the problem of an
electron in a quantum dot in the presence of both the mag-
netic field and the spin-orbit coupling. The method rests on
the observation that there are in this problem two degenerate
eigenfunctions in the bulk that can be combined to satisfy the
boundary conditions for both spinor components.

We calculated the energy levels, the real-space wave func-
tions, and various quantities of physical interest. The Rashba
energy splittings are overestimated in the first-order(in bR

2)
perturbation theory. There is a strong suppression of effective
gyromagnetic ratio by the spin-orbit coupling(without the
orbital contribution of the magnetic field). The spin-flip re-
laxation rate has a maximum as a function of the spin-orbit
coupling. Inclusion of the orbital effects gives rise to quite
rich magneto-optical spectra. In particular, the combined ef-
fect of the orbital contribution and the Rashba term results in
a large splitting of the ground state. The effectiveg factor
changes sign withbR if the bareg factor is positive. We hope

that our method can be used in future research for obtaining
further interesting results on the spin-orbit effects in quantum
dots; in particular, it would be interesting to investigate spin-
flip transitions in high magnetic fields.
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APPENDIX A: PERTURBATIVE EXPANSION IN bR AND h

In this appendix we elaborate on the perturbative results
for the Rashba splittings. We recall that, atbR=h=0, the
energy levels,el,n

s0d=kl,n
2 , are determined from the equation

Jlskl,nd=0, where the indexn=1,2, ...numbers the zeros of
the l ’s Bessel function in increasing order.

At h=0, expanding Eq.(11) up to second order inbR
leads to Eq.(12) for the perturbative corrections to the eigen-
states. Notice that the second-order correction does not de-
pend onn. Also, the levels with higherj go down in energy
while the levels with lowerj (originating from the state with
the samel at bR=0) go up, the Rashba splitting being
e j=l−1/2,n−e j=l+1/2,n= lbR

2.
On the other hand, employing the standard perturbation

theory, one can easily see that the effective second-order
secular equation has only diagonal matrix elements involving
the standard Lommel’s integrals with the Bessel functions
and thus obtain27

e j=l±1/2,n − el,n
s0d = 4bR

2 o
m=1

`
kl,n

2 kl±1,m
2

skl,n
2 − kl±1,m

2 d3 , sA1d

for h=0. Furthermore, at the first order inh (still second
order in bR) one finds Eq.(38) for the energy corrections,
where

Sl,n
± = kl,n

2 o
m=1

` F kl±1,m
2

skl,n
2 − kl±1,m

2 d4G ,

Rl,n
± =

kl,n

2Jl+1skl,nd o
m=1

` kl±1,mE
0

1

x2 dx Jl±1skl±1,mxdJlskl,nxd

skl±1,m
2 − kl,n

2 d2Jl+1±1skl±1,nd
.

sA2d

It turns out (see below) that Sl,n
+ =Sl,n

− ;Sl,n, Rl,n
+ =Rl.n

−

;Rl,n, andRl,n=Sl,n.
Thus, the technical problem here is to analytically per-

form the summation over zeros of the Bessel functions. This
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can be achieved by using the product representation formula
for the Bessel function(see, e.g., Ref. 27),

Jmszd =
zm

2mGsm+ 1dpn=1

` S1 −
z2

km,n
2 D , sA3d

whereJmskm,nd=0. Indeed, define

h0sz±,md = o
n

lnS1 −
z±

2

km,n
2 D, hpsz±d = o

n

1

skm,n
2 − z±

2dp ,

with z± satisfyingJm±1sz±d=0 andp being a positive integer.
Upon repeated differentiation inz of formula (A3) and sub-
sequent usage of Bessel functions’ recurrence relations, it is
easy to see that

h1sz+,md = 0, h2sz+,md =
z+

2

4
, h3sz+,md = −

1

4z+
4 −

m

8z+
4 , h4sz+,md =

1

4z+
6 +

5m+ m2

24z+
6 +

1

48z+
4 ,

h1sz−,md =
m

z−
2 , h2sz−,md =

1

4z−
2 −

m

z−
4 , h3sz−,md =

m

z−
6 −

1

4z−
4 +

m

8z−
4 , h4sz−,md = −

m

z−
8 +

6 − 5m+ m2

24z−
6 +

1

48z−
4 .

Expressing the right-hand-sides of Eqs.(A1) and (A2) as
linear combinations ofh’s found above, we immediately ob-
tain

o
n8

` kl±1,n8
2

skl,n
2 − kl±1,n8

2 d3
= −

± l + 1

8kl,n
2 , Sl,n =

− 2 + 2l2 + kl,n
2

48kl,n
2 ,

which justifies the results, Eqs.(12) and (38), quoted in the
main text.

Using the summation representation formula for the
Bessel function(see, e.g., Ref. 28)

Jmskzd = 2Jmskdo
n=1

`
km,nJmskm,nzd

skm,n
2 − k2dJm+1skm,nd

, sA4d

whereJmskm,nd=0, we obtain

Rl,n =
1

8Jl+1
2 skl,nd

E
0

1

x3 dx Jl
2skl,nxd sA5d

which justify the result, Eq.(34), quoted in the main text.
Performing the integration overx in Eq. (A5), for the ground
statel =0 we obtain

R0,0=
1

8J1
2sk0,0d

E
0

1

x3 dx J0
2sk0,0xd =

k0,0
2 − 2

48k0,0
2 ,

which is in accordance with expression(15) in the main text.

Finally, note that the following representation for the
Bessel function holds:

Ilszd =
1

Jl+1
2 szd

E
0

z

x3 dx Jl
2sxd =

z4 + 2sl2 − 1dz2

6
, sA6d

where Jlszd=0. Straightforward calculations(by using the
Lommel’s integrals28) proof expression(A6). In particular
case ofl =0,1,2,3,e.g., one obtains

I0szd =
z4 − 2z2

6
, I1szd =

z4

6
, I2szd =

z4 + 6z2

6
,

I3szd =
z4 + 16z2

6
.

APPENDIX B: WAVE FUNCTIONS FOR THE
LANDAU-RASHBA PROBLEM

In this appendix we supply more details of the solution of
the Landau-Rashba problem. Upon the substitution

F f j

gj
G = e−j/2Fju j−1/2u/2Fj

ju j+1/2u/2Gj
G , sB1d

the Schrödinger equation becomes, explicitly

Fj
d2

dj2 + S j +
1

2
− jD d

dj
− j +

1

2
+ e− sGFj + gFj

d

dj
+ j +

1

2
GGj = 0,

Fj
d2

dj2 + S j +
3

2
− jD d

dj
− j −

1

2
+ e+ sGGj − gF d

dj
− 1GFj = 0

for j .0, and
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Fj
d2

dj2 + S− j +
3

2
− jD d

dj
e− sGFj + g

d

dj
Gj = 0,

Fj
d2

dj2 + S− j +
1

2
− jD d

dj
+ e+ sGGj − gFj

d

dj
− j +

1

2
− jGFj = 0

for j ,0. Using standard relations satisfied by the confluent hypergeometric functions(see Ref. 25) we obtain the following
identities for the basis wave function:

F d

dj
− 1GMS j −

1

2
− e0, j +

1

2
;jD = −

e0 + 1

j + 1/2
MS j −

1

2
− e0, j +

3

2
;jD ,

Fj
d

dj
+ j +

1

2
GMS j −

1

2
− e0, j +

3

2
;jD = S j +

1

2
DMS j −

1

2
− e0, j +

1

2
;jD ,

d

dj
MS− e0 − 1,− j +

1

2
;jD = −

e0 + 1

− j + 1/2
MS− e0, j +

3

2
;jD ,

Fj
d

dj
− j +

1

2
− jGMS− e0,− j +

3

2
;jD = s− j + 1/2dMS− e0 − 1,− j +

1

2
;jD .

These identities, together with the definition(23), lead to the basic property(24) that allows for the solution of the Landau-
Rashba problem.

1G. E. Pikus and A. N. Titkov,Optical Orientation, edited by F.
Meier and B. P. Zakharchenya(North-Holland, Amsterdam,
1984).

2E. I. Rashba, Fiz. Tverd. Tela(Leningrad) 2, 1224 (1960) [Sov.
Phys. Solid State2, 1109(1960)].

3G. Dresselhaus, Phys. Rev.100, 580 (1955).
4L. Jacak, A. Wójs, and P. Hawrylak,Quantum Dots(Springer-

Verlag, Berlin, 1998).
5L. D. Landau and I. M. Lifshitz,Quantum Mechanics(Pergamon,

New York, 1965).
6F. Geerinckx, F. M. Peeters, and J. T. Devreese, J. Appl. Phys.68,

3435 (1990).
7M. Governale, Phys. Rev. Lett.89, 206802(2002), and refer-

ences therein.
8S. Bandyopadhyay, Phys. Rev. B61, 13 813(2000).
9E. N. Bulgakov and A. F. Sadreev, JETP Lett.73, 505 (2001).

10Yu. A. Bychkov and E. I. Rashba, Pis’ma Zh. Eksp. Teor. Fiz.39,
66 (1984) [JETP Lett. 39, 78 (1984)]; J. Phys. C 17, 6039
(1984).

11The spin-orbit interaction due to the parabolic(lateral) confining
potential in the dot has been discussed in Ref. 12. For a hard-
wall potential additional SO terms have no effect due to the
vanishing boundary conditions.

12O Voskoboynikov, C. P. Lee, and O. Tretyak, Phys. Rev. B63,
165306(2001).

13J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett.90,
146801(2003).

14Landolt-Börnstein, New Series, edited by O. Madelung, M.
Schultz, and H. Weiss(Springer-Verlag, Berlin, 1982), Vol.
17a,b, Group III, Vol. 22a, Group III.

15A. V. Khaetskii and Yu. V. Nazarov, Phys. Rev. B61, 12 639
(2000); 64, 125316(2001).

16J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.
Lett. 78, 1335(1997); G. Engels, J. Lange, T. Schapers, and H.
Luth, Phys. Rev. B55, R1958(1997).

17L. J. Cui, Y. P. Zeng, B. Q. Wang, Z. P. Zhu, L. Y. Lin, C. P. Jiang,
S. L. Guo, and J. H. Chu, Appl. Phys. Lett.80, 3132(2002).

18C. F. Destefani, S. E. Ulloa, and G. E. Marques, Phys. Rev. B69,
125302(2004).

19M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev,
F. Schäfer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck,
Phys. Rev. Lett.82, 1748(1999).

20A. S. G. Thornton, T. Ihn, P. C. Main, L. Eaves, and M. Henini,
Appl. Phys. Lett.73, 354(1998);G. Medeiros-Ribeiro, M. V. B.
Pinheiro, and V. L. Pimentel, and E. Magera,ibid. 80, 4229
(2002).

21V. F. Gantmakher and Y. B. Levinson,Carrier Scattering in Met-
als and Semiconductors(North-Holland, Amsterdam, 1987).

22L. M. Woods, T. L. Reinecke, and Y. Lynda-Geller, Phys. Rev. B
66, 161318(R) (2002).

23R. de Sousa and S. Das Sarma, Phys. Rev. B68, 155330(2003).
24E. Tsitsishvili, G. S. Lozano, and A. O. Gogolin(unpublished).
25Bateman Manuscript Project,Higher Transcendental Functions

(Bateman, New York, 1953).
26L. Levitov and E. I. Rashba(private communication).
27G. N. Watson,A Tretise on the Theory of the Bessel Functions

(Cambridge University Press, Cambridge, 1992).
28F. Bowman,Introduction to Bessel Functions(Dover, New York,

1958).

RASHBA COUPLING IN QUANTUM DOTS: AN EXACT… PHYSICAL REVIEW B 70, 115316(2004)

115316-11


