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Extended tachyon field, Chaplygin gas, and solvabl&-essence cosmologies
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We investigate a flat Friedmann-Robertson-Walker spacetime filled kvig#lssence and find the set of
functionsF that generate three different families of extended tachyon fields and Chaplygin gases. They lead to
accelerated and superaccelerated expanding scenarios. For any fufctienfind the first integral of the
k-field equation when thk field is driven by an inverse square potential or by a constant one. In the former,
we obtain the general solution of the coupled Einst&Hfield equations for a linear functioR. This model
shares the same kinematics of the background geometry with the ordinary scalar field one driven by an
exponential potential. However, they are dynamically different. For a constant potential, we introduce a
k-field model that exhibits a transition from a power-law phase to a de Sitter stage, inducing a modified
Chaplygin gas.
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[. INTRODUCTION data and the theoretical predictions of the model and others
ruling out the model as an actual possibility for description
Cosmological inflation has become an integral part of thefor our Universd 23]. Some differences were found with the
standard model of the Universe and perhaps the only knownbserved cosmic microwave background and mass power
mechanism that can dynamically solve the flathess and thgpectrum data. Due to these discrepancies, it may be useful
horizon problem of the universl]. It has gained certain to consider other candidates for dark energy, such as, for
support from the recent observations of the cosmic microinstance, the extended Chaplygin §g&€G) generated from
wave background anisotropie2—4]. Although particle the ETF. Another interesting possibility appears to be select-
physics, in particular M or string theory, provides severaling ak-field model whose equation of state is like that of two
very weakly coupled scalar fields which are natural inflatonfluids, one obeying a baryotropic equation of state with con-
candidates, there exists no clearly preferred inflationanstant baryotropic indexy, and the other an ECG. This
model. A link between string theory and inflation was inves-“modified Chaplygin gas” interpolates between a power-law
tigated in Ref[5] where the authors introduéenflation and  phase and a de Sitter phase.
show that thek field may drive an inflationary evolution From theoretical and experimental points of view it is
starting from rather generic initial conditions. Also, the pro-important to find the exact shape of the potential, for in-
cess of a rolling tachyon field has been extensively used tstance, tachyonic inflation has been studied using phenom-
implement power-law accelerated expansion scenariosnological potentials that have not been derived from string
[6—11]. In Ref.[12] it was pointed out that rolling tachyons theory and can be related to the so callekl ihflation”
can contribute a mass density to the universe that resembl§s,7,8. Suchk fields, described by a nonstandard kinetic
classical dust. This has brought a new understanding of thierm, are one of the recent suggested candidates to play the
role of the tachyon in string theory. The tachyonic matter,role of some unknown component of the universe. One of the
then, might provide an explanation for inflation at the earlypurposes of introducing essence is to provide a dynamical
epochs and could contribute to some new form of cosmologiexplanation of cosmological observations which does not re-
cal dark energy13] at late timeq14]. These facts suggest quire the fine-tuning of initial condition§24-26. In this
enlarging the theoretical background and exploring someense, it may be considered as an alternative to quintessence,
new possibilities; in this sense, we will introduce an ex-which requires a scalar field that slowly rolls down a poten-
tended tachyon fieldETF) which supplies accelerated and tial to depict the observed acceleration of the present Uni-
superaccelerated expanding scenarios. verse. Also, it was argued that in certain dynamical regimes
In Ref.[15] it was argued that the coincidence problemthek essence is equivalent to quintessence and it may prove
may be solved by assuming a universe filled with a viscouslifficult to distinguish between the two fields. In the light of
fluid and dark energy modeled with a tachyonic field or athese results, it seems clear that it is worth searching for the
Chaplygin gas. The conjecture that dark matter and dark erinks between scalar fields arikdessence cosmologies, in
ergy can be unified by using a generalized Chaplygin gagarticular, whether they are kinematically or dynamically
obeying an exotic equation of state has been investigated iequivalent.
several works in view of the cosmological observatipt&— In Sec. Il, we introduce the ETF and find the power-law
22]. The present situation is somewhat controversial, withsolution generated by an inverse square potential. At the end,
some tests indicating good agreement between observationak define the ECG and show the general behavior of the
background geometry. In Sec. lll, we find the first integral of
the k-field equation for an inverse square potential and the
*Electronic address: chimento@df.uba.ar general solution of the coupled Einstekifield equations
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for a linear functionF. For power-law solutions we demon- , Py Fy
strate that the lineak-field model, with a constant function C= = oL (10

. . . . Px x T 2XFyy
F, is isomorphic to the model with divergent sound speed.
Finally, we introduce the modified Chaplygin gas. In Sec. IV,pe positive. However, in Ref27] it was shown that a posi-
we show the kinematical equivalence of thgeld driven by tive sound speed is not a sufficient condition for the theory to
a tachyonic potential and a linear functibnwith the scalar  pe stable. For the tachyon field, which is obtained fromkhe
field driven by an exponential potential. The conclusions arg;q 4 by selectingF=(1—T2)¥2 with T2=—x=¢?, the

stated in Sec. V. . .
sound speed is2=1—y>0, wherey=T2. Let us look for

the set of functiond=, such thatcg is proportional to the

sound speed of the tachyon field. We express this proportion-
The spatially flat homogeneous and isotropic spacetime iglity as

described by the Friedmann-Robertson-WalkeRW) line

element

II. EXTEND TACHYON FIELD AND CHAPLYGIN GAS

21—
Cs=5 1 (11
ds?=—dt?+a?(t)[dxe+ dxa+dx3], (1)
wherer is a real constant, with<1/2 for y>1 andr>1/2

wherea(t) is the scale factor. This metric allows a particular for y<<1. From Egs(5), (10), and(11), we obtain a differ-
calculational simplicity, on account of both the high degreeential equation for the functioR
of symmetry and the single metric degree of freedom. We
assume that 8G=1. (1=1)FFy+(2r=xF{+xFFu=0. (12

Let us present the Lagrangian of thkessence field: ) ) i
Integrating forr=0, we obtain the set of functionsy(x)

L=—V($)F(x), x=g*;dy, (2) =x702(0=1)  with vo constant, investigated if28]; while
for r=1 we find three types of solutiors;=(1—T2)?,
Fi=(1+T3)2 and Fy=—(T5—1)¥2 The first function
corresponds to the ordinary tachyon fiflle=T,. Its energy
densityp,=VF; * and pressur@,=—VF, lead to the rela-
tionp;=(y1,—1)p1, Whereylz"l'i. The other two functions
Tic=V($)[2Fxdid—9iF]. F=rg (3 generate two “new tachyon fields” which will be investi-
gated below. For the remaining valuesrahe general solu-
with the energy-momentum tensor of a perfect fluid, wetion of Eq. (12) is given by F?'=c,(—x)"+c,, wherec,
compute the energy density the pressurg, and the baryo- and c, are arbitrary integration constants, the baryotropic

whereV(¢) is a positive defined potentiaf,(x) is an arbi-
trary function ofx, ¢ is the k field, and ¢;=dV(¢)/x'".
Associating the energy-momentum tensor of khfeeld,

tropic indexy=1+ p/p of this equivalent fluid: index (5) is y,=—c,(—x)"/c,, and we haveF? =c,(1
—7,). From Egs.(4) and (5), the energy density of thk
p=V(¢$)[F—2xF,], p=L=-V($)F, @ field can be rewritten as=\VF/(1— 7). So, without loss of
, generality, we can split the solutions as follows: fgr<1
2H 2xFy andr>1/2, it is necessary that,>0 andc,>0, with two

©)

options, 0<vy,<1 andc;<0 or y,<0 andc,>0; for v,
>1 andr<1/2, we haveF, <0, c, andc,>0. Finally,

YT T 3Rz Fo2xF,

From Eq.(4), the Einstein field equations are

Fr=(1-y)", »==T7'<L, (13
3H2=V[F —2xF,], (6)
Fr=—(%—1", 5=TI>1, (14
H=VxF,, (7)
wherey, is the extended baryotropic index and thefield
and the conservation equation reads linked with F, will be called the ETF. Inserting Eq&13) and
(14) into Eq. (4), we get the energy densip; and the pres-
p+3H(p+p)=0, (8)  surep, of each ETF:
whereH =a/a is the expansion rate. Substituting E4). into pr=V(1-TFE7202 - p = —V(1-TI)Y2,
the conservation equatid®), we find the field equation for
the k field: 0<y <1, (15
/ _ T2ry (1—2r)/2r __ T2ry 1/2r
[yt 2XFyo b+ BHF b+ ;/—V[F—lerx]=o. @ VAT CPE VAR R

The stability of thek essence with respect to small wave- p,=V(T¥ —1)3=202 p =\(TZ—1)¥ 1<y,
length perturbations requires that the effective sound speed (17)

123517-2



EXTENDED TACHYON FIELD, CHAPLYGIN GAS, AND . .. PHYSICAL REVIEW D69, 123517 (2004

with is driven by the potentiavrzvole. To do that, let us
consider an evolution of the form=t" and aT, field such
Pr=(v=Dpr. (18 that T,«t. Power-law solutions are very important because
they can always be obtained from any functiénwith
an inverse square potential or from polynomial functions
F=(—x)N with any potential. As these solutions are the
éjsual ingredients in the quintessense &rassence models,
they allow us to recognize and compare the differences be-
tween the two cosmological models. The complete solution
for the ETF is given by

Equations(15) comprise perfect fluids that generalize the
normal tachyon field, which is obtained for=1. The fluids
represented by Eq§16) with negative pressure and negative
baryotropic index can describe phantom cosmologies, whil
those described by Eqél7) give rise to nonaccelerated ex-
panding evolution. In the limit of large the fluids(15) and
(16) satisfy the equation of stafg= —p= —V acting like a

variable cosmological constant depending on kHeeld. In 2\ V2 1
addition, the fluids(17) satisfy the equation of state=p Trz(% t, n= 5[1+ V1+9B8%], 0<y,<1,
=V, behaving like stiff matter in the same limit. These ex- 23)
otic fluids satisfy the relations
2 1/2r 1
V2r/(2r-1) T =(—) t, n=—[1—\/1+9,87], v, <0,
=" =1l 19 ©1=3n 3 '
Pr (24)
y2r/(2r-1) (2 vz 1 ,
pr:m, v >1, (20) T, = 3n t, n—§[1i\/1—9,6’ 1, 1<y,
Pr (25)
which, for a constant potentiadd=V,, become exotic equa- \here
tions of state which extend that of the generalized Chaplygin
1/72r/(1-2r)
gas. , | 3(2
AR (26)

A. Power-law expansion for theT, field

We begin by investigating the atypical behavior of the'tl)'he sound speed associated with the above solutions is given

T4, field. Its sound speed diverges and thield equation

(9) becomes a first order equation. Equatidhcan be inte- , 1=2/3n 27
grated and its solution gives a link between the expansion Cs=or-1 -
rate andT 1)»:

Assuming a positive sound speed bounded by the light speed
2 0=<c2<1, we can see that>1—1/3n is required forn
H=371, (2 ~2/3 orn<0 andr<1-1/3n for 0<n<2/3.

An accelerated power-law expanding universe-(L) can
where the integration constant has been chosen to set the described by the set of ETFs having 2/3 and it is
singularity atT,,=0. Forr=1/2, the three equationd5), represented by the solutio®3). All these models are kine-
(16), and(17) lead to H?=V. So, combining them with Eq. matically and dynamically different because the scale factor

(21), we obtain the inverse square potential and thek field are strongly dependent anas can be seen
from Egs. (23) and (26). In particular, forr=1 Eq. (23
4 reduces to the solution of the tachyon field found 8.

VMZF@Z’ 22 The solutions(24) with n<0 can describe phantom cos-

mologies and we have to select ETFs with 1 to reach this

which is the uniquely allowed potential far,,. As T,,is  Scenario.
not controlled by thek-field equation(9), it can be chosen
freely, and this choice determines, after integrating 4),
the form of the scale factor. Although the potenijap) di- Recently a set of simple cosmological models was pro-
verges atT,,»,=0, it reasonably mimics the behavior of a posed based on the use of particular perfect fliz8. In
typical potential in the condensate of bosonic string theorythis simple model the universe is filled with the so called
One expects the potential to have a unique local maximum aChaplygin gas, which is a perfect fluid characterized by the
the origin and a unique global minimum away from the ori- equation of statp= —A/p, whereA is a positive constant. It
gin at whichV vanishes. In the most interesting case thedescribes the transition from a decelerated cosmological ex-
global minimum is taken to lie at infinity. Obviously, more pansion to a cosmic accelerated de Sitter stage. Other possi-
complicated potentials may be contemplated, but this is théilities are the inhomogeneous Chaplygin gas, which is able
simplest case to begin with. to combine the roles of dark energy and dark md®6f, and

It will be useful to investigate the existence of acceleratedhe generalized Chaplygin gas model discussed in [R3éf,
and superaccelerated expanding solutions wherTihigeld  having two free parametes=—A/p* with 0<a<1.

B. Extended Chaplygin gas
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These cosmological models may give a unified macromotivation provided by string theofy85]. It looks interest-
scopic phenomenological description of dark energy andng to admit that the origin of dark energy should be sought
dark matter and generalize the usual cold dark matter modelsithin a fundamental theory, such as string theory. However,
with a cosmological constant. On the other hand, the Chapat present there is no consensus as to whether a universe
lygin gas can be considered as the simplest tachyon cosmuiolating the weak energy condition should generically pos-
logical model where the tachyon field is a purely kinetic sess a future singularity or big r{|36].
k-essence model with a constant potential. In the same way, The sourcg30) leads to two types of solutions according
we will show that the generalized Chaplygin gas can be conto the value of the parameter Forr <0 the universe has a
ceived as the simplest ETF model driven by a constant pofinite time span, interpolating between two dust dominated
tential. This identification has the advantage of producing ghases, and has a maximumata,. For O<r<1/2 the
variety of new Chaplygin gases, some of which lead to suuniverse begins at a singularity with a finite scale factor,
peraccelerated scenarios, as we will see in this subsection.=a,, and ends in a dust dominated phase. From the cosmo-

Coming back to our Eq$19) and(20), we see that in the logical point of view these solutions are not relevant because
case of a constant potenti®(T,)=V,, with r=1 and O they do not describe the present observed accelerated expan-
<7,<1, the exotic equation of stat@9) represents a Chap- sion stage.
lygin gas[29]. This equation may be the consequence of a

scalar f|6|d with a nonstan_dard kinetic term, e.g., the string 11l. SOLVABLE k-ESSENCE COSMOLOGIES
theory motivated tachyon fiel82,33. For 1<r and 0<1, _ _ _
<1, the equation of stat¢l9) represents a perfect fluid In this section, we will show some cases where the

called the generalized Chaplygin g&l]. Finally, an ECG coupled Einsteink-field equations(6), (9) admit a first in-

will be characterized by the equation of std1®) with 1/2  tegral or can be solved exactly. Expressing the energy den-
<r<1, or by Eq.(20) with r<1/2. Their properties will be sity of thek field asp=VF/(1-v) and using the conserva-
investigated below. Using Eq&L9), (20) and the relativistic ~ tion equation(8), we get thek-field equation in terms of the
energy conservation equatié8), we obtain the energy den- baryotropic indexy,

sity of the ECG:

71 +3H

y \% B
g (1—7)+V(1—7)—0, (31

g3\ -1y s
p=Vo| 1+| = , 0<y,<1, (29)
a
) ’ whereV'=dV/d¢. This form of writing the field equation
r 23 2r/(2r—1)7(2r—1)/2 allows us to show that the first integral of tkdield equation
p=Vo 1_(_g> . 7,<0, (29) (9 for any functionF is given by
a
Y 2 C
ag 2r/(2r—1)7(2r—1)/2 ¢ =¢ (SH + 2n2) (32
p=Vo| —1+ ; , 1<y, (30

where we have assumed an inverse square potential,

Equation(28) with r>1 gives the energy density of the gen-

eralized Chaplygin gas in terms of the scale factor interpo- _ ﬁ
lating between a dust dominated phase where the energy e
density is p~Vy(ag/a), and a de Sitter phase whepe

~V,, while during the intermediate stage it could be inter-and c is an arbitrary integration constant. The usual linear
preted as a mixture of two fluids, one of which is the cos-field solution¢= ¢4t along with the power-law scale factor
mological constant and the other is a perfect fluid with equaa=t?® (with constanty) is obtained from the last equation
tion of statepxp. The additional free parameterof the for a vanishing integration constant. Combining E&s, (7),
generalized Chaplygin gas can be used to compare it withnd(33) with Eq. (32), it can be rewritten as

observational data.

(33

In any other case, Eq&28) with 1/2<r<1 and Eqs(29) ) 3| ¢
and (30) represent new perfect fluids which are interesting PFx—|H+ =15 =0, (34)
from the cosmological point of view. The scale factor gener- 2a°] Vo
ated by the sourc€9) is nonsingular and has a bounce at

. : . . oras

the minimuma=a,. The universe begins from a contracting
era and ends in a superaccelerated stage. Such cosmologies 2
may be interpreted as universes filled with baryotropic fluids —VoF H=|H+ 3_C (35)
having a negative constant baryotropic index and violating X 2ad

the weak energy conditiop>0, p+p>0. The models will

be dubbed phantom cosmologies following the standard teffhen, for the tachyonic potentiéB3), Egs.(32), (34), and
minology. Phantom matter can apparently be accommodate@5) are three different forms of writing the first integral of
by current observation§34], and it can be based on the thek-field equation(9) or (31).
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At this point, using Egs(5), (33), and(32), it is interest-
ing to see the coupled Einsteik-field equationg6), (9) as
a system of differential equations for the functiBnHence,
by integrating we obtain

3h3 3c [ (2hg+ch)h
F—V—O+\/—X b+2—VO de , (36
3c( do
Hgf):—? §=h0+0h, (37

whereh, andb are arbitrary constants atc= —3¢/2a3. In
the particular case=0, Eq.(36) becomes

3h3
A

F* +by-x, (38)

PHYSICAL REVIEW D69, 123517 (2004

wherem is a constant, decouples the dynamics of the back-
ground geometry from the dynamics of tkéeld. Therefore,
this choice clearly introduces a rather small degree of non-
linearity into the dynamical equations, allowing us to obtain
the general solution of the coupled Einstein—
k-field equations. On the other hand, the functiéd@) mim-

ics the behavior of other models. For instance, wikehl

the tachyonic functior = (1+x)¥? can be approximated by
F~1+x/2 and it has the fornt40) [8]. In Ref.[25] a set of
models was introduced whefe admits a power series ex-
pansion similar to Eq(40). This form is reminiscent of a
Born-Infeld action with higher order corrections ¥ and
particular cases were investigated [i86,37. Hence, the
knowledge of the general solution for the linear functid)
should be of interest, at least for understanding the
asymptotic behavior of many other models generated by an
analytical function F(x)=F(0)+F,(0)x+---. In fact,
keeping the first order term in the expansionFofit adopts

the linear form(40), after redefining the potenti® to set the

which, after a redefinition of the constants, turns into thegonstant=(0)=1.

functionF,, that generates the ETF;,, [see Eqs(13), (14)

Combining Egs.(35) and (40), we obtain the following

for r=1/2]. For this “divergent’k-essence theory the sound nonlinear second-order differential equation for the scale fac-
speed(10) diverges and thé-field equation(9) becomes a g

first order equation that is consistent only with an inverse

square potential. This divergent model is related to the linear d2s ds 1
k-field model, ¢= ¢ot, obtained by evaluating,F, at x STt ZSZ"“:O, o=-3mV,,
=x0=—¢§ in the Einsteink-field equations(6), (9). The dr? T
lineark-field model driven by the potenti#B3) leads to the
power-law solutionsa=t" with

(41

where we have used the new variabsesnd 7, defined by

3ct
T—m—vo.

1 f+2¢3f" A s=a %", (42)
IR LNV (39
3 ¢Of, f/
The general solution of E¢41) can be found by changing to

where we have definetl=F(— ¢3), f'=F(— ¢3). nonlocal variablez and 7, defined by{38]

From Eqs.(38), (39 it is easy to show that the linear ol

model is isomorphic to the divergent one. This can be done ,— S :J' s’dr o#1 43)
by constructing a one-to-one mapping between these two ot+1 7 ’ ’

models. In fact, choosing in the divergent model the con-

stantsh3=\?¢3 and b=—2\¢,/V,, we find the same dr

power-law solutions obtained from the linear model. In Ref. z=Ins, =] -, o=-1 (44)

[28] it was suggested that this might be the reason why a

model with a diverging sound speed leads to serious probrhen, in these new variables, Ed.1) becomes a linear ho-

lems as discussed in a recent paj@]. In addition, assum-  mogeneous differential equation with constant coefficients,
ing a series expansion of the functiér{x) aroundx=Xx,,

the background cosmology is completely determined by the d2z dz o+1
first two coefficients {,f’) of the expansion of and the —+ d—+ 7 z=0, o#*-—1, (45
value of¢y. Hence, the model is insensitive to the remaining dn 7

coefficients in the expansion of the functiénhand both the . ) . )
linear and divergent models should be considered as equivgduivalent to a damped harmonic oscillator equation, and
lent. This means that the power-law solutions generated by
an inverse square potential possess a degeneracy. Possibly
this degeneracy may be removed by perturbing the solutions.

d’z dz 1

d—nz"‘%‘f'Z:O, (46)

o=—1.
On the other hand, expressing E&4) for the k field in
terms of the independent variabig we get

d¢ 3da+1
¢dy  cady 2"

A. Inverse square potential and linear functionF
From thek-field equation(35), it can be seen that a linear
function

(47)

F=1+mx (40
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Oncez(x) is known from Eq.(45), one can compute(7) Inserting its solution into Eq54), using Eq.(42), and inte-
from Eq. (43), the scale factoa(7) from Eq.(42), and thek  grating Eq.(47), we get the general solution for the evolution
field ¢(7) from Eq. (34). Following this procedure and in- and thek field satisfying Eq«(6):

serting the general solutions of Eq45) and (47) into the

Einstein equationié), we find the scale factor, thefield, and 3\ 3 9c?v, . 13
the relationship among the integration constants: a(7)= 2 1642 t=ct) (56)
0
\/__0_ —0ol3(c+1)
a= \/—Be”/ZSin"( 5 n+ 1o , o<-—1, ()= 2 _§+%t3 1/2 -
48) TS T R TR
7 /812 2 where we have choser<O to set the singularity at=0.
a=agexp| — 5+ Ve 7UF o, o=—1, (49 The scale factof56) exhibits a transition fronaxt3 to an
accelerated expansion wheaset*3. Curiously, it coincides
[ g —al3(c+1) with the solutions found irf39] where a FRW spacetime
a=|\Be ”’Zcos?‘( 7+ 79 } , —1<0<0, filled with a scalar field driven by an exponential potential
L 50 was considered. In the next section we will investigate this
(50) relation between the scalar field and thessence field. The
- Jo —ol3(c+1) k field diverges at the singularity ag<t~ 2 and behaves as
a=|Be" ﬂlzsin(_o-n+ 70 } . 0<o. ¢t for large time. It has a minimum and a turning point
I 2 where the kinetic energy vanishes.
(51) Another set of solutions can be found wher 0. Here,
e Eq. (35) reduces tdd = — H?/mV, and we get the power-law
Thek field is given b . ; 0
g y expansiora=t"" and a lineak field ¢= ¢ot.
b= poa>"e””, (52)
C. The polynomial function F (x)=(—x) 2>~V
where This polynomial function yields a constant baryotropic
index y and the power-law expansian=t23" [28]. ForF,
B= 4o+ 1)Vo (53) the general solution of Eq34) is
27c%¢3

¢=[b+Aagt@ NP yz2 (58

and 7 and ¢, are arbitrary integration constant. b

For o< —1, the solution expands from a singularity as ¢=¢ot”,  y=2, (59
tY®and ends as™ “’°. Wheno> — 3 the scale factor displays
a power-law inflationary scenario. Fer1<o <0, the uni-
verse expands from a singularity @€ and its final behavior
is given byt'3. For o>0 the solution represents a contract-
ing universe which begins at a finite time and reaches a mini-
mum where it bounces, exhibiting a final superaccelerated :M ¥I(1-7)

VO (4¢0) ’ 77& 2! (60)

whereb and ¢, are integration constants. Consistency be-
tween these solutions and the E) gives the following
relation between the integration constants:

expansiona(t)«(to—t) ~“"%. The universe has a finite time 3y?
span and bounces when tlefield satisfies the condition
¢%=—1/m. 1
As this model displays an accelerated expanding stage at b=+ 3V, y=2. (61)
late times it may be an interesting alternative to describe the 0
epoch where dark energy dominates. For large cosmological time thk field behaves agp~t.
More details about the cosmological model generated by the
B. The explicit solution setF,, can be found in Ref(28].
For o=—4 or mV,=4/3, we can solve Eq(41) by
means of the substitution D. Constant potential case
4 We have seen that the generalized Chaplygin gas model
5—4:1 U—’ (54) was proposed as unified dark matter. It is derived from a
2 f ~aq Lagrangian containing nonstandard kinetic energy terms
vouT (i.e., nonquadraticand can be considered as driven by a
constant potential. Below we show that, even in the absence
so that Eq(41) reads as of any potential energy term, a general class of models ex-
) ists, including the ECG, connecting a dust dominated era at
v=0. (55 early times with an accelerated expansion stage at late times.
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2al/(2a—-1)
; (69)

For a constant potentidf =V, the k-field equation(31)

has the first integral p=| gt —

a3

Y c . L . .
(62 wherecy is a redefinition of the integration constantRe-

¢ a’H? stricting consideration to positive sound speed, the source
(69 and the ECG induce a similar evolution of the scale
factor. However, there is a significant change when both con-
stantsag,C, are positive andv>1/2, because in this case

or, after using Eqs(5) and(7), it turns into

. 3c o
3 _ = the baryotropic index becomes
a%F =5y (63
. . . . . 2a Qo
wherec is an arbitrary integration constant. Also, combining V=51 1- oDz (70
them with the Friedmann equatid6), the baryotropic index @ P
associated with this kind dk essence can be written in a ) ) ) )
more convenient form, So, near the singularity, the energy density diverges and the
baryotropic index behaves ag~2a/(2a—1), indicating
1 that the model begins to evolve with a power-law dominated
y= s . (64)  phase, where the scale factordst®*~ 13 |n this limit
1+2V5a®FF,/9c the sound spee(b8) behaves as?~(2«—1)*. For large

) a, the model is initially dust dominated, with approximately

From the last equation we see that for a large set of m0d9|$ﬁanishing sound speed, approaching the ECG generated by
i.e., the class of models generated by the set of functions he source28) in the limit of larger. At late times the model
satisfying the conditiom°FF,<1 at early time, the universe ends in a de Sitter stage. Such a “modified Chaplygin gas”
is dust dominated in the beginning. At intermediate times ityay pe considered as an alternative model to the generalized
of statep=p. Finally, the universe ends in an acceleratedihe initial perturbations in the energy density into a nonlinear
expansion scenario. So these alternative models play th@gime to form a gravitational condensate of particles that
same role as the generalized Chaplygin gas, i.e., interpolagoyld play the role of cold dark matter. The cool dark matter
ing between dark matter at early time and dark energy at latgondensates gravitationally into regions where the pressure
time. _ . _ o p~0 and thek field is close tog.=(2aag)Y?* 1. In this

Now, we investigate a simple kinetik-essence model c¢ase, the model yields an energy density which scales like
generated by a functioR satisfying the more general condi- ihe sum of a nonrelativistic dust componentgat ¢, with

tion aGFF{(%const at early time. This model is generated byequation of statep=0 and a cosmological-constant-like
the following function: componenip=—p.

1

= W[Zaaox/—x—(—x)“], (65) IV. LINKING SCALAR AND k-ESSENCE COSMOLOGIES
a— 0

F

The observed acceleration of the present Universe has
wherea and «( are two real constants. The energy densitybeen investigated by assuming that the dark energy can be
and pressure of thk field are calculated from Eq$4) and  described by quintessence and more recentlk legsence.
(65): The last one involves an effective scalar field theory gener-

ated by a Lagrangian with a noncanonical kinetic term. Par-

N 1 . ticular cases ok-essence are the generalized Chaplygin gas
p=(=x)% p=- (2a—1) [2aaoy=x=(=x)7], and tachyon dark energy models. Quintessence and
(66) k-essence frameworks are usually based in a homogeneous

scalar field driven by an exponential potential in the case of

the equation of state is quintessence or an inverse square potential in the cake of
essence. Both encounter the so-called coincidence problem,
1 2aag namely, why are the energy densities of dark energy and dark
P=5,—1|P~ Uz’ (67)  matter of the same order today? The standard quintessence

model appears promising at this point, as it can solve this
problem for flat FRW universes provided the dark matter
component is assumed to be dissipa{i¢8]. The system is
attracted to a stationary and stable solution characterized by

and the sound speed becomes

c2= . 1— %o _ (68) the constancy of both density parameters at late times. In
$ 2a-1 p2a— D2 addition, a class ok-essence models has been claimed to

solve the coincidence problem by linking the onset of dark
Solving the conservation equati¢8), we obtain the energy energy domination to the epoch of matter domination
density [24,25. From these satisfactory results and taking into ac-
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count that both models involve evolving scalar fields, we 2 3 ¢
believe it is reasonable to explore whether quintessence and mVo=—, N
k-essence frameworks have similarities. We will deal with qA

this question by investigating in which cases quintessence .
resemblek essence. Egs.(41) and (76) coincide. Therefore, both models are de-

Another interesting aspect to be considered is related t5¢"P€d by the same scale factor and they are geometrically

current observations that would indicate that the universe igauivalent. Also, from Eqg6), (7), (40) and Eqs(71), (72),
superaccelerated and it could be filled with a nonstandar#® 9€t @ relationship between the two potentials:

fluid that violates the weak energy condition. In this sense, a
kind of matter was recently proposed described by a homo-
geneous scalar field with negative kinetic energy term. The
fluid with negative pressure obeys an equation of state of th?
form p=(y—1)p, wherevy is taken negative, and the mod- "~
els are known as phantom or ghost cosmolodi&b-45.

The phantom and quintessence cosmologies can be investi-
gated simultaneously by taking a scalar field with both signs
of the kinetic term driven by an exponential potential. The
dynamical equations of these cosmological models are  After inserting thek field (52) into the last equation we find

the scalar field

(78)

3HZ+H=V(t)=W1), (79

howing they are the same function of the cosmological time
so that

Vo

; =Voe 9A¢, (80)

1.
3H*=5 a9+, (71 U
go=q—AIngoo+q—A+Alna, (81
. . 1dy
<P+3H¢+a£=0, (72)  where (pO=VO¢(2,/\(0. Equation (80) supplies the link be-
tween the scalar field and thkeessence field,
V(e)=Voe ¢, (73
) . ¢: ﬁqu‘P/2 (82)
whereq,A are real numbers ant is a positive constant. o2 '

The exponential potential is interesting because it may be

considered just as a limit of a more complex poterfd]. gjisplaying that these models are dynamically not equivalent.
For negative values off the above equations describe aThys the homogeneous quintessence and phantom fields are
phantom cosmolog}45. _ different from thek-essence field.

It will be demonstrated that the scale factor obtained from Summarizing, from the kinematical point of view, which
Egs.(72)—(73) or from thek-essence model generated by thejs the packground geometry, we have obtained exact equiva-
linear functionF=1+mx and driven by an inverse square |ances, and it is impossible to differentiate between quintes-
potential[see Eqs(6), (33), (35) and (40)] is the same. To gence k essence, and phantom cosmologies because they
this end, we sketch the procedure followed in REf6].  share the same scale factor. To distinguish between them, it
From Eqgs.(71)—(73), we find appears necessary to focus our attention on the scalar field.

1.
H=—>a¢? (74) V. CONCLUSIONS

o ] ] We have investigated the set f fields whose effective
and the first integral of the Klein-Gordon equatitf?) sound speed is proportional to the sound speed of the
tachyon field. They can be grouped into three types accord-
(75) ing to whether they yield phantom expansion or accelerated
expansion with or without inflation. We have shown these
behaviors by finding exact power-law solutions for an in-
wherec, is an arbitrary integration constant. Now, inserting verse square potential and proved that Thg field is com-
Eq. (75 into Eq.(74), we obtain the second order differential patible only with this potential. Eacli, field produces an

: C1
(p:AH+ —3,
a

equation for the scale factor, ECG, and the set of all these gases can be divided into three
kinds, one of which contains the generalized Chaplygin gas
d?s ,das 1 5 and the others give rise to “perfect fluids,” leading to new
d_§2+5 d_é««“LZS =0, v»=-6/QA°, (76)  evolutions. There exist basically nonsingular bouncing solu-

tions with a final superaccelerated stages or singular ones
with a finite time span, as well as particular singular solu-

where we have used the new variab&and ¢, defined by ) e 1 € :
tions that begin with a finite scale factor. In this manner, both

S=a ¥, (=c,qAt. (77)  the ETF and the ECG may be considered fair candidates to
implement phantom cosmologies.
With the following identification of the parameters: For an inverse square potential, we have found the first
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integral of thek-field equation for any functiofr and shown associated with a perfect fluid whose equation of state con-
that the coupled Einsteirk-field equations can be solved in tains one term proportional to the energy density and another
some cases. In particular, the divergdaessence theory with the form of an ECG. This model, essentially different
generated by th&@,, field becomes an intrinsic component from the ECG model, smoothly interpolates between a
of all k-essence models. Therefore, for power-law expanpower-law dominated phase and a de Sitter phase. In this
sions the lineak-field model driven by an inverse square “modified Chaplygin gas” scenario, the value of tkefield
potential and the divergent model are isomorphic. We haveyhere initial perturbations condense gravitationally to cold
obtained the general solution of the Einstein—dark matter can be chosen.
k-field equations for a linear functiof. From the kinemati-
cal point of view this model and the quintessence scalar field
one driven by an exponential potential are the same. How-
ever, they are dynamically nonequivalent, becausé firedd
and the scalar field are linked by the Einstein equation, e.g., This work was supported by the University of Buenos
both potentials are the same function of the cosmologicaRfires under Project No. X223 and the Consejo Nacional de
time. Investigaciones Ciefftcas y Tenicas. L.P.C. thanks Alejan-
For a constant potential, we have studiekt@ssence field dro S. Jakubi for useful discussions of this work.
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