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Extended tachyon field, Chaplygin gas, and solvablek-essence cosmologies

Luis P. Chimento*
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,

Pabellón I, 1428 Buenos Aires, Argentina
~Received 4 December 2003; published 25 June 2004!

We investigate a flat Friedmann-Robertson-Walker spacetime filled withk essence and find the set of
functionsF that generate three different families of extended tachyon fields and Chaplygin gases. They lead to
accelerated and superaccelerated expanding scenarios. For any functionF, we find the first integral of the
k-field equation when thek field is driven by an inverse square potential or by a constant one. In the former,
we obtain the general solution of the coupled Einstein–k-field equations for a linear functionF. This model
shares the same kinematics of the background geometry with the ordinary scalar field one driven by an
exponential potential. However, they are dynamically different. For a constant potential, we introduce a
k-field model that exhibits a transition from a power-law phase to a de Sitter stage, inducing a modified
Chaplygin gas.
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I. INTRODUCTION

Cosmological inflation has become an integral part of
standard model of the Universe and perhaps the only kn
mechanism that can dynamically solve the flatness and
horizon problem of the universe@1#. It has gained certain
support from the recent observations of the cosmic mic
wave background anisotropies@2–4#. Although particle
physics, in particular M or string theory, provides seve
very weakly coupled scalar fields which are natural infla
candidates, there exists no clearly preferred inflation
model. A link between string theory and inflation was inve
tigated in Ref.@5# where the authors introducek inflation and
show that thek field may drive an inflationary evolution
starting from rather generic initial conditions. Also, the pr
cess of a rolling tachyon field has been extensively use
implement power-law accelerated expansion scena
@6–11#. In Ref. @12# it was pointed out that rolling tachyon
can contribute a mass density to the universe that resem
classical dust. This has brought a new understanding of
role of the tachyon in string theory. The tachyonic matt
then, might provide an explanation for inflation at the ea
epochs and could contribute to some new form of cosmolo
cal dark energy@13# at late times@14#. These facts sugges
enlarging the theoretical background and exploring so
new possibilities; in this sense, we will introduce an e
tended tachyon field~ETF! which supplies accelerated an
superaccelerated expanding scenarios.

In Ref. @15# it was argued that the coincidence proble
may be solved by assuming a universe filled with a visc
fluid and dark energy modeled with a tachyonic field or
Chaplygin gas. The conjecture that dark matter and dark
ergy can be unified by using a generalized Chaplygin
obeying an exotic equation of state has been investigate
several works in view of the cosmological observations@16–
22#. The present situation is somewhat controversial, w
some tests indicating good agreement between observat
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data and the theoretical predictions of the model and oth
ruling out the model as an actual possibility for descripti
for our Universe@23#. Some differences were found with th
observed cosmic microwave background and mass po
spectrum data. Due to these discrepancies, it may be us
to consider other candidates for dark energy, such as,
instance, the extended Chaplygin gas~ECG! generated from
the ETF. Another interesting possibility appears to be sele
ing ak-field model whose equation of state is like that of tw
fluids, one obeying a baryotropic equation of state with co
stant baryotropic indexg, and the other an ECG. Thi
‘‘modified Chaplygin gas’’ interpolates between a power-la
phase and a de Sitter phase.

From theoretical and experimental points of view it
important to find the exact shape of the potential, for
stance, tachyonic inflation has been studied using phen
enological potentials that have not been derived from str
theory and can be related to the so called ‘‘k inflation’’
@5,7,8#. Such k fields, described by a nonstandard kine
term, are one of the recent suggested candidates to play
role of some unknown component of the universe. One of
purposes of introducingk essence is to provide a dynamic
explanation of cosmological observations which does not
quire the fine-tuning of initial conditions@24–26#. In this
sense, it may be considered as an alternative to quintess
which requires a scalar field that slowly rolls down a pote
tial to depict the observed acceleration of the present U
verse. Also, it was argued that in certain dynamical regim
the k essence is equivalent to quintessence and it may p
difficult to distinguish between the two fields. In the light o
these results, it seems clear that it is worth searching for
links between scalar fields andk-essence cosmologies, i
particular, whether they are kinematically or dynamica
equivalent.

In Sec. II, we introduce the ETF and find the power-la
solution generated by an inverse square potential. At the
we define the ECG and show the general behavior of
background geometry. In Sec. III, we find the first integral
the k-field equation for an inverse square potential and
general solution of the coupled Einstein–k-field equations
©2004 The American Physical Society17-1
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LUIS P. CHIMENTO PHYSICAL REVIEW D69, 123517 ~2004!
for a linear functionF. For power-law solutions we demon
strate that the lineark-field model, with a constant function
F, is isomorphic to the model with divergent sound spe
Finally, we introduce the modified Chaplygin gas. In Sec.
we show the kinematical equivalence of thek field driven by
a tachyonic potential and a linear functionF, with the scalar
field driven by an exponential potential. The conclusions
stated in Sec. V.

II. EXTEND TACHYON FIELD AND CHAPLYGIN GAS

The spatially flat homogeneous and isotropic spacetim
described by the Friedmann-Robertson-Walker~FRW! line
element

ds252dt21a2~ t !@dx1
21dx2

21dx3
2#, ~1!

wherea(t) is the scale factor. This metric allows a particul
calculational simplicity, on account of both the high degr
of symmetry and the single metric degree of freedom.
assume that 8pG51.

Let us present the Lagrangian of thek-essence field:

L52V~f!F~x!, x5gikf ifk , ~2!

whereV(f) is a positive defined potential,F(x) is an arbi-
trary function of x, f is the k field, and f i5]V(f)/]xi .
Associating the energy-momentum tensor of thek field,

Tik5V~f!@2Fxf ifk2gikF#, Fx5
dF

dx
, ~3!

with the energy-momentum tensor of a perfect fluid,
compute the energy densityr, the pressurep, and the baryo-
tropic indexg511p/r of this equivalent fluid:

r5V~f!@F22xFx#, p5L52V~f!F, ~4!

g52
2Ḣ

3H2
52

2xFx

F22xFx
. ~5!

From Eq.~4!, the Einstein field equations are

3H25V@F22xFx#, ~6!

Ḣ5VxFx , ~7!

and the conservation equation reads

ṙ13H~r1p!50, ~8!

whereH5ȧ/a is the expansion rate. Substituting Eq.~4! into
the conservation equation~8!, we find the field equation for
the k field:

@Fx12xFxx#f̈13HFxḟ1
V8

2V
@F22xFx#50. ~9!

The stability of thek essence with respect to small wav
length perturbations requires that the effective sound spe
12351
.
,

e

is

e
e

d

cs
25

px

rx
5

Fx

Fx12xFxx
~10!

be positive. However, in Ref.@27# it was shown that a posi
tive sound speed is not a sufficient condition for the theory
be stable. For the tachyon field, which is obtained from thk

field by selectingF5(12Ṫ2)1/2, with Ṫ252x5ḟ2, the
sound speed iscs

2512g.0, whereg5Ṫ2. Let us look for
the set of functionsF, such thatcs

2 is proportional to the
sound speed of the tachyon field. We express this proport
ality as

cs
25

12g

2r 21
, ~11!

wherer is a real constant, withr ,1/2 for g.1 andr .1/2
for g,1. From Eqs.~5!, ~10!, and~11!, we obtain a differ-
ential equation for the functionF

~12r !FFx1~2r 21!xFx
21xFFxx50. ~12!

Integrating forr 50, we obtain the set of functionsF0(x)
5xg0/2(g021), with g0 constant, investigated in@28#; while
for r 51 we find three types of solution,F15(12Ṫ1

2)1/2,

F15(11Ṫ1
2)1/2, and F152(Ṫ1

221)1/2. The first function
corresponds to the ordinary tachyon fieldT5T1. Its energy
densityr15VF1

21 and pressurep152VF1 lead to the rela-

tion p15(g121)r1, whereg15Ṫ1
2. The other two functions

generate two ‘‘new tachyon fields’’ which will be invest
gated below. For the remaining values ofr the general solu-
tion of Eq. ~12! is given by Fr

2r5c1(2x) r1c2, wherec1

and c2 are arbitrary integration constants, the baryotro
index ~5! is g r52c1(2x) r /c2, and we haveFr

2r5c2(1
2g r). From Eqs.~4! and ~5!, the energy density of thek
field can be rewritten asr5VF/(12g). So, without loss of
generality, we can split the solutions as follows: forg r,1
and r .1/2, it is necessary thatFr.0 andc2.0, with two
options, 0,g r,1 and c1,0 or g r,0 and c1.0; for g r
.1 andr ,1/2, we haveFr,0, c2 andc1.0. Finally,

Fr5~12g r !
1/2r , g r56Ṫr

2r,1, ~13!

Fr52~g r21!1/2r , g r5Ṫr
2r.1, ~14!

whereg r is the extended baryotropic index and theTr field
linked with Fr will be called the ETF. Inserting Eqs.~13! and
~14! into Eq. ~4!, we get the energy densityr r and the pres-
surepr of each ETF:

r r5V~12Ṫr
2r !(122r )/2r , pr52V~12Ṫr

2r !1/2r ,

0,g r,1, ~15!

r r5V~11Ṫr
2r !(122r )/2r , pr52V~11Ṫr

2r !1/2r , g r,0,
~16!

r r5V~ Ṫr
2r21!(122r )/2r , pr5V~ Ṫr

2r21!1/2r , 1,g r ,
~17!
7-2
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EXTENDED TACHYON FIELD, CHAPLYGIN GAS, AND . . . PHYSICAL REVIEW D69, 123517 ~2004!
with

pr5~g r21!r r . ~18!

Equations~15! comprise perfect fluids that generalize t
normal tachyon field, which is obtained forr 51. The fluids
represented by Eqs.~16! with negative pressure and negati
baryotropic index can describe phantom cosmologies, w
those described by Eqs.~17! give rise to nonaccelerated ex
panding evolution. In the limit of larger, the fluids~15! and
~16! satisfy the equation of statep52r52V acting like a
variable cosmological constant depending on thek field. In
addition, the fluids~17! satisfy the equation of statep5r
5V, behaving like stiff matter in the same limit. These e
otic fluids satisfy the relations

pr52
V2r /(2r 21)

r r
1/(2r 21)

, g r,1, ~19!

pr5
V2r /(2r 21)

r r
1/(2r 21)

, g r.1, ~20!

which, for a constant potentialV5V0, become exotic equa
tions of state which extend that of the generalized Chaply
gas.

A. Power-law expansion for theTr field

We begin by investigating the atypical behavior of t
T1/2 field. Its sound speed diverges and thek-field equation
~9! becomes a first order equation. Equation~5! can be inte-
grated and its solution gives a link between the expans
rate andT1/2:

H5
2

3T1/2
, ~21!

where the integration constant has been chosen to se
singularity atT1/250. For r 51/2, the three equations~15!,
~16!, and~17! lead to 3H25V. So, combining them with Eq
~21!, we obtain the inverse square potential

V1/25
4

3T1/2
2

, ~22!

which is the uniquely allowed potential forT1/2. As T1/2 is
not controlled by thek-field equation~9!, it can be chosen
freely, and this choice determines, after integrating Eq.~21!,
the form of the scale factor. Although the potential~22! di-
verges atT1/250, it reasonably mimics the behavior of
typical potential in the condensate of bosonic string theo
One expects the potential to have a unique local maximum
the origin and a unique global minimum away from the o
gin at which V vanishes. In the most interesting case t
global minimum is taken to lie at infinity. Obviously, mor
complicated potentials may be contemplated, but this is
simplest case to begin with.

It will be useful to investigate the existence of accelera
and superaccelerated expanding solutions when theTr field
12351
le

in

n

the
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at

e

e

d

is driven by the potentialVr5V0 /Tr
2 . To do that, let us

consider an evolution of the forma5tn and aTr field such
that Tr}t. Power-law solutions are very important becau
they can always be obtained from any functionF with
an inverse square potential or from polynomial functio
F5(2x)N with any potential. As these solutions are th
usual ingredients in the quintessense andk-essence models
they allow us to recognize and compare the differences
tween the two cosmological models. The complete solut
for the ETF is given by

Tr5S 2

3nD 1/2r

t, n5
1

3
@11A119b2#, 0,g r,1,

~23!

Tr5S 2

23nD 1/2r

t, n5
1

3
@12A119b2#, g r,0,

~24!

Tr5S 2

3nD 1/2r

t, n5
1

3
@16A129b2#, 1,g r ,

~25!

where

b25F 3

V0
S 2

3D 1/r G2r /(122r )

. ~26!

The sound speed associated with the above solutions is g
by

cs
25

122/3n

2r 21
. ~27!

Assuming a positive sound speed bounded by the light sp
0<cs

2<1, we can see thatr .121/3n is required forn
.2/3 or n,0 andr ,121/3n for 0,n,2/3.

An accelerated power-law expanding universe (n.1) can
be described by the set of ETFs havingr .2/3 and it is
represented by the solutions~23!. All these models are kine
matically and dynamically different because the scale fac
and thek field are strongly dependent onr, as can be seen
from Eqs. ~23! and ~26!. In particular, for r 51 Eq. ~23!
reduces to the solution of the tachyon field found in@7,8#.
The solutions~24! with n,0 can describe phantom cos
mologies and we have to select ETFs withr .1 to reach this
scenario.

B. Extended Chaplygin gas

Recently a set of simple cosmological models was p
posed based on the use of particular perfect fluids@29#. In
this simple model the universe is filled with the so call
Chaplygin gas, which is a perfect fluid characterized by
equation of statep52A/r, whereA is a positive constant. It
describes the transition from a decelerated cosmological
pansion to a cosmic accelerated de Sitter stage. Other p
bilities are the inhomogeneous Chaplygin gas, which is a
to combine the roles of dark energy and dark matter@30#, and
the generalized Chaplygin gas model discussed in Ref.@31#,
having two free parametersp52A/ra with 0,a<1.
7-3
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LUIS P. CHIMENTO PHYSICAL REVIEW D69, 123517 ~2004!
These cosmological models may give a unified mac
scopic phenomenological description of dark energy a
dark matter and generalize the usual cold dark matter mo
with a cosmological constant. On the other hand, the Ch
lygin gas can be considered as the simplest tachyon cos
logical model where the tachyon field is a purely kine
k-essence model with a constant potential. In the same w
we will show that the generalized Chaplygin gas can be c
ceived as the simplest ETF model driven by a constant
tential. This identification has the advantage of producin
variety of new Chaplygin gases, some of which lead to
peraccelerated scenarios, as we will see in this subsecti

Coming back to our Eqs.~19! and~20!, we see that in the
case of a constant potentialV(Tr)5V0, with r 51 and 0
,g r,1, the exotic equation of state~19! represents a Chap
lygin gas @29#. This equation may be the consequence o
scalar field with a nonstandard kinetic term, e.g., the str
theory motivated tachyon field@32,33#. For 1,r and 0,g r
,1, the equation of state~19! represents a perfect flui
called the generalized Chaplygin gas@31#. Finally, an ECG
will be characterized by the equation of state~19! with 1/2
,r ,1, or by Eq.~20! with r ,1/2. Their properties will be
investigated below. Using Eqs.~19!, ~20! and the relativistic
energy conservation equation~8!, we obtain the energy den
sity of the ECG:

r5V0F11S a0
3

a3D 2r /(2r 21)G (2r 21)/2r

, 0,g r,1, ~28!

r5V0F12S a0
3

a3D 2r /(2r 21)G (2r 21)/2r

, g r,0, ~29!

r5V0F211S a0
3

a3D 2r /(2r 21)G (2r 21)/2r

, 1,g r . ~30!

Equation~28! with r .1 gives the energy density of the ge
eralized Chaplygin gas in terms of the scale factor inter
lating between a dust dominated phase where the en
density is r'V0(a0 /a)3, and a de Sitter phase wherer
'V0, while during the intermediate stage it could be int
preted as a mixture of two fluids, one of which is the co
mological constant and the other is a perfect fluid with eq
tion of statep}r. The additional free parameterr of the
generalized Chaplygin gas can be used to compare it
observational data.

In any other case, Eqs.~28! with 1/2,r ,1 and Eqs.~29!
and ~30! represent new perfect fluids which are interest
from the cosmological point of view. The scale factor gen
ated by the source~29! is nonsingular and has a bounce
the minimuma5a0. The universe begins from a contractin
era and ends in a superaccelerated stage. Such cosmo
may be interpreted as universes filled with baryotropic flu
having a negative constant baryotropic index and violat
the weak energy conditionr.0, r1p.0. The models will
be dubbed phantom cosmologies following the standard
minology. Phantom matter can apparently be accommod
by current observations@34#, and it can be based on th
12351
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motivation provided by string theory@35#. It looks interest-
ing to admit that the origin of dark energy should be sou
within a fundamental theory, such as string theory. Howev
at present there is no consensus as to whether a univ
violating the weak energy condition should generically po
sess a future singularity or big rip@36#.

The source~30! leads to two types of solutions accordin
to the value of the parameterr. For r ,0 the universe has a
finite time span, interpolating between two dust domina
phases, and has a maximum ata5a0. For 0<r<1/2 the
universe begins at a singularity with a finite scale factora
5a0, and ends in a dust dominated phase. From the cos
logical point of view these solutions are not relevant beca
they do not describe the present observed accelerated ex
sion stage.

III. SOLVABLE k-ESSENCE COSMOLOGIES

In this section, we will show some cases where t
coupled Einstein–k-field equations~6!, ~9! admit a first in-
tegral or can be solved exactly. Expressing the energy d
sity of thek field asr5VF/(12g) and using the conserva
tion equation~8!, we get thek-field equation in terms of the
baryotropic indexg,

S g

ḟ
D .

13HS g

ḟ
D ~12g!1

V8

V
~12g!50, ~31!

whereV85dV/df. This form of writing the field equation
allows us to show that the first integral of thek-field equation
~9! for any functionF is given by

g

ḟ
5f21S 2

3H
1

c

a3H2D , ~32!

where we have assumed an inverse square potential,

V5
V0

f2
, ~33!

and c is an arbitrary integration constant. The usual line
field solutionf5f0t along with the power-law scale facto
a5t2/3g ~with constantg) is obtained from the last equatio
for a vanishing integration constant. Combining Eqs.~5!, ~7!,
and ~33! with Eq. ~32!, it can be rewritten as

ḟFx2FH1
3c

2a3G f

V0
50, ~34!

or as

2V0FxḢ5FH1
3c

2a3G 2

. ~35!

Then, for the tachyonic potential~33!, Eqs. ~32!, ~34!, and
~35! are three different forms of writing the first integral o
the k-field equation~9! or ~31!.
7-4



th

d

rs
e

r
on
tw

on

ef
y
ro

th

ng

iv
b

ss
on

r

ck-

on-
in
–

-

the
an

ac-

-
s,

d

EXTENDED TACHYON FIELD, CHAPLYGIN GAS, AND . . . PHYSICAL REVIEW D69, 123517 ~2004!
At this point, using Eqs.~5!, ~33!, and~32!, it is interest-
ing to see the coupled Einstein–k-field equations~6!, ~9! as
a system of differential equations for the functionF. Hence,
by integrating we obtain

F5
3h0

2

V0
1A2xFb1

3c

2V0
E ~2h01ch!h

~2x!3/2
dxG , ~36!

Hf52
3c

2 E df

a3
5h01ch, ~37!

whereh0 andb are arbitrary constants andḣ523ḟ/2a3. In
the particular casec50, Eq. ~36! becomes

F`5
3h0

2

V0
1bA2x, ~38!

which, after a redefinition of the constants, turns into
functionF1/2 that generates the ETF,T1/2 @see Eqs.~13!, ~14!
for r 51/2]. For this ‘‘divergent’’k-essence theory the soun
speed~10! diverges and thek-field equation~9! becomes a
first order equation that is consistent only with an inve
square potential. This divergent model is related to the lin
k-field model, f5f0t, obtained by evaluatingF,Fx at x
5x052f0

2 in the Einstein–k-field equations~6!, ~9!. The
linear k-field model driven by the potential~33! leads to the
power-law solutionsa5tl with

l5
1

3

f 12f0
2f 8

f0
2f 8

, V05
l

f 8
, ~39!

where we have definedf 5F(2f0
2), f 85Fx(2f0

2).
From Eqs.~38!, ~39! it is easy to show that the linea

model is isomorphic to the divergent one. This can be d
by constructing a one-to-one mapping between these
models. In fact, choosing in the divergent model the c
stants h0

25l2f0
2 and b522lf0 /V0, we find the same

power-law solutions obtained from the linear model. In R
@28# it was suggested that this might be the reason wh
model with a diverging sound speed leads to serious p
lems as discussed in a recent paper@37#. In addition, assum-
ing a series expansion of the functionF(x) aroundx5x0,
the background cosmology is completely determined by
first two coefficients (f , f 8) of the expansion ofF and the
value off0. Hence, the model is insensitive to the remaini
coefficients in the expansion of the functionF and both the
linear and divergent models should be considered as equ
lent. This means that the power-law solutions generated
an inverse square potential possess a degeneracy. Po
this degeneracy may be removed by perturbing the soluti

A. Inverse square potential and linear functionF

From thek-field equation~35!, it can be seen that a linea
function

F511mx, ~40!
12351
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wherem is a constant, decouples the dynamics of the ba
ground geometry from the dynamics of thek field. Therefore,
this choice clearly introduces a rather small degree of n
linearity into the dynamical equations, allowing us to obta
the general solution of the coupled Einstein
k-field equations. On the other hand, the function~40! mim-
ics the behavior of other models. For instance, whenx!1
the tachyonic functionF5(11x)1/2 can be approximated by
F'11x/2 and it has the form~40! @8#. In Ref. @25# a set of
models was introduced whereF admits a power series ex
pansion similar to Eq.~40!. This form is reminiscent of a
Born-Infeld action with higher order corrections inx, and
particular cases were investigated in@26,37#. Hence, the
knowledge of the general solution for the linear function~40!
should be of interest, at least for understanding
asymptotic behavior of many other models generated by
analytical function F(x)5F(0)1Fx(0)x1•••. In fact,
keeping the first order term in the expansion ofF, it adopts
the linear form~40!, after redefining the potentialV to set the
constantF(0)51.

Combining Eqs.~35! and ~40!, we obtain the following
nonlinear second-order differential equation for the scale f
tor:

d2s

dt2
1ss

ds

dt
1

1

4
s2s1150, s523mV0 , ~41!

where we have used the new variabless andt, defined by

s5a23/s, t5
3c

mV0
t. ~42!

The general solution of Eq.~41! can be found by changing to
nonlocal variablesz andh, defined by@38#

z5
ss11

s11
, h5E ssdt, sÞ1, ~43!

z5 ln s, h5E dt

s
, s521. ~44!

Then, in these new variables, Eq.~41! becomes a linear ho
mogeneous differential equation with constant coefficient

d2z

dh2
1

dz

dh
1

s11

4
z50, sÞ21, ~45!

equivalent to a damped harmonic oscillator equation, an

d2z

dh2
1

dz

dh
1

1

4
50, s521. ~46!

On the other hand, expressing Eq.~34! for the k field in
terms of the independent variableh, we get

df

fdh
52

3da

sadh
1

1

2
. ~47!
7-5
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Oncez(h) is known from Eq.~45!, one can computes(t)
from Eq. ~43!, the scale factora(t) from Eq. ~42!, and thek
field f(t) from Eq. ~34!. Following this procedure and in
serting the general solutions of Eqs.~45! and ~47! into the
Einstein equation~6!, we find the scale factor, thek field, and
the relationship among the integration constants:

a5FA2Be2h/2sinhSA2s

2
h1h0D G2s/3(s11)

, s,21,

~48!

a5a0 expF2
h

12
1V0e2h/81c2f0

2G , s521, ~49!

a5FABe2h/2coshSA2s

2
h1h0D G2s/3(s11)

, 21,s,0,

~50!

a5FABe2h/2sinSAs

2
h1h0D G2s/3(s11)

, 0,s.

~51!

The k field is given by

f5f0a23/seh/2, ~52!

where

B5
4~s11!V0

27c2f0
2

, ~53!

andh0 andf0 are arbitrary integration constant.
For s,21, the solution expands from a singularity

t1/3 and ends ast2s/3. Whens.23 the scale factor display
a power-law inflationary scenario. For21,s,0, the uni-
verse expands from a singularity ast1/3 and its final behavior
is given byt1/3. For s.0 the solution represents a contrac
ing universe which begins at a finite time and reaches a m
mum where it bounces, exhibiting a final superaccelera
expansiona(t)}(t02t)2s/3. The universe has a finite tim
span and bounces when thek field satisfies the condition
ḟ2521/m.

As this model displays an accelerated expanding stag
late times it may be an interesting alternative to describe
epoch where dark energy dominates.

B. The explicit solution

For s524 or mV054/3, we can solve Eq.~41! by
means of the substitution

s245
1

2

v24

E v24dt

, ~54!

so that Eq.~41! reads as

v̈50. ~55!
12351
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Inserting its solution into Eq.~54!, using Eq.~42!, and inte-
grating Eq.~47!, we get the general solution for the evolutio
and thek field satisfying Eq.~6!:

a~t!5S 3

2D 1/3F9c2V0

16f0
2

t42ctG 1/3

, ~56!

f~t!5
2

3t1/2F2
f0

2

c
1

9V0

16
t3G1/2

, ~57!

where we have chosenc,0 to set the singularity att50.
The scale factor~56! exhibits a transition froma}t1/3 to an
accelerated expansion wherea}t4/3. Curiously, it coincides
with the solutions found in@39# where a FRW spacetime
filled with a scalar field driven by an exponential potent
was considered. In the next section we will investigate t
relation between the scalar field and thek-essence field. The
k field diverges at the singularity asf}t21/2 and behaves as
f}t for large time. It has a minimum and a turning poi
where the kinetic energy vanishes.

Another set of solutions can be found whenc50. Here,
Eq. ~35! reduces toḢ52H2/mV0 and we get the power-law
expansiona5tmV0 and a lineark field f5f0t.

C. The polynomial function F g„x…Ä„Àx…gÕ2„gÀ1…

This polynomial function yields a constant baryotrop
index g and the power-law expansiona5t2/3g @28#. For Fg
the general solution of Eq.~34! is

f5@b14f0t (22g)/g#g/(22g), gÞ2, ~58!

f5f0tb, g52, ~59!

where b and f0 are integration constants. Consistency b
tween these solutions and the Eq.~6! gives the following
relation between the integration constants:

V05
4~12g!

3g2
~4f0!g/(12g), gÞ2, ~60!

b56
1

A3V0

, g52. ~61!

For large cosmological time thek field behaves asf't.
More details about the cosmological model generated by
setFg can be found in Ref.@28#.

D. Constant potential case

We have seen that the generalized Chaplygin gas m
was proposed as unified dark matter. It is derived from
Lagrangian containing nonstandard kinetic energy ter
~i.e., nonquadratic! and can be considered as driven by
constant potential. Below we show that, even in the abse
of any potential energy term, a general class of models
ists, including the ECG, connecting a dust dominated er
early times with an accelerated expansion stage at late tim
7-6
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For a constant potentialV5V0, the k-field equation~31!
has the first integral

g

ḟ
5

c

a3H2
, ~62!

or, after using Eqs.~5! and ~7!, it turns into

a3Fxḟ5
3c

2V0
, ~63!

wherec is an arbitrary integration constant. Also, combini
them with the Friedmann equation~6!, the baryotropic index
associated with this kind ofk essence can be written in
more convenient form,

g5
1

112V0
2a6FFx/9c2

. ~64!

From the last equation we see that for a large set of mod
i.e., the class of models generated by the set of functionF
satisfying the conditiona6FFx!1 at early time, the universe
is dust dominated in the beginning. At intermediate time
behaves as if it were filled with a perfect fluid with equati
of statep}r. Finally, the universe ends in an accelerat
expansion scenario. So these alternative models play
same role as the generalized Chaplygin gas, i.e., interp
ing between dark matter at early time and dark energy at
time.

Now, we investigate a simple kinetick-essence mode
generated by a functionF satisfying the more general cond
tion a6FFx'const at early time. This model is generated
the following function:

F5
1

~2a21!V0
@2aa0A2x2~2x!a#, ~65!

wherea anda0 are two real constants. The energy dens
and pressure of thek field are calculated from Eqs.~4! and
~65!:

r5~2x!a, p52
1

~2a21!
@2aa0A2x2~2x!a#,

~66!

the equation of state is

p5
1

2a21 Fr2
2aa0

r21/2aG , ~67!

and the sound speed becomes

cs
25

1

2a21 F12
a0

r (2a21)/2aG . ~68!

Solving the conservation equation~8!, we obtain the energy
density
12351
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r5Fa01
c0

a3G 2a/(2a21)

, ~69!

wherec0 is a redefinition of the integration constantc. Re-
stricting consideration to positive sound speed, the sou
~69! and the ECG induce a similar evolution of the sca
factor. However, there is a significant change when both c
stantsa0 ,c0 are positive anda.1/2, because in this cas
the baryotropic index becomes

g5
2a

2a21 F12
a0

r (2a21)/2aG . ~70!

So, near the singularity, the energy density diverges and
baryotropic index behaves asg'2a/(2a21), indicating
that the model begins to evolve with a power-law domina
phase, where the scale factor isa}t (2a21)/3a. In this limit
the sound speed~68! behaves ascs

2'(2a21)21. For large
a, the model is initially dust dominated, with approximate
vanishing sound speed, approaching the ECG generate
the source~28! in the limit of larger. At late times the model
ends in a de Sitter stage. Such a ‘‘modified Chaplygin g
may be considered as an alternative model to the genera
Chaplygin gas investigated in@31#. It allows the evolution of
the initial perturbations in the energy density into a nonline
regime to form a gravitational condensate of particles t
could play the role of cold dark matter. The cool dark mat
condensates gravitationally into regions where the pres
p'0 and thek field is close tofc5(2aa0)1/(2a21). In this
case, the model yields an energy density which scales
the sum of a nonrelativistic dust component atf5fc with
equation of statep50 and a cosmological-constant-lik
componentp52r.

IV. LINKING SCALAR AND k-ESSENCE COSMOLOGIES

The observed acceleration of the present Universe
been investigated by assuming that the dark energy ca
described by quintessence and more recently byk essence.
The last one involves an effective scalar field theory gen
ated by a Lagrangian with a noncanonical kinetic term. P
ticular cases ofk-essence are the generalized Chaplygin
and tachyon dark energy models. Quintessence
k-essence frameworks are usually based in a homogen
scalar field driven by an exponential potential in the case
quintessence or an inverse square potential in the casek
essence. Both encounter the so-called coincidence prob
namely, why are the energy densities of dark energy and d
matter of the same order today? The standard quintess
model appears promising at this point, as it can solve
problem for flat FRW universes provided the dark mat
component is assumed to be dissipative@40#. The system is
attracted to a stationary and stable solution characterize
the constancy of both density parameters at late times
addition, a class ofk-essence models has been claimed
solve the coincidence problem by linking the onset of da
energy domination to the epoch of matter dominati
@24,25#. From these satisfactory results and taking into
7-7
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count that both models involve evolving scalar fields,
believe it is reasonable to explore whether quintessence
k-essence frameworks have similarities. We will deal w
this question by investigating in which cases quintesse
resemblesk essence.

Another interesting aspect to be considered is relate
current observations that would indicate that the univers
superaccelerated and it could be filled with a nonstand
fluid that violates the weak energy condition. In this sens
kind of matter was recently proposed described by a ho
geneous scalar field with negative kinetic energy term. T
fluid with negative pressure obeys an equation of state of
form p5(g21)r, whereg is taken negative, and the mod
els are known as phantom or ghost cosmologies@41–45#.
The phantom and quintessence cosmologies can be inv
gated simultaneously by taking a scalar field with both sig
of the kinetic term driven by an exponential potential. T
dynamical equations of these cosmological models are

3H25
1

2
qẇ21V, ~71!

ẅ13Hẇ1
1

q

dV
dw

50, ~72!

V~w!5V 0e2qAw, ~73!

whereq,A are real numbers andV0 is a positive constant
The exponential potential is interesting because it may
considered just as a limit of a more complex potential@44#.
For negative values ofq the above equations describe
phantom cosmology@45#.

It will be demonstrated that the scale factor obtained fr
Eqs.~71!–~73! or from thek-essence model generated by t
linear functionF511mx and driven by an inverse squa
potential@see Eqs.~6!, ~33!, ~35! and ~40!# is the same. To
this end, we sketch the procedure followed in Ref.@46#.
From Eqs.~71!–~73!, we find

Ḣ52
1

2
qẇ2, ~74!

and the first integral of the Klein-Gordon equation~72!

ẇ5AH1
c1

a3
, ~75!

wherec1 is an arbitrary integration constant. Now, inserti
Eq. ~75! into Eq.~74!, we obtain the second order differenti
equation for the scale factor,

d2S

dz2
1Sn

dS

dz
1

1

4
S2n1150, n526/qA2, ~76!

where we have used the new variablesS andz, defined by

S5a23/n, z5c1qAt. ~77!

With the following identification of the parameters:
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mV05
2

qA2
,

3c

2
5

c1

A
, ~78!

Eqs.~41! and ~76! coincide. Therefore, both models are d
scribed by the same scale factor and they are geometric
equivalent. Also, from Eqs.~6!, ~7!, ~40! and Eqs.~71!, ~72!,
we get a relationship between the two potentials:

3H21Ḣ5V~ t !5V~ t !, ~79!

showing they are the same function of the cosmological ti
t, so that

V0

f2
5V 0e2qAw. ~80!

After inserting thek field ~52! into the last equation we find
the scalar field

w5
1

qA
ln w01

h

qA
1A ln a, ~81!

where w05V 0f0
2/V0. Equation ~80! supplies the link be-

tween the scalar field and thek-essence field,

f5
f0

w0
1/2

eqAw/2, ~82!

displaying that these models are dynamically not equivale
Thus, the homogeneous quintessence and phantom field
different from thek-essence field.

Summarizing, from the kinematical point of view, whic
is the background geometry, we have obtained exact equ
lences, and it is impossible to differentiate between quint
sence,k essence, and phantom cosmologies because
share the same scale factor. To distinguish between the
appears necessary to focus our attention on the scalar fi

V. CONCLUSIONS

We have investigated the set ofTr fields whose effective
sound speed is proportional to the sound speed of
tachyon field. They can be grouped into three types acco
ing to whether they yield phantom expansion or accelera
expansion with or without inflation. We have shown the
behaviors by finding exact power-law solutions for an
verse square potential and proved that theT1/2 field is com-
patible only with this potential. EachTr field produces an
ECG, and the set of all these gases can be divided into t
kinds, one of which contains the generalized Chaplygin
and the others give rise to ‘‘perfect fluids,’’ leading to ne
evolutions. There exist basically nonsingular bouncing so
tions with a final superaccelerated stages or singular o
with a finite time span, as well as particular singular so
tions that begin with a finite scale factor. In this manner, b
the ETF and the ECG may be considered fair candidate
implement phantom cosmologies.

For an inverse square potential, we have found the fi
7-8
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integral of thek-field equation for any functionF and shown
that the coupled Einstein–k-field equations can be solved i
some cases. In particular, the divergentk-essence theory
generated by theT1/2 field becomes an intrinsic compone
of all k-essence models. Therefore, for power-law exp
sions the lineark-field model driven by an inverse squa
potential and the divergent model are isomorphic. We h
obtained the general solution of the Einstein
k-field equations for a linear functionF. From the kinemati-
cal point of view this model and the quintessence scalar fi
one driven by an exponential potential are the same. H
ever, they are dynamically nonequivalent, because thek field
and the scalar field are linked by the Einstein equation, e
both potentials are the same function of the cosmolog
time.

For a constant potential, we have studied ak-essence field
n-

s

S

-

jun
.
,
.
,

12351
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associated with a perfect fluid whose equation of state c
tains one term proportional to the energy density and ano
with the form of an ECG. This model, essentially differe
from the ECG model, smoothly interpolates between
power-law dominated phase and a de Sitter phase. In
‘‘modified Chaplygin gas’’ scenario, the value of thek field
where initial perturbations condense gravitationally to co
dark matter can be chosen.
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