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In this work a two-particle irreducibl€PI) closed-time-patiCTP) effective action is used to describe the
nonequilibrium dynamics of a Bose-Einstein condensate selectively loaded into every third site of a one-
dimensional optical lattice. The motivation of this work is the recent experimental realization of this system.
Patterned loading methods may be useful for quantum computing with trapped atoms. This system also serves
to illustrate many basic issues in nonequilibrium quantum-field theory pertaining to the dynamics of quantum
correlations and fluctuations which goes beyond the capability of a mean-field theory. By numerically evolving
in time the initial-state configuration using the Bose-Hubbard Hamiltonian an exact quantum solution is
available for this system in the case of few atoms and wells. One can also use it to test various approximate
methods. Under the 2P1 CTP scheme with this initial configuration, three different approximations are consid-
ered:(a) the Hartree-Fock-BogoliubogHFB) approximation(b) the next-to-leading-order 1V expansion of
the 2Pl effective action up to second order in the interaction strength(@ral second-order perturbative
expansion in the interaction strength. We present detailed comparisons between these approximations and
determine their range of validity by contrasting them with the exact many-body solution for a moderate number
of atoms and wells. As a general feature we observe that because the second-order 2P| approximations include
multiparticle scattering in a systematic way, they are able to capture damping effects exhibited in the exact
solution, which a mean-field collisionless approach fails to produce. While the second-order approximations
show a clear improvement over the HFB approximation, our numerical results show that they fail at late times,
when interaction effects are significant.
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|. DESCRIPTION OF THE PROBLEM systems with small numbers of atonld~ 10) and lattice
) ) ) ) sites(1=2 or 3.
A Bose-Einstein condensatBEC) loaded into an optical Thus, in order to model the correct quantum dynamics of

lattice provides an arena for the study of quantum coherencge system it is necessary to properly include scattering pro-
and fluctuation phenomena in many-body physics. Receniesses among particles. This task, however, is not easy for
experiments have been able to achieve regimes where thRis particular system because contrary to the three-
standard mean-field description of a dilute interacting gas iglimensional dilute gas case, where many-body effects intro-
inapplicable[1]. The description of the evolution of conden- duce only a small change to the two-particle scattering prop-
sates far from equilibrium has also gained considerable imerties in vacuum, the presence of the lattice and the low
portance in matter-wave physics, motivated by recent experdimensionality of the system make the problem much less
mental realizations of colliding and collapsing condensatestraightforward.
[2-4]. In this paper we investigate the dynamics of a Bose- To date most theoretical descriptions of nonequilibrium
Einstein condensate at zero temperatdie0), which is ini-  dynamics of Bose-Einstein condensate€C9 have been
tially loaded into every third site of a one-dimensional opti-based on the time-dependent Gross-Pitaevskii equation
cal lattice. Such a system has recently been experimentallyoupled with extended kinetic theories that describe excita-
realized by the NIST groufb]. tions in systems close to thermal equilibriym-9]. These
This system is not an eigenstate of the many-body Hamilapproaches usually rely on the contact-interacti@r
tonian, and it thus evolves nontrivially in time. In the dilute pseudopotential approximation to pairwise atomic colli-
gas limit, a mean-field approach is expected to give a goodions, which is valid only at low collision energies. However,
description of the condensate dynami&. However, we this approximation fails in the treatment of our system, so
show here that even in the case when the kinetic energy isew methods are required. To treat far-from-equilibrium dy-
comparable to the interaction energy, interatomic collisionsiamics, we adopt a closed-time-p&@TP) [10] functional-
play a crucial role in determining the quantum dynamics ofintegral formalism together with a two-patrticle irreducible
the system, and therefore a mean-field collisionless approagPI) [11] effective action approach to derive the equations
is only accurate for short times. This result is demonstrate@f motion. We retain terms of up to second order in the
by comparison of the mean-field solution with exact numeri-interaction strength when solving these equations. This
cal solutions of the tine-dependent Schrddinger equation fomethod has been generalized for and applied to the establish-
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ment of a quantum kinetic field theof§2-14 with applica-  approximations to solving the problem of time evolution un-
tions to problems in gravitation and cosmolody,1q, par-  der the action of the Hamiltonian of E(L). Treatment of the
ticles and field§17,18, BEC[19,2Q, and condensed-matter transverse degrees of freedom and harmonic confinement of
systemg21] as well as addressing the issues of thermalizaatoms in the direction of the lattice are relegated to a future
tion and quantum phase transitioj&2—24. work.

In Sec. Il we present a brief review of the Bose-Hubbard The physics described by the Bose-Hubbard Hamiltonian
model and its ground-state properties. In Sec. Ill we summais very rich and depends strongly on the parameigrg, N,
rize the mean-field results obtained in previous stugbgdn  andl. Although the main focus of this paper is on treatment
Sec. IV we introduce the 2PI generating functional to con-of a nonequilibrium system, it is useful to keep in mind the
struct the 2P| effective actioh, and Green’s functions. In nature of the ground state for the different ranges of the
Sec. V we perform perturbative expansionslgrand define  physical parameters.
the various approximation schemes. In Sec. VI we introduce
the CTP formalism. We then derive the equation of motion _
and discuss the results under each approximation scheme, Ground-state properties
starting with the Hartree-Fock-Bogoliuba¥HFB) approxi-

mation in Sec. VII, followed by second-order expansions in, optical lattice can be found in ReR5]. Here we only

?:gc'm\él_lé’r;:';'c;x I?a.ﬂii%?’ls ?hee%;):eprizﬁl?g ?221;2?61;%':1 ioutline the principal ideas which can be important to under-
P ' P %tand the dynamical behavior discussed in this work.

dlscussed In Sec. IX. In Seg:..x we present our regults and- A dimensionless parameter that is convenient to describe
determine the range of validity of the approximations by

comparisons with the exag¢humerica) solution. We con- the different regimes ofH is the coupling strength\
clude that our truncated 2PI approach is an effective tool for= NU/1J. Different from a homogeneous system without a
describing nonequilibrium dynamics in regimes in which lattice whgre at zero temperature thg superfluid fraction is
higher-order correlations are unimportant. It includes effect@lways unity, the presence of the lattice changes the super-
of collisions that are not present in the HFB approximation,uid properties and even at zero temperature, the superfluid
and goes beyond the Markovian assumptions generally usdfpction decreases with the lattice depth. For strong-coupling
in kinetic theories. strengthg26] A > A¢it,

A detailed analysis of the superfluid properties of atoms in

Il. BOSE-HUBBARD HAMILTONIAN 2N —_—
. : : . Nerit ~ ~z [2N+1+ V(2N +1)?+17], (2

The dynamics of an ultracold bosonic gas in an optical I
lattice can be approximated by a Bose-Hubbard model where
the system parameters are controlled by laser light. For !

one-dimensional lattice the starting Hamiltonian is is known that the ground state undergoes a quantum phase

transition from a superfluid to a Mott insulator.
N EtE Sy ey In the weakly interacting regime, <1, where tunneling
H= ‘]2 (DiDyiy ¥ Diyy D) + EI“ &P P overwhelms the repulsion, to a good approximation quantum
fluctuations can be neglected and the properties of the system
+ }UE q”);r(i);r(i)i(i)i, (1) can be described by replacing the opergtor on the lattice site
i i by a classicalc number. It can be said that most of the
. ~ atoms are in the zero quasimomentum state.
where ®; and cpi’f are the bosonic operators that annihilate In the intermediate regime<i\ <\;/2 the interactions
and create an atom on the siteHere, the parametdd de-  between the bosons can be very strong but the ground state is
notes the strength of the on-site repulsion of two atoms omevertheless a superfluid. For these interaction parameters a
the sitei; the parameteg; denotes the energy offset of each self-consistent HFB-Popov theory gives a good description
lattice site due to an additional slowly varying external po-of the system. However, different from the weak interacting
tential that might be presefisuch as a magnetic trapndJ  regime where the depletion of the zero quasimomentum state
denotes the hopping rate between adjacent sites. Because thevery small and has a little effect on the superfluid proper-
next-to-nearest-neighbor amplitudes are typically two ordersies, in this intermediate regime, depleted atoms spread over
of magnitude smaller, tunneling to them can be neglectedhe central part of the band and reduces the superfluid frac-
The Bose-Hubbard Hamiltonian should be an appropriatéion. As interactions are further increased the depleted popu-
model when the loading process produces atoms in the lowation completely fills the band and cancels the superfluid
est vibrational state of each well, with a chemical potentialproperties. The system reaches the Mott insulator regime,
smaller than the distance of the first vibrationally excitedwhere atoms are completely localized at each lattice site,
state. This is the case of the experiment that motivates thithere is no coherence, and the eigenstates of the system are

work [5]. almost Fock states with a vanishing number fluctuations per
Throughout this paper we denote the total number of atfattice site.
oms by N and the number of lattice sites Hy Here we The main purpose of this paper is to study the dynamics

consider only a one-dimensional homogeneous lattice witlin the intermediate regime where the superfluid properties
periodic boundary conditions. All results presented here arare important but quantum fluctuations cannot be ignored.
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I1l. MEAN-FIELD DYNAMICS 603 a
By making the mean-field ansatz in the Bose-Hubbard 5 ]
Hamiltonian, that is, replacing the field operator by aum- 2 4f J-
ber ¢,(t), it is possible to show that the amplitudes(t) g r oo Conder, A
satisfy the discrete nonlinear Schrédinger equatioNLSE) % o 3
which in the case of zero external potential has the form S 2= -
X0 UN E 7
'a_d: == (-1t disd) + 5 |i[% ¢, (3 g A 3
where we have defined a new time scatedtJ/# and have -
imposed unit normalization upag having unit norm, so that C
N is the total number of atoms. g 4
We treat a model case in which the initial occupancies of = E
each third site are the same, and in which the condensate ‘s Y
initially has a uniform phase. Thus at0, the amplitudes s 2F X
¢i(7) are given by ¢5(0)=V3/1, ¢541(0)=35.2(0)=0, o, )
wherel is the total number of lattice sites. For an infinite Y S
) : o " ; 0
lattice, or one with periodic boundary conditions, the ampli- 6
tudes for all initially occupied siteg,; evolve identically in c
time, and the amplitudes for the initially unoccupied sites C
satisfy ¢5i.1(7) = pg40(7) for all 7. This allows us to reduce w 4
the full set of equationg3) to a set of two coupled equations E c
for ¢o(7) and ¢y(7). g -
The solutiong ¢y(7)| and|44(7)| are oscillatory functions s 2F
whose amplitudes and common periddy) are determined -
by the parametery=3(NU/I1J)=3\. It is useful to qualita- E
tively divide the dynamical behavior into two regimes. 0 0 5 4 p o 10

a. The tunneling dominated reginig<1). In this regime
we find that the oscillation period is essentially constant, the
role of interactions is relatively small, and the equations of g 1 comparisons between the exact and the DNLSE solu-
motion are equivalent to those of a two-state Rabi probleMions for six atoms and three wells. The time is given in units of
This system will undergo Rabi oscillations whereby atomsy,/3. Top panel, strongly correlated reginig=12): middle panel,
periodically tunnel from the initially occupied site into the intermediate regimeéy=2): bottom panel, weakly interacting re-
two neighboring sites. Foy=0 the period of oscillation is  gime(y=0.2. The solid line is the DNLSE prediction for the popu-
2l 3. lation per well:|¢o(t)|? and| ¢ o(1)|? [see Eq(3)], the triangles are

b. Interaction dominated regiméhe effect of interac- used to represent the exact solution for the population per well
tions on the mean-field dynamics is to cause the energies @hlculated using the Bose-Hubbard Hamiltonidiqg. (1)]:
the initially occupied sites to shift relative to those of the<<i>gci>0>,<<i)1'2q31’2>, The pentagons show the condensate population
unoccupied sites. Ay increases the tunneling between siteSper well calculated from the exact solutiofido)|? and (D 2.
occurs at a higher frequency, but with reduced amplitudepe to the symmetry of the initial periodic conditions the curves for
The population of the initially occupied sites becomes effecthe =1 and 2 wells are the same in all depicted curves.
tively self-trapped by the purely repulsive pair interaction.

To check the validity of the mean-field approximation, we (1) Weakly interacting regiméy=0.2): In this regime the
made comparisons with the exact many-body solution for sibPNLSE gives a good description of the early time dynamics.
atoms and three wells. We use a modest number of atom&e observe in Fig. 1 that the total population per well pre-
and lattice sites for the comparisons, due to the fact that theicted by the mean-field solution agrees with the exact solu-
Hilbert space needed for the calculations increases rapidifon and also that the condensate population remains big for

with the number of atoms and wells. The exact solution wadh€ time under consideration. We expect the semiclassical
. . L ' N approach to be valid for time scales less than the inverse
obtained by evolving an initial statée™V?e'N%®0|0)) ® |0) bp

i e . energy-level spacing. In Ref27] the authors show for two
©|0) with the Bose-Hubbard Hamiltonian. The initial state |ayice sites the validity of the semiclassical approach when
represents just a coherent state with an averaggatbms in

. t<<ty~N/lv. This time scale is in good agreement with the
the initial populated well(See Sec. IX A.

X ) numerical results shown in Fig. 1. Afté; quantum effects
In Fig. 1 we plot the average population per well ,oome important.

(®](1)®;(t)) and the condensate population per vl (t))[? (2) Intermediate regiméy=2): Quantum fluctuations lead

and compare them with the mean-field predictions, i.e.to a nontrivial modulation of the classical oscillations. In this
|i(1)[%, for three different values of. The salient features regime the ratio between interaction and kinetic energy is
observed in these comparisons are as follows. small enough to allow the atoms to tunnel but not too small
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to make interaction effects negligible. Mean-field results are=6, we observe that the estimated collapses and revival times
accurate only for a short time. In this regime, the exact soare in agreement with what is shown in Fig. 1.

lution exhibits damped oscillations of the atomic population. Because our main interest is the tunneling dynamics we
Quantum scattering effects are crucial, even for rather earlyill focus on the intermediate regime, where the rafit] is

times. o ) ~ small but interaction effects are not negligible. In this regime
To understand the dynamics in the weak and intermediatg perturbative expansion arouhtJ still makes sense.

regimes, we have to focus on the coherent properties of the
system. Even though interactions can be strong, the ground
state is indeed superfluid. If we look at the initial coherence IV. 2P EFFECTIVE ACTION T'(¢,G)
of the system, determined bisbiT(O)d)j(O)mj, it can be seen
that it is zero due to the patterned loading. However, this is The first requirement for the study of nonequilibrium pro-
no longer the case for>0, and nonzero correlations are CeSses is a general initial-value formulation depicting the dy-
developed in the dynamics. The dynamical restoration of théamics of interacting quantum fields. The CTP or
phase coherence which tends to distribute atoms uniformlpchwinger-Keldysh effective action formalisi0] serves
among the lattice sites and to damp the oscillations charadhis purpose. The second requirement is to describe the evo-
terizes the dynamics in the superfluid regime. In R2%)], lution of the correlation functions and the mean field on an
the authors show, not for a patterned loaded initial state bugqual footing. The 2PI formalisifil1] where the correlation
for an initial Mott state also with zero initial phase coher- functions appear also as independent variables serves this
ence, how the phase coherence is restored dynamically. Purpose. By requiring the generalizedastey CTP effective

(3) Strongly correlated regimey=12): The system exhib- action[13] to be stationary with respect to variations of the
its macroscopic quantum self-trapping of the popu|ation_correlat|on fu_nct|ons an infinite sgt of coupleﬁchwmge(—
Qualitatively, both the mean field and the exact solutiond?ySon equations for the correlation functions is obtained
agree, in the sense that both predict self-trapping of atoms ihich is a quantum analog of the Bogoliubov-Born-Green-
the initially populated wells, due to interactions. However, Kirkwood-Yvon hierarchy. The 2P| effective action produces
the fast decrease of the condensate population and its sub®/0 such functions in this hierarchy. In this section we shall
guent revivals(as found in the exact solutiongive us an focus on the 2PI formalism and then upgrade it to the CTP
idea of the importance of correlation effects beyond mearYersion in the following section. .
field. The collapse and revivals of the condensate in this The classical action associated with the Bose-Hubbard
strong interacting regime and the importance of quantum eftiamiltonian(1), is given in terms of the complex fieldb;
fects have been experimentally obserya]. and®; by

Even though there is not initial coherence between adja-
cent sites due to the patterned loading procedure we are still
preparing the system in a superfluid state in the initial popug®;,®;]= dt>, i d; (1),D;(t) + f dt>, J[D; (H)Py,4(1)
lated well. At timet=0 we have a condensate fraction of [ i
order one. However, the ground state of the system is not

* U * *
superfluid. It is expected then that, after some time, the phase + & (1) Dy, 4(1)] —f dt>, —d, (1)D; () D;(H)Di(1).
is going to randomize and this will lead to the collapse of the i 2
condensate population. After the collapse, the system will (4)

remain for a while with zero condensate population. How- ) ] )

ever, it cannot remain zero forever because we are dealing TO compactify our notation we introduck(a=1,2) de-
with a close quantum system, with finite recurrence timefined by
Therefore at some timg,, we expect the condensate to re-

vive again. The collapses and revivals of the condensate
population in the strong interacting regime can be easily es-
timated by considering the energy spectrum. In this regime

the energy eigenstates of the system are almost number Fonk terms of these fields the classical action takes the form
states and the energy spectrum is almost quadré&ic,

~n(n-1)U/2. The dynamics of the system is described by 1

the interference of the differemi-particle Fock states that - f L a b

span the coherent state of the initially populated well. Ats[q)] dtz Zhabq)' (ORGP

integer values of,.,=(U/h)™%, the phase factors add to an

©;=df, &) =7, (5

integer value of 2r, leading to a revival of the initial state. +fdt (JO. ®2 (1) DO(t) - u T PN DO( 2)
This time scale agrees with the one estimated in B8, for ; PO 4/\/[ P OPW)]
a more general situation. In this reference, they also show 6)

how the collapse time.,, depends on the variance of the

initial atomic distribution and is given by~ t,e,/ (270). If

the initial state is a coherent state, the initial distribution iswhere\ is the number of fields,which is 2 in this case, and
Poissonian and.y is given byt., ~#%/(YNU). For the pa- summation over repeated field indices=(1,2) is implied.
rameters used in the strong correlated regipel2 andN h,, and o, are matrices defined as
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(0 -1 01 nonlocal sourceKjj,,. The coherent-state measure is in-
Nap = , Oap= : (7)  cluded in D®. The addition of the two-particle source
1 0 10 . . .
term is what characterizes the 2PI formalism.
In terms of the familiar Pauli matricesry,=oy, and hy, We definel'[¢,G] as the double Legendre transform of
=-a,. WJ,K] such that

After second quantization the fields? are promoted to
operators. We denote the expectation value of the field op-
erator or mean field by(t) and the expectation value of the SWJ,K]
composite field byGﬁb(t,t’). Physically,| #(t)|? is the con- S0
densate population and the composite fields determine the &
fluctuations around the mean field:

= (), (12

OMIRT L ey oty + Gt (13

Bi(t) = (D)), ® Kiap(t,t') 2

G;”}b(t,t’) _ (TCQD?(t)d)F(t’)) _ (@?(t))((bib(t’)). 9) Expressingl andK in terms of¢ and G yields
The brackets denote taking the expectation value with re-
spect to the density matrix an@l. denotes time ordering
along a contouc in the complex plane. I, G]=WJ,K] —J th Jia(D) B()

All correlation functions of the quantum theory can be !
obtained from the effective actiohi[ ¢, G], the two-particle 1 , e by ,
irreducible generating functional for Green’s functions pa- ~5 f dtdt > () ¢t K jan(t,t)
rametrized by$?(t) and the composite fieIfo}b(t,t’). To get E

an expression for the effective action we first define the func- 1 , , ,
tional Z[J,K] [11] as ~5 | duat E G K ap(t,t).  (19)
ij
Z[J,K] = &/MMIK] From this equation the following identity can be derived:

:];[ fD(I)a exp{%—(s[q)Hfthi: Jia(DD(1)

5F[ ’G] ! ! !
1 5 (i)(t) == Jia(V) ‘fdt 2 [Kijaa(tt)1e(t), (15
+2 J dtdt’ Y @ﬁ(t)@f(t')K”ab(t,t')> . (10 ' :
ij
where we have introduced the following index lowering con-
vention: Oé.G] =- 1K-- (t,t"). (16)
Gy 2

— b
Xa= oapX". (11) In order to get an expression foff ¢,G] notice that by
The functional integra(10) is a sum over classical histories using Eq.(10) for W[J,K] and placing it in Eq.(15) for
of the field®? in the presence of the local sourgg and the  I'[¢,G], it can be written as

ex%%p[d,,e]) -1l | Dq>aexp{%(qcp] [ et - o)

1 1
2 [ OO VPR - SR gt )] - ETrGK)}

_ g |- Ay LAGCT a aor [ e arrasa - a1 L8 Cl
_I;IJD(D exp{h(s:(p] fdtl §¢;3(t) [(D|(t) ¢|(t)] Jdt|dtj[q)|(t) ¢I(t)]éGﬁb(t,t')

X[OP(E) - gP(t)] + Tre%)}, (17
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where Tr neans taking the trace. For simplicity we have
Defining the fluctuation field,

denoted [dt=; by [dt.
=d?-¢7, we have

Sl ¢,G]
oG

-it In[ [ ngoa exp(igs[d),G;go]), (18

Ieé,G]-TrG

o[ ¢,G]
Si(1)

ol'¢,Gl
mab r)

0.Giel=So+el- | oy (1)

fdtdt'cp O, o). (19

By introducing the classical inverse propagai® *(¢)
given by

PHYSICAL REVIEW A 69, 033610(2004)

a <+ b

FIG. 2. Two-loop(upper row and three-loop diagram@ower
row) contributing to the effective action. Explicitly, the diagrae)
is what we call thedouble-bubble(b) the setting sunand(c) the
basketball

hai B2t = = I brs1a(t) + hio1a(D)]
+ L Dal0 60 + GEo(t0]hal)

_ oS¢l d _ Ol #,G]
| (Giiaa(t, Giiga(t, i\U™ T an
|D|]ab(t t 5¢?(t)5¢J (t ) + N ( ii d(t t) + d (t t)]¢ (t) 5¢i (t)
=[8jhapd; + I(S4aj + S-1j) Tapl St — 1) (23
and
A/[Z(lsla(t)d’lb(t) + U'ab¢ (t)¢|c(t)]5u at-t'), 1 ~
Giiab(t,t) = Djjap(t,t) ™ = Zjjap(t,t'), (24)
(20)
5[ ¢,G]

the solution of the functional integro-differential equation Zio(t1) =21 é’G%b(t,t) (29

(18) can be expressed as
Equation (24) can be rewritten as a partial differential

equation suitable for initial-value problems by convolution
with G. This differential equation reads explicitly

heh Gy Ot,t') = - J[G,ﬂj(t ')+ G lJ(t t')]

I'Né,Gl=9 o]+ iETr InG™t+ iETr D Y$)G+TI,[¢,G]

+ const. (21)

The quantityl';[ ¢, G] is conveniently described in terms
of the diagrams generated by the interaction term§ i
+¢] which are of cubic and higher orders ¢n

N[¢.d<t>¢."<t>]e (t,t')

U o scby o
+ P OOGTL) pelV)

U
n =-— | dt[ep)eP®T?
S t[¢+ QD] 4NJ t[(P b(t)(P (t)] Jdtu ﬁ(c(t t//)Gcb(t// t )+ iéab&lj 5(t—t/).

dt el Ba®OeOept).  (22) (26)
The evolution of¢* andG?” is determined by Eqg24) and

It consists of all two-particle irreducible vacuum gratiee (26) oncel';[¢,G] is specified.
diagrams representing these interactions do not become dis-
connected by cutting two propagator lings the theory with
propagators set equal @ and vertices determined by the
interaction terms irf§ ¢+ ¢].

Since physical processes correspond to vanishing sources The diagrammatic expansion bf is illustrated in Fig. 2,
J and K, the dynamical equations of motion for the meanwhere two- and three-loop vacuum diagrams are shown. The
field and the propagators are found by using the expressio#iots where four lines meet represent interaction vertices. The
(21) in Egs. (15) and (16), and setting the right-hand side expression correspondmg to each vacuum diagram should be
equal to zero. This procedure leads to the following equamultiplied by a factor(- i)'(i)52, wherel is the number of
tions: solid lines ands the number of loops the diagram contains.

u
N

V. PERTURBATIVE EXPANSION OF TI's(¢,G)
AND APPROXIMATION SCHEMES
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The actionl” including the full diagrammatic series fby, ~ length (pseudopotential approximatipnHowever this ap-
gives the full dynamics. It is of course not feasible to obtainproximation is only valid in the weak interaction limit and
an exact expression fai, in a closed form. Various approxi- neglects all momentum dependence which appear in the
mations for the full 2P| effective action can be obtained byproblem as higher-order terms. In that sense the 2P effective
truncating the diagrammatic expansion 5. Which ap- ~ action approach allows us to go beyond the weakly interact-
proximation is most appropriate depends on the physicdd limit in a systematic way and to treat collisions more

problem under consideration. accurately. S ) )
b. Nonlocal dissipation and non-Markovian dynamics.

Higher-order terms lead to nonlocal equations and dissipa-
A. The standard approaches tion. The presence of nonlocal terms in the equations of mo-
(1) Mean-field approximation: If, in Eq21), we discard  tjon is a consequence of the fact that the 2P| effective action
all terms to the right o ¢, we recover the DNLSE of Eq. really corresponds to a further approximation of the master
(3). This gives us the usual mean-field description, in whicheffective equatiorj13]. The 2PI effective action is obtained
the system remains a pure condensate. by the slaving of the three-point functiorC; to the mean
(2) Bogoliubov (one-loop approximation: The next ap- field andG with a particular choice of boundary conditions.
proximation consists of discardirlg, altogether. This yields See Ref[13] for further details.
the so-called Bogoliubov or one-loop approximation whose Non-Markovian dynamics is a generic feature of i
limitations have been extensively documented in the literaformalism which yields integro-differential equations of mo-
ture [30,31]. tion. This makes numerical solution difficult, but is a neces-
(3) Time-dependent HFB approximation: A truncation of sary price to pay for a fuller account of the quantum dynam-
I', retaining only the first-order diagram 1, i.e., keeping ics. Many well acknowledged approaches to the quantum
only the double-bubblediagram, Fig. 2a), yields equations kinetics of such systems adopt either explicitly or implicitly
of motion of ¢ and G which Correspond to the time- (or at the end what amounts)ta Markovian approximation
dependent HFB approximation. This approximation violated39]. It assumes that only the current configuration of the
Goldstone’s theorem, but conserves energy and particle nungystem, but not its history, determines its future evolution.
ber [7,32,33). The HFB equations can also be obtained byMarkovian approximations are made if one assumes instan-
using cumulant expansions up to the second of8é} in  taneous interactions, or in the kinetic theory context that the
which all cumulants containing three or four field operatorstime scales between the duration of binary collisiepsnd
are neglected. The HFB approximation neglects multiplehe inverse collision rate; are well separated. In the low
scattering. It can be interpreted as an expansion in terms dfinetic energy, weak interacting regime the time between
Ut/J (wheret is the time of evolutiopnand is good for the collisions(or mean free pathis long compared to the reac-

description of short-time dynamics or weak interactiontion time (or scattering length 7.> 7,. The long separation
strengths. It will be described in Sec. VII. between collisions and the presence of intermediate weak

fluctuations allow for a rapid decay of the temporal and spa-
tial correlations created between collision partners, which
one can use to justify the Markovian approximation. How-
We make a few remarks on the general properties okver, in the problem at hand, owing to the presence of the
higher-order expansions and then specialize to two approxiattice which confines the atoms to the bottom of the wells
mations. with enhanced interaction effects, the low dimensionality of
a. 2Pl and ladder diagramsSince the work of Beliaev the system, and the far-from-equilibrium initial conditions,
[35] and Popovi36] it is well known in the literaturgsee, non-Markovian dynamics needs to be confronted squarely.
for example, Refs[19,37) that including higher-order terms That is, the rationale for our adoption of the CTP 2PI
in a diagrammatic expansion corresponds to renormalizingcheme. Now, for the specifics, we describe the following.
the bare interaction potential to the four-point vertex, thus (1) Second-order expansion: A truncation retaining dia-
accounting for the repeated scattering of the bosons. In Refirams of second order i consists of thedouble-bubble
[38] the authors have shown explicitly for a homogeneoughe setting-sunand thebasketball(see Fig. 2 By including
Bose gas that taking into account the two-loop contributionthe setting-sun and the basketball in the approximations we
to the 2PI effective action leads to diagrams topologicallyare taking into account two particle scattering processes
identical to those found by Beliaev but with the exact propa{14,16. Second order terms lead to integro- differential
gator instead of the one-loop propagator. In the dilute gagquations which depend on the time history of the system.
limit, where the interparticle distance is large compared with  (2) Large-\ approximation: The 1X expansion is a con-
the s-wave scattering length, the ladder diagrams give therolled nonperturbative approximation scheme which can be
largest contribution to the four-point vertex. Every rung in aused to study nonequilibrium quantum-field dynamics in the
ladder contributes to a factor proportional thm. (In the  regime of strong interactionf22,23. In the large N ap-
presence of the latticen should be replaced by the effective proach the field is modeled by fields and the quantum-
massm [m’ ~72/(Ja)] with a as the lattice spacingThe field generating functional is expanded in powers af1In
ladder resummation results in an effective potential which ighis sense the method is a controlled expansion in a small
called theT matrix. To lowest order in the diluteness param- parameter but unlike perturbation theory in the coupling con-
eter, theT matrix in three-dimensional systems can be ap-stant, which corresponds to an expansion around the
proximated by a constant proportional to the scatteringracuum, the largeV” expansion corresponds to an expansion

B. Higher-order expansions
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of the theory about a strong quasiclassical field.

In this work we derive the equations of motion and per-
form numerical calculations up to the second order in the
coupling constant). This will enable us to determine the
range of validity of three types of approximations described
above, namely) the HFB,(b) the full second order, ana)
the next-to-leading-orde(NLO) large N expansion up to

PHYSICAL REVIEW A 69, 033610(2004)

ft,t’) for t and t' both on C*

, ot,t') for t and t’ both on C
foreltt') = l1for t on C and t on C*
Ofor t on C* and t’ on C .

(30)

second order itJ (in the figures we use the shorthand HFB, With these definitions the matrix indices are not required.
2nd, and 1\, respectively by comparison with the exact When integrating over the second h@&f, we have to mul-

many body solution for a moderate number of atoms andi
wells.

VI. CTP FORMALISM

ply by a negative sign to take into account the opposite

direction of integration.

To show explicitly that the prescription for the CTP inte-

gration explained above does lead to a well-posed initial-

value problem with causal equations, let us explicitly con-
In order to describe the nonequilibrium dynamics we will sider the integral in Eq(26). The integrand has the CTP

now specify the contour of integration in Eq24) and(26)

to be the Schwinger-Keldysh conto{itO] along the real-
time axis or CTP contour. The Schwinger-Keldysh formalism
is a powerful method for deriving real and causal evolution

equations for the expectation values of quantum operators

for nonequilibrium fields. The basic idea of the CTP formal-
ism relies on the fact that a diagonal matrix element of a
system at a given time=0 can be expressed as a product of
transition matrix elements from=0 to t’ and the time-
reverse(complex conjugatematrix element front’ to O by

ordered form

S(LG( 1) = Ot 1") Ot 1) 27 (1, 1) G (1, 1)
+ Ocrp(t, ) Ot )27 (4G (1, t)
X Ot 1) Ot t)Z (4,1 G (1", 1)
+ Ocrp(t”, 1) Gerpl(t’ )X (4, G (1, 1),
(31

where we have omitted the indices because they are not rel-

inserting a complete set of states into this matrix element ayant for the discussion. Using the rule for CTP contour
the later timet’. Since each term in the product is a transitionjntegration we get

matrix element of the usual or time-reversed kind, the stan-

dard path-integral representation for each one can be intro-

duced. However, to get the generating functional we seek,
we have to require that the forward time evolution takes
place in the presence of a sourdebut the reversed time
evolution takes place in the presence of a different sodirce
otherwise all the dependence on the source drops out.

The doubling of sources, the fields, and integration con-
tours suggest introducing aX22 matrix notation. This nota-
tion has been discussed extensively in the literatisee
Refs.[12,14). However we are going to follow Reff22,23
and introduce the CTP formalism in our equation of motion
by using the composition rule for transition amplitudes along
the time contour in the complex plane. This way is cleaner
notationally and has the advantage that all the functional
formalism of the preceding section may be taken with the
only difference of path ordering according to the complex
time contourCq1p in the time integrations.

The two-point functions are decomposed as

GAtE) = Oo(t,)GE (L) + (1, 1) G (1,1,

f dt'S(4,t)G(t",t') = f; dtTet”,t')=> (t,t") G~ (t",t")
+ 6" )27 (4G (1", t)]
+ Jtm dt'fe” t")2=(t,t")G”(t",t")
+6(t" ) (L) G ()]
- f: dt’S=(t,t")G~(t",t"). (32
If t>t', we have
fdt”E(t,t”)G(t”,t’) = fot dt’[27(t,t") - 2= (tL,t) ]G~ (1)
—ft, dt’> " (t,t")
0

X[G~("t') - G=(t",t")]. (33

On the other hand, if<t’,

(27)

where
GEP (1) = (¢f(D (), (28)
G2 (1,t) = (P(t) (D), (29)

with ¢; being the fluctuation field defined prior E¢L7) and
Octe(t—t") being the CTP complex contour ordered theta
function defined by

t
f dt’s(t,t")G(t",t') = f dt'[37(t,t7) - S=(4,1")]G=(t",t")
0
- f ‘ dt’> > (t,t")
0

X[G™(t"t') - G=(t",t")]. (39

The above equations are explicitly causal.
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It is convenient to express the evolution equations in
terms of two independent two-point functions which can be
associated to the expectation values of the commutator and
the anticommutator of the fields. We define, following Ref.

[23], the functions

Gt t) = [Gab>(tt)+Gab<(t t], (35)

G, t) =i[GI™ (t,t') - G (t,t)], (36)

where the(F) functions are usually called statistical propa-

gators and thép) spectral functions(See Ref[40].) With
these definitions Eq(26) can be rewritten as
hhaGl ) = = G Y) + G )]

N[cﬁ.c(t FOGT(t,t)]
[<z>f‘(t>G<F>°b (t,t) ic(t)]
f lekE (p)ac (t t”)GE('j:)cb(t”,t/)

t, ’ (F) " "
- f dt; > (LGP,
0
(37)
hhaGiP (') = = JGELE(L L) + Gt )]

+ chm OGP (t,t)]
[¢>.a<t>e<ﬂ>cb(t t) (V)]

t
+ f gL )G (T Y). (38)
t!

In particular, we define the normal, and anomalousn,
spectral and statistical functions as

1
GIT () = p (L) = e Dgy(t) + ¢i(t)el (1),

(39

Gt = p(L1) = el (D g;(t") = ¢t (1),
(40)

GALY) =M1 = (e (t) + o)D),

(41)

PHYSICAL REVIEW A 69, 033610(2004)

G (tt) = mP(L,t) = i{eigi(t) — ¢(t) (D).

(42)

With these relations in place, we now proceed to derive the
time-evolution equations for the mean field and the two-
point functions from the CTP 2PI effective action for the
Bose-Hubbard model under the three approximations de-
scribed before.

VIl. HFB APPROXIMATION

As remarked in Sec. Il the first-order mean-field approxi-
mation leads to a DNLSE which includes only the contribu-
tion from the condensate. The HFB equations go beyond the
first-order approximation and include the leading-order con-
tribution of I',. They describe the coupled dynamics of con-
densate and noncondensate atoms which arise from the most
important scattering processes which are direct, exchange,
and pair excitations. The basic damping mechanisms present
in the HFB approximation are Landau and Beliaev damping
associated with the decay of an elementary excitation into a
pair of excitations in the presence of condensate atoms, Refs.
[33,4]. However, these kinds of dampirig2] found in the
HFB approximation(due to phase mixing, as in the Vlasov
equation Ref.[43]) are different in nature from the colli-
sional dissipatiorias in the Boltzmann equatipresponsible
for thermalization processes. Multiple-scattering processes
are neglected in this approximation. We expect the HFB
equations to give a good description of the dynamics in the
collisionless regime when interparticle collisions play a mi-
nor role.

The leading-order contribution @f, is represented by the
double-bubble diagram. Its contribution k5 is ¢ indepen-
dent and has an analytic expression of the form

rYGl=-— f dt[GE, (L) GRy (1,1) + 2G;iap(t, D GE(L, )],

(43

the factor of 2 arises because the direct and exchange terms
are identical.

Using the first-order expression fél, in Egs. (24) and
(26) yields the following equations of motion:

heha P (t) = (g, (44)

U
(e ==~ B + (D] + A ()

G, (4,070 + U[d)ib(t (1],

hhaG(t L) = L.
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ab e ab U q field and is constructed with only quartic vertices. The
ke =~ Gy (L) + G2y (6] + p[flsid(t)fl"i (t) setting-sun diagram depends gnand contains only three-
point vertices. The second-ordEf) effective action can be

+G] 4(tDIG(LY) + %[q&f’(t)@c(t)Gﬁb(t,t’) written as

[U\? ,
+G JLHGELY)]+isPs ct-t).  (45) F(zz)[‘ﬁ’G]:'(/_v) f it i (1) by (1)

In terms of the spectral and statistical functions, Egs. S TGEY ()G (£ £ GYY (£ 17
(39~(42), and setting\'=2, the above equations take the [G” (L) Gijaa (LG (1)
form + 260 (1,t)Gjjaar (1) G (1,81)]
ifidki(8) = = A ioa(®) + B2 (0] + ULl (D] + 207 (6,01 (D)

(U ZJ b
m +il —— dtdt/[Giipp (t,t)G] (Lt
+UmP(t0 e (1), (46) '<2V> {[Gijpo (L) G (L)
XGijddr(t,t')Gﬂd/(t,t') +2

(9 *
—in—pP(t,t") =Ly (O)p(t,t)) + M (OMP (), , ,
ﬂtp” (t,t") |k( )ka (t,t") |k( ) Kij (t,t") XGijbb’(tvt,)GitJ?d (txt,)Gijdd’(trt,)Gﬁb (t,t,)].

(47) (53)
9 . To simplify the notation, let us introduce the following defi-
- ihapi(jp)(t,t’) = Li(Dpf (4, t') + M (Om@(t,t"), nitions [23]:
48 ' 1 ' '
(48 Ty (68) = = Gt G L), (54
J
in—mP(t,t") = Lig)mE (t,t) + My ()pE(t,t), (49
ot ( ) |k() Kj ( ) |k( )pkj ( ) ( ) Eijab(t,t,)=_D(t,t,)Gijab(t,t,), (55)
d N = 4 AYe N _TT.. ’
i P () = Lim ) + My 0pf (1), (50 D) = di(Oba)GIELY) ~ TG 1),  (56)
with AR (1) = = G, ) Gea(t ), (57)
Lij (1) = = I(Suqj + S-gj) + 208 (| 41D + pfi(L,1)),
] 1+l =1 (] i i (51) Alt]) a(t,t,) - _ Gﬁc(tat,)GijaC(t!t,)! (58)
M;;(t) = U8 (i(t)?+ mi(t,1). (52) OF ) = = [dia(t) dyp(t') + Gygp(t,t) IGEAL )G,
The time-dependent HFB equations are a closed set of self- + B, (59

consistent equations that describe the coupled dynamics
the condensate and noncondensate components of a B
gas. It can be checked that they preserve important cons
vation laws such as the number of particles and energy. The oU )2

conservation properties of the HFB equations can also behgﬁ&t¢P(t)={ﬁFB+i(W) fdtj’¢jb(t’)[Hij(t,t’)Gﬁa(t’,t)
understood by the fact that these equations can also be de-

rived using Gaussian variational methd@$ These methods

o%eith the above definitions we find from Eq&4) and (26)
etf]e following equations of motion:

A b ’ ac ’
always vyield a classical Hamiltonian dynamics which guar- A LG )], (60)
antees probability conservation. Because they are local in ,
time they can be decoupled by a mode decompositiee bre ory [ 2U S
Appendix A for details. hhaG(t ) = (g + | Y (1) | dtgdi(t")

X[t )G ) + Af, (6, 1) G, t)]
VIIl. SECOND-ORDER EXPANSION

[2U)?
A. Equations of motion +I<W> fdt”[ﬁ(d(t,t”)
1. Full second order

o ) - + AR () 1) IGRT ), (61)

The second-order contribution 18, is described in terms
of the setting-sun, Fig. (B), and the basketball, Fig.(® whereg,‘f’.FB and gﬁFB are defined in Eq(45). For explicit
diagrams. The basketball diagram is independent of the meaxpressions in terms gf™? and m** see Appendix B.
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2. 2PI-1/N expansion . . a 1

NS _ <N>:E<<1>?<bi>:2(|¢i|2+p§P—5):N. (63)
The 2PI effective action is a singlet und@¢\) rotations. i [
It can be shown that all graphs contained inG\) expan-
sion can be built from the irreducible invariani®3]: ¢?,
Tr(G"), and TX¢ppG"), with n<N. The factors of\ in a d -~ 9 .
single graph contributing to the sameAL/fexpansion have dt<N(t)>_; 2R ¢i(t)at¢i ®
then two origins: a factor ol from each irreducible invari-
ant and a factor of 1/ from each vertex. The leading-order N = YN = VR B
large ' approximation scales proportional 1, the NLO +t|_|g:,(atpii (tLt) + proil ',y )=0.
contributions are of order 1, and so on. At leading order only
the first term of Eq(44) contributes. At the next-to-leading- (64)

order level, if we truncate up to second order in the coupling  A|l three approximations we have considered, namely,
Strength, the double-bubble is tota”y included but Only Cer'HFB, 1//\/' expansion, and full second-order expansion’ con-
tain parts of the setting-sun and basketball diagrams are inserve particle number. This can be shown by plugging in the
cluded: the first term in both of the integrals of £§3), kinetic equation oKN(t)) [Eq. (65)] the equation of motion
for the mean field and the normal statistical propaggEms.
U2 (45) and (46), Egs. (B3) and (B4), and Egs.(B10) and
I‘(zz)lw[qb,G] = I(JT/') fdt,—dtj Dip(t) jp (') (B11)], and canceling terms. It is important to note that even
though total population is always conserved there is always a
><[Gﬁb'(t,t’)Gijdd,(t,t’)Gﬁd'(t,t’)] transfer of population between condensate and nonconden-
2 S Whie numb t b d explicit
. , b e er ile number conservation can be proved explicitly,
+|(2_/\/) fdtidtj [Gijoor (L,1) G (t,1) proving total-energy conservation is not obvious as the
Hamiltonian cannot be represented as a linear combination
><Gijdd,(t,t’)Gﬁd'(t,t’)]. (62)  of the relevant operators. It is clear that the exact solution of
a closed system is unitary in time and hence disallows any
dissipation. However, the introduction of approximation
The equations of motion under this approximation are theschemes that truncate the infinite hierarchy of correlation
ones obtained for the full second-order expansion but withunctions at some finite order with causal boundary condi-
A=A=0, and®=E. tions may introduce dissipatigi 3].

In Appendix B we explicitly write the equations of motion ~ To discuss energy conservation we can use the
in terms of the spectral and statistical functions. We end thigb-derivable criterig45] which state that nonequilibrium ap-
section by emphasizing that the only approximation intro-proximations in which the self-energy. is of the form
duced in the derivation of the equations of motion presented®/ G, with ® a functional ofG, conserve particle number,
here is the truncation up to second order in the interactiognergy, and momentum. All the approximations we consider
strength. These equations depict the nonlinear and nonn this paper areg derivable and thus they obey energy,
Markovian quantum dynamics, which we consider as the priparticle number, and momentum conservation laws. For
mary distinguishing features of this work. It supersedes whatFB, CD:F(ZD, for the full second-order expansioﬁp,:l“(zl)
the second-order kinetic theories currently presented can de,l“gz), and for the second-order next-to-leading-ordeN1/
their going beyond the HFB approximation notwithstanding.expansion,cp:r<21)+1“<22)1w, See Eqs(25), (43), (53), and
For example, Ref[39] presents a kinetic theory approach (62). For a detailed discussion of the complete next-to-
that includes binary interactions to second order in the interteading-order 1A expansion see Ref$22,23 and refer-
action potential but uses the Markovian approximation. Inences therein.

Ref.[44] the authors gave a non-Markovian generalization to

The kinetic equation foN is then

the quantum kinetic theory derived by Walsatral. [8] by C. Zero-mode fluctuations

including memory effects. However in that work symmetry- ) ]
breaking fields¢ and anomalous fluctuations: are ne- The spectrum of fluctuations above the condensate in-
glected. cludes a zero mode. This mode is the Goldstone boson asso-

ciated with the breaking of global phase invariance by the
condensate. It is analogous to the collective modes which
B. Conservation laws arise in the spectrum of fluctuations around a buljdlg.
The zero mode is essentially nonperturbative. In linearized
For a closedisolated system the mean total number of theory, it introduces an artificial infrared divergence in low-
particlesN and energy are conserved quantities as they ardimensional models. For this reason linearized theory is ac-
the constants of motion for the dynamical equations. tually improved if the contribution from this mode is ne-
Particle number conservation is a consequence of the irglected altogetheid7]. A different way to deal with the zero
variance of the Hamiltonian under a global phase changenode has been proposed by Gardif3] and Morgan[30].
The mean total number of particles is given by Here the theory is written in terms of operators which ex-
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change particles between zero and nonzero modes, consenicesi andj). The discretized equations for the time evolu-
ing the total particle number, and one further operator whichtion of the matrice$)i(jf{rf]), mi(;nﬁ) and ¢;, advance time-step-
changes total particle number. The contribution from the zeravise in then direction for fixedm. Due to the symmetries of
mode is then subtracted by expressing the normal anthe matrices only half of thén,m) matrices have to be com-
anomalous densities in terms of the former alone. Howeveluted and the Va'“ﬁﬁ}nn:‘ia mﬁnn:o are fixed for all time
from a physical point of view the zero mode exists and isdue to the bosonic commutation relations. As initial condi-

quantum in nature. We may think of it as the limit of Gar- tions one specifiep!s?), m’?, and ¢

- o « ; - ijoo » Mhjoo » - .
diner and Zoller’q9] “condensate band " when the width of 1o ensure that the discretized equations retain the conser-
the band shrinks to zero. There are both fundamental anghtion properties present in the continuous ones one has to

practical reasons why isolating and subtracting the zery yery careful in the evolution of the diagonal termepGf.
mode is not as co_mpelllng in our case as in the probler_ngnd take the limim—n in a proper way:
discussed by Gardiner and Morgan. In the problem we dis-
cuss, the initial state is a coherent state rather than a proper F.o) E.p) E.p) F.p) *Fp) _ *F.p)
state of the total particle number. As the total particle number Piintint1 ™ Pijnn. = (Pijnt1n = Pijnn ) £ (Pjin<in = Pjinn’ )
is not very high quantum fluctuations in the total particle (65)
number are real and non-negligible. Discarding these fluc-
tuations would spoil the integrity of the formalism. Also,
because the 2PI formalism goes beyond the linearized ap- mfjivfin+l—mfjf1ﬁ>:( fji'f)ln‘mi(jiﬁ))i (mj(i';’f)il.n_mj(;ﬁ))!
proximation, the zero mode does not have the impact it has (66)
in the linearized formalism and it is not clear that subtracting
it necessarily leads to a better approximation. Therefore, in . ) o
this paper we shall not attempt to isolate the contributiondVith the positive sign for the statistical propagatofg)'s
from the zero mode. A full nonperturbative treatment in theand negative for the spectral on¢g)’s. We use the fourth-
future is certainly desirable. order Runge-Kutta algorithm to propagate the local part of
the equations and a regular one-step Euler method to iterate
the nonlocal parts. For the integrals we use the standard trap-
IX. NUMERICAL IMPLEMENTATION ezoidal rule. Starting witm=1, for the time stem+1 one
A. Exact solution computes successively all entries witi+0, ... n,n+1 from
, o known functions evaluated at previous times.

T.h('a.fully quantal solution was found by (_avol\(lng INtme  The time step; was chosen small enough so that conver-
the initial state with the Bose-Hgbt)ard Hamiltonian given bygence was observed, that is, further decreasing it did not
Eg. (1), so that |e(t)=e M p0)) with [¢(0))  change the results. The greater the parametdrJ, the
= -N/Ze\sﬂ¢3\o>oni¢o|o>i_ To do the numerical calculations we smaller is the time step required. The main numerical limi-
partitioned the Hilbert space in subspaces with fixed numbeiation of the 2PI approximation is set by the time integrals,
of atoms and propagated independently the projections of thehich make the numerical calculations time and memory
initial state on the respective subspaces. A subspaceNyith consuming. However, within a typical numerical precision it
number of atoms antl number of wells is spanned kN, was typically not necessary to keep all the history of the two
+1=1)!/N,! (I-1)! states. This procedure could be done be_poi_nt functjons in the memory. A chgracteristic .time, after
cause the Hamiltonian commutes with the number operatohich the influence of the early time in the late-time behav-

Eiti)iTCi)i, and thus during the dynamics the different sub-ior _is given by the invers_e dampi_ng rate. This time_ is de-
spaces never get mixed. The number of subspaces used f%?”bed by the exponential damping of the two-point cor-
the numerical evolution were such that no change in plots Ofeltatog actjtltrﬁetlwnht:]hefn:;]ual t'm?[23]d Ip our ntumer||cs \tlyleth

the dynamical observables was detected by adding anoth&f eln ed'd € %ng % € erlnp oye I'”?e n erlva UE' ﬁ
subspace. Generally fof atoms in the initial state, this con- results did not depend on it. In general, it was less than the

" ; . . inverse damping rate. We used for the calculations a single
d'“‘?ﬂ was aChIQEd by including the subspaces betviéen PIl 400 MHz workstation with 260 Mb of memory. For a
—4yN andN+4yN atoms.

typical run 1-2 days of computational time were required.

B. Numerical algorithm for the approximated solution . .
C. Initial conditions and parameters

The time-evolution equations obtained in Sec. VIII are . o N
nonlinear integro-differential equations. Though the equa- To model the patterned loading the initial conditions as-

tions are very complicated, they can be solved on a comsumed for the numerical solutions wekgo=Nd, pi(].FO)O

puter. The important point to note is that all equations arez%&,j, pi(]."(;o: —i 6, andn}(jFO)O: mi(j”gozo. They correspond to an

causal in time, and all quantities at some later timean be initial coherent state witiN atoms in the initial populated

obtained by integration over the explicitly known functions well.

for timest<t;. To study the kinetic-energy dominated regime we chose
For the numerical solution we employed a time discreti-for the simulations three different sets of parameters: The

zationt=na, t'=mag, and took the advantage that due to thefirst set was chosen to be in the very weak interacting re-

presence of the lattice the spatial dimension is disaiiete  gime, =3 ,N=6,J=1, andU/J=1/30. With this choice we
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FIG. 3. Comparisons between the exact solutigwlid line), the HFB approximatioriboxes, the second-order large” approximation
(pentagong and the full 2Pl second-order approximatigrossey for the very weak interacting regime. The parameters used Wwere
=3,N=6,J=1, andU/J=1/30. The time is given in units df/J. In the plots where the population, condensate, and depletion per well are
depicted the top curves correspond to the initially populated well solutions and the lower to the initially empty wells. Notice the different
scale used in the depletion plot. In the momentum distribution plot the upper curve correspondk=a the/ 3 intensities and the lower
one to thek=0 quasimomentum intensity.

wanted to show the validity of a mean-field approach to de- X. RESULTS AND DISCUSSION
scribe this regime and the corrections introduced by the In Figs. 3—7 we show our numerical results. We focus our
higher-order approximations. The second set of parameters[t fi gs. th uti f th d ¢ ' lati

were|=3,N=8,J=1, andU/J=1/3. Inthis regime the ki- atention ol the evolttion o fhe condensate popuralion per

2 i i 2
netic energy is big enough to allow tunneling but the effectwe(”F') |¢‘(t)|1’ the total_atomlc population per wellg|
of the interactions are crucial in the dynamics. Comparing™?i (t:1)~3, the depletion per well or atoms out of the con-
with the exact solution we could show the breakdown of thedensate,pi(ip)(t,t)—%, and the total condensate population,
mean-field approximation. >il#i(1)|2. The total population is also explicitly shown in the
At the mean-field levelusing the DNLSE for a given figures to emphasize number conservation.
number of wells, the only relevant parameter for describing The quasimomentum distribution of the atoms released
the dynamics of the system is the ratibN/J. For a fixed from the lattice is important because it is one of the most
UN/J the mean-field dynamics is independent of the numbeeasily accessible quantities from an experiment. The quasi-
of atoms in consideration. This is not the case in the exaatomentum distribution function, is defined as
solution where bothUN/J and N are important. AsN is
increased, the bigger is the population in the initial coherent
matter field and therefore we expect a better agreement of the
truncated theories with the exact solution. To study the de-
pendence of the dynamics on the total number of atoms, thehere the quasimomenturk can assume discrete values
third set of parameters in our solutions were chosen tb be which are integral multiples of2/la, with | the total num-
=2,J=1/2, andfixed NU/J=4 but we changed the number ber of lattice sites and the lattice spacing.
of atoms from 20 to 80. To increase the number of atoms in The basic features of the plots can be summarized as fol-
the calculations we had to reduce the number of wells to 2ows.
due to the fact that the dimension of the Hilbert space scales (&) In the very weak interacting regimégig. 3) the dy-
very badly withN andl. namics of the atomic population per well resembles the Rabi

00 =3 ] 1), (67
]
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the plots of Fig. 3 the total condensate constitutes an impor-
tant fraction of the total population. Regarding the quasimo-
mentum distribution we observe that similar to the spatial
distribution where the initial configuration and periodic
boundary conditions reduce the three-well system to a
: ] double-well one, they enforce equal evolution of thert3
by s Y ¥/ quasimomentum intensities. The:0 and +27/3 intensities
_ — .. . Rt |7 0 o ] oscillate with the same frequency as the atomic population
T Zadopdanog] 3 F ] per well, both are also well described by the approximations

R A m]: AaF ] in consideration.
: ] (b) In the intermediate regimee can see the effect of the
interactions in the dynamics. They modulate the oscillations
in the population per well and scatter the atoms out of the
condensate.

(c) In Fig. 4 we plot the numerical solution for the param-
etersI=3,N=8,J=1, andU/J=1/3. In contrast to the case
of the very weak interacting regime, it is only at very early
times that any of these approximations is close to the exact

FIG. 4. Comparisons for the cade3,N=8,J=1, and U/J solution. Even though none of them are good after the first
=1/3. The time isgiven in units of/J. In the plots the abbrevia- Oscillation, the HFB approximation is the only one that fails
tion 1st is used for the initially occupied well and 2nd for the to capture the exponential decrease of the condensate popu-
initially empty wells. In the quasimomentum plogs=27/a is the  lation. This is expected, because even though this approxi-
reciprocal lattice vector witla the lattice spacing. mation goes beyond mean-field theory and takes into account

the most important scattering effects, it includes the effects

oscillation phenomenon. Notice that even though there aref collisions only indirectly through energy shifts, and breaks
three wells, periodic boundary conditions enforce equal evodown outside the collisionless regime where multiple-
lution of the initial empty ones. In this regime damping ef- scattering effects are important. In contrast, the exponential
fects remain very small for the time depicted in the plots.decay of the condensate is present in the second-order ap-
The numerical simulations show a general agreement bgsroximations. Nonlocal parts of the self-energy included in
tween the different approaches with the exact solution. Théhem encode scattering effects responsible for damping. It is
effect of including higher-order terms in the equations ofimportant to point out that, even though we observe the col-
motion introduce small corrections which improve the agreedapse of the condensate population, the total population is
ment with the exact dynamics. This shows up in the plots ofalways conserved: As the condensate population decreases,
the condensate population and depletion, where the smaihe number of atoms out of the condensate increases.
differences can be appreciated better. The second-ordér 1/ (2) Comparing the two second-order approaches we ob-
expansion gives an improvement over the HFB and the comserve that the full second-order expansion gives a better de-
plete second-order perturbative expansion almost matchexription of the dynamics than the A7solution only in the
perfectly with the exact solution. In the duration depicted inregime where the perturbative solutions are close to the exact

No.of atoms

No.of atoms

N LD N R ONOO N RO

—

g-momentum No.of atoms

S = W O

F — Exact 4
E xx 2nd 1

»» HFB

—

o
o

(No.atoms) /N

(No.atoms) /N

FIG. 5. Comparison between the evolution of the atomic population per wel=BrJ=1/2 NU/J=4, andN=20,40, and 80. Time is
in units #/J. In the plots P1 stands for the fractional atomic population in the initially populated wells and P2 for the population in the
initially empty wells. The number of atoni¥ is explicitly shown in each panel.
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FIG. 6. Time evolution of the condensate population per well and the total condensate population, for the same parameters as in Fig. 5.
Time is in units of#/J. In the plots C1 stands for the fractional condensate population in the initially populated well, C2 for the fractional
condensate population in the initially empty one, and CT for the total condensate fraction.

dynamics. As soon as the third-order terms start to be impor- Damping effects are also quite noticeable in the quantum
tant, the large 1V expansion gives a better qualitative de- evolution of the quasimomentum intensities. Similar to what
scription. This behavior is going to be appreciated better irhappens to the spatial observables, the HFB approximation
Figs. 5—7 as the number of atoms is increase@ discussion fails completely to capture the damping effects present in the
below). evolution of the Fourier intensities whereas the second-order
We observe as a general issue in this regime that, regarépproaches overestimate them.
less of the fact that the second-order solutions capture the (3) In Figs. 5-7 we explore the effect of the total number
damping effects, as soon as the condensate population def atoms on the dynamics. In the plots we show the numeri-
creases to a small percentage of the total population, thegal solutions found for a double-well system with fixed ratio
depart from the exact dynamics: the second-order approach&sN/J=4 and three different values &f, N=20,40, and 80.
predict faster damping rates. The overdamping is more séAe present the results obtained for the evolution of the
vere in the dynamics of the population per well than in theatomic population per well in Fig. 5, the condensate popula-
condensate dynamics. The failure can be understood undéon per well and total condensate population in Fig. 6, and
the following lines of reasoning. At zero temperature con-the quasimomentum intensities in Fig. 7. To make the com-
densate atoms represent the most “classical” form of a mattgrarisons easier we scaled the numerical results obtained for
wave. When they decay, the role of quantum correlationshe three different values & by dividing them by the total
become more important. At this point the higher-order termswumber of atoms. In this way for all the cases we start with
neglected in the second-order approximations are the ones atomic population of magnitude one in the initial popu-
that lead the dynamical behavior. Thus, to have a more adated well. In the exact dynamics we see that as the number
curate description of the dynamics after the coherent mattesf atoms is increased the damping effects occur at slower
field has decayed, one needs a better treatment of correleates. This feature can be noticed in the quantum dynamics
tions. of all the observables depicted in Figs. 5—7. The decrease of
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FIG. 7. Dynamical evolution of the quasimomentum intensities. The parameters useld~®ele1/2 NU/J=4, andN=20,40, and 80.
Time is in units off/J. In the plots ko denotes the=0 quasimomentum component and k1 kiverr/a one(a the lattice spacing The plots
are scaled to set the integrated quasimomentum density to one fér all

the damping rates as the number of atoms is increased is nGwr formulation is capable of capturing the salient features
surprising because by changing the number of atoms we abf the system dynamics in the regime under consideration,
fect the quantum coherence properties of the system. Asuch as the decay of the condensate population and the
comment in Sec. Ill the collapse time of the condensatélamping of the oscillations of the quasimomentum and
population is approximately given by~ t,e,/27VN. The population per well unaccounted for in the HFB approxima-
revival time is proportional tdJ™! and varies withN for  tion. However, at the point where an important fraction of
fixed UN/J ast,e, o N/J, thust,gy, = JN increases witiN as  the condensate population has been scattered out, the second-
observed in the numerical calculations. Besides dampingrder approximations used here predict an overdamped dy-
rates, the qualitative behavior of the exact quantum dynamicgamics. To improve on this a better treatment of higher cor-
is not affected very much as the number of atoms is infelations is required. One might try to include the full next-
creased for a fixetUN/J. to-leading-order largeV” expansion without the truncation to
The improvement of the 2PI approximations lds in- ~ second order as done in R¢R3] but it is not obvious that
creased, as a result of the increase in the initial number dhis will lead to the required improvement. Alternatively, one
coherent atoms, is in fact observed in the plots. Even thougfay try to adopt a stochastic approach, but the challenge will
the problem of underdamping in the HFB approximation and?€ shifted to the derivation of a noise te(which is likely to
overdamping in the second-order approaches are not cure@@ both colored and multiplicatiyevhich contains the ef-
as the number of atoms is increased, we do observe a bett&cts of these higher correlations and the solution of the sto-
matching with the full quantal solution. The A7expansion ~chastic equations. We hope to address this aspect of the prob-
shows the fastest convergence. Perhaps this issue can lg& in a future work.
more easily observed in the quasimomentum distribution Even though, as is clear in this paper, the second-order
plots, Fig. 7. The better agreement of theM expansion 2PI approximations fail to capture the fully correlated dy-
relies on the fact that even though the number of fields ig1amics in the system, it has been proved to work at interme-
only 2 in our calculations, the IV expansion is an expan- diate times when correlations are not negligible and standard
sion about a strong quasiclassical field configuration. mean-field techniques fail poorly. Because of its success in
describing moderately correlated regimes, the second-order
approximations could become a useful tool for describing
experimental situations as the collapsing or colliding conden-
In this work we have used the CTP functional formalismsate experimentgl] where striking dynamical behavior such
for 2PI Green’s functions to describe the nonequilibrium dy-as collisional loss of condensate atoms has been observed.
namics of a condensate loaded in an optical lattice on every In summary, we have presented an approach for the de-
third lattice site. We have carried out the analysis up to secscription of the nonequilibrium dynamics of a Bose-Einstein
ond order in the interaction strength. This approximation iscondensate and fluctuations in a closed quantum field sys-
introduced so as to make the numerical solution manageableesm. The formalism allows one to go beyond the well-known
but it is sufficient to account for dissipative effects due toHFB approximation and to incorporate the nonlinear and
multiparticle scattering that are crucial even at early timesnon-Markovian aspects of the quantum dynamics as manifest

Xl. CONCLUSIONS
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in the dissipation and fluctuations phenomena. The 2PI ef- Ee oy 1 N A G

fective action formalism provides a useful framework where my () - 52 [u(®v; (") + Uity YD],  (A6)
the mean field and the correlation functions are treated on the 4

same footing self-consistently and that respects conservation

of particle number and energy. The CTP formalism ensures N —_— S

that the dynamical equations of motion are also causal. In mi(jp)(t’t - I% [U?(t)vjq(t - qu(t o). (A7)
their current form the scattering terms are nonlocal in time,

are hard to estimate analytically, and their calculation is NUpe . :
. - X . placing Eqs(A4)—(A7) by Egs.(46)—(50) and using the
merically demanding. However, this systematic approach Cafonstraints(A2) and (A3) we recover the standard time-

be usec_j as a quantriative means to Obt‘i"n s_olut!ons in dlfTer(?lependent equations for the quasiparticle amplitydés
ent regimes and make comparisons with kinetic theory re-

sults where a Markovian approximation is assumed. We have 2 F)

not made such comparisons in this work, but a future test o'[ﬁﬁt‘ﬁi(t) == A bina® + G2 O]+ UL 401" + 2017 (L] (0
the consequences of the Markovian assumption would be of +UmP(t,H) ¢ (1), (A8)
great interest.

iﬁ%u?(t) == Jula(®) + uly (0] + 2U[ (D)2
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Equations (A8)—(A10) correspond to a set of(21+1)

coupled ordinary differential equations, whdrés the total

APPENDIX A: MODE EXPANSION OF THE HFB number of lattice sites. They can be solved using standard
EQUATIONS time propagation algorithms. Once the time-dependent qua-
To decouple the HFB equations we apply the We”_knownsipar_ticle amplit_udes are calculated we can derive the dy-
Bogoliubov transformation to the fluctuation field: namics of physical observables constructed from them as a
function of time, such as the average number of particles in a
() = 2 ul(t)ag—v; (D4, (A1) well, n(t), etc.
q
v_vhere(&q_, Ey(z)_are time-independent creation and annihila- APPENDIX B: SECOND-ORDER EQUATIONS
tion quasiparticle operators and all the time dependence is OF MOTION

absorbed in the amplitudds{(t), v; %(t)}. To ensure that the  Here we explicitly write the equations of motion of the
quasiparticle transformation is canonical, the amplitudes /A and full second-order approximations.

{uf(t),v; %t} have to fulfill the following relation§49]: To simplify the notation let us introduce the functions
240U 50 ~ o000 = 3y (A2) 1
I Qi(jF)[fag] = fi(jF)(tixtj)gi(jF)(tiatj) - Z[fi(jp)(tiatj)gi(jp)(tiytj)],
> Uit - oy = 0. (A3) (B1)
i
In the zero-temperature limit, wheféé&@zo, the statistical Qi(jp)[f'g] - fi(jF)(ti-tj)gi(jp)(tiutj) " fi(jp)(t,t’)gi(jF)(ti,tj). (B2)

and spectral functions take the form

1 . . Using the spectral and statistical functions and settig
pPtt) = 52 [ofi(tv; %t") +ult)u (D], (A4)  equal to 2 the equations of motion derived in Sec. VII can be
q written as follows:
(1) Full second-order expansion: If we take the complete
pi(,-p)(t,t') =iy [viq(t)vij(t') - u?(t’)ui*q(t)], (A5)  contribution of the setting-sun and basketball diagrams, the
q equations of motion take the form
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11
ihd ¢ = = L ua(ty) + dioa(t)] + Ui+ 2017) ¢y + UMD ¢y - 202 f dte( ' [p,p 1+ P Imm ] + O
k 0
{;
x[m,p])pif) - 202> f (62 [p.0 1+ L IMM ]+ 4 QL[ p ImE+ ZUZE f dt( U [p.p"] + il
k

x[m,m]+ g Q[ p)pif + 2U22 f (U Lp.p 1+ SO Im M T+ QL[ p hm, (B3)

—iha ol = = Ipi5li(tt) + pF) (411 + 20( B2 + o)l + UMD + 5 2)mP- zqu J dt( i Lp.p] + 2 HOYY
<[]+ 20, GO Tm Dl - 2075 J IO, A1+ 265 B0 Tp,p T+ OP[mem Dol
—zqu f dt(2e UL [M’, p] + i H UL [, m ] + 265 AL [p", M DM~ 2u22 f At Q' [m", Y]
+ & 5L p.p T+ 20 [mm m+ 2u22 f dt( i [p,p] + 25 B [p,M ]+ 205 O

X[m,p)pif+ zqu f dtd Qe [p. AT+ 265 p( QLo p" ]+ O [mm )}l +2qu f dt(2¢ Q4 [, p]

+ g QP Im, M T+ 26 4 [p", M hm! >+2u22 f dtd QP [m", YT+ 245 (U [p,p ]+ QP [mm ImT,

(B4)

{j
—ihaplf! = = Ipy (ti.t) + p2y (1, 1)] + 2U(| 2+ pi7)plf) + UM + ) mip)— zqu f  didha o] + 250
X[p,m']+2¢; 4 QL' [m,p])pif) 2u22 f dtd Q' [p, AT+ 26 QL [p.p 1+ QL [mm D} p?

G
-2’3 J 24RO o)+ ST 1+ 26 6,001 m Dy~ 202 [ g X1
k tj

+2¢ ¢k<Q§£>[p,p]+9ik [m,m' }m?, (B5)
ing i = = ImE (6, t) + mE 4,11+ 20( 2 + o )M + UMD + ¢D)p 2u22 j dty(2¢; AL, p" ]+ & QP

<[mm]+ 2640 oo - 2075 [ v i+ 200001061+ 0 m DiE

- zuzg J; dte( AL [p" 071+ 265 AU [p M) + 26 AL [T, p M- zuzg f; dtdQip", Al

+ 205 QP [p.p 1+ O [mm])}m<F>+zu22 f dt(26; U (Mmoo’ 1+ & U [mm] + 255,24 [p. M) pif)

+2u2§ f; At I, Y] + 2¢5 Q4 Lp,p 1+ QU [m,m D} pif +zu22 f dty( ¢ AU Lo 1+ 20 H U

x[p",m] + 21 Q[ p" >+2u22 f dtd [ AT+ 2 (AU [p.p 1+ QE [mm DIm?, (B6)
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it mif’ = = M2, 1) + My (t,1)) + 2U(| 2+ pi7)mP + UMD + pD)pif+ 2u22 f dt(2¢; HQLIM,p 1+ & B
t
X[m,m] + 2¢; 4 Q[ p,m]) pif'+ 202 f dtdQPIM, Y1+ ¢ (20T p,p T+ 20 Imm D}pl?
k tj

g
R0 f A B )+ 265 KO )+ 2600 D+ 2025 [ agef ' a]
k tj

+ 21 QPp.p 1+ QP Imm Ime, (B7)

with
AP = 0 Pp,p ]+ 207 [mm'], (B9)
Y(F p) = ZQ (F, p)[p p ] + Q(F p)[m m ] (B9)

Second-order 1N expansion:

ifid i = = I dra(t) + pia(t)] + U(]? + 2p) ¢ + UM o 22 j ddTE (Bl + HemiE)

{;
+U2Y f dt I (el + pmi), (B10)
k 0

—ihap = = py(t.1) + o5 (1.1 + 20( 2 + o) + UM + ?)miP- U? fo dt( L. p] + B AL
X[p,m' 1+ ¢ QL [m,p))pls) - u22 f dtd Qe 111 + & 204 p,p 1+ QI [mm Dol
~US [ RO 1+ T T 6 b0 i DU [ a1+ 4 ol
X[p,p'T+ 20 [mm'])} F>+u22 f dte( U Lp.p] + B Lo, ]+ & A O [, p)pll)
+u22 j O [p 1]+ 6 (20 Lo, 1+ 0P [mm Dol +u22 J dt( AL M p] + A

X[m',m' 1+ ¢ 4 Q[ m])m‘kp>+u22 J dtdQEIm’ 1]+ & S QU [p,p' 1+ 20 [mm DIm,  (B1D)

~ifidyplf’ = = Ly (tt) + pi2 (6, )]+ 2U(| 12 + pi7)plf” + U™ + 5 ?)mP~ 22 J dt( Qi Lo, p] + Y
{;
X[p,m' 1+ ¢ g QL[ p)pl - U2 f dtdQP[p, 1] + ¢ 3200 p,p T+ QP [mm D}l
k t;

ti * *

- UZE J dty (A QULIM ] + AN, M1+ & AP [ m ])mp) UZE J dtfQEM’, I + ¢ (U
4

X[p.p T+ 204 [m,m" }m#, (B12)
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{;
ifigmi” = = My (t,t) + M, 1)1+ 20( 2 + pf)m? + UMD + ¢?)pi- U 2% fo dt(; AL Im,p ]+ & h O

X[m,m] + ¢ Q[ p,m) i) -

{i
uz>, f dtk{Q(p)[m ]+ ¢|¢k(Q(p)[P o]+ ZQ(p)[mym*])}pf(?
k 70

{;
~US [ a6 6T+ 6 S0P ]+ 0 D= U, [ g1+ 20l
k

y
X[p,p 1+ QP Imm Dim+ U2Y J d( A, p’ 1+ ¢ b U [mm] + i 2 [p,m]) oy
k 0

{
+UZY f dtk{nko)[m,Hh¢i¢k<2ﬂff>[p,p*]+ﬂ@[mm])}p<P>+u22 f di(d A Q[0 0" 1+ & B [ m]
k 0

t.
+ i [, p ImE+ U f g T+ 20 Lo, "1+ QI [mmi Dim,
k 0

(B13)

iy == 0y (1.) + M0, )]+ 20+ A7) m + U + Do+ U2 J di( i A Tm,p'] + & SO

X[m,m] + ¢ Lo, m)pl?+ u22 f dtd QP IMIT] + (P [p,p"] + 204 [m,m D} o

tl * * * * * * * * tl * *
+UPX f Ay UL 0 1+ 8 AORTE ]+ gL p I+ U f did e, T+ ¢ (2050
k tj k tj

X[p,p 1+ QEImm DIm?,
with

H(F p) — Q(F p)[p p ] + Q(F p)[m m ]

(B14)

(B15)

In the above equations we have simplified the notation replagifig) by ¢, and my(t,,t;) by m;.
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