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In this work a two-particle irreducible(2PI) closed-time-path(CTP) effective action is used to describe the
nonequilibrium dynamics of a Bose-Einstein condensate selectively loaded into every third site of a one-
dimensional optical lattice. The motivation of this work is the recent experimental realization of this system.
Patterned loading methods may be useful for quantum computing with trapped atoms. This system also serves
to illustrate many basic issues in nonequilibrium quantum-field theory pertaining to the dynamics of quantum
correlations and fluctuations which goes beyond the capability of a mean-field theory. By numerically evolving
in time the initial-state configuration using the Bose-Hubbard Hamiltonian an exact quantum solution is
available for this system in the case of few atoms and wells. One can also use it to test various approximate
methods. Under the 2PI CTP scheme with this initial configuration, three different approximations are consid-
ered:(a) the Hartree-Fock-Bogoliubov(HFB) approximation,(b) the next-to-leading-order 1/N expansion of
the 2PI effective action up to second order in the interaction strength, and(c) a second-order perturbative
expansion in the interaction strength. We present detailed comparisons between these approximations and
determine their range of validity by contrasting them with the exact many-body solution for a moderate number
of atoms and wells. As a general feature we observe that because the second-order 2PI approximations include
multiparticle scattering in a systematic way, they are able to capture damping effects exhibited in the exact
solution, which a mean-field collisionless approach fails to produce. While the second-order approximations
show a clear improvement over the HFB approximation, our numerical results show that they fail at late times,
when interaction effects are significant.

DOI: 10.1103/PhysRevA.69.033610 PACS number(s): 03.75.Kk

I. DESCRIPTION OF THE PROBLEM

A Bose-Einstein condensate(BEC) loaded into an optical
lattice provides an arena for the study of quantum coherence
and fluctuation phenomena in many-body physics. Recent
experiments have been able to achieve regimes where the
standard mean-field description of a dilute interacting gas is
inapplicable[1]. The description of the evolution of conden-
sates far from equilibrium has also gained considerable im-
portance in matter-wave physics, motivated by recent experi-
mental realizations of colliding and collapsing condensates
[2–4]. In this paper we investigate the dynamics of a Bose-
Einstein condensate at zero temperaturesT=0d, which is ini-
tially loaded into every third site of a one-dimensional opti-
cal lattice. Such a system has recently been experimentally
realized by the NIST group[5].

This system is not an eigenstate of the many-body Hamil-
tonian, and it thus evolves nontrivially in time. In the dilute
gas limit, a mean-field approach is expected to give a good
description of the condensate dynamics[6]. However, we
show here that even in the case when the kinetic energy is
comparable to the interaction energy, interatomic collisions
play a crucial role in determining the quantum dynamics of
the system, and therefore a mean-field collisionless approach
is only accurate for short times. This result is demonstrated
by comparison of the mean-field solution with exact numeri-
cal solutions of the tine-dependent Schrödinger equation for

systems with small numbers of atomssN,10d and lattice
sitessI =2 or 3d.

Thus, in order to model the correct quantum dynamics of
the system it is necessary to properly include scattering pro-
cesses among particles. This task, however, is not easy for
this particular system because contrary to the three-
dimensional dilute gas case, where many-body effects intro-
duce only a small change to the two-particle scattering prop-
erties in vacuum, the presence of the lattice and the low
dimensionality of the system make the problem much less
straightforward.

To date most theoretical descriptions of nonequilibrium
dynamics of Bose-Einstein condensates(BECs) have been
based on the time-dependent Gross-Pitaevskii equation
coupled with extended kinetic theories that describe excita-
tions in systems close to thermal equilibrium[7–9]. These
approaches usually rely on the contact-interaction(or
pseudopotential) approximation to pairwise atomic colli-
sions, which is valid only at low collision energies. However,
this approximation fails in the treatment of our system, so
new methods are required. To treat far-from-equilibrium dy-
namics, we adopt a closed-time-path(CTP) [10] functional-
integral formalism together with a two-particle irreducible
(2PI) [11] effective action approach to derive the equations
of motion. We retain terms of up to second order in the
interaction strength when solving these equations. This
method has been generalized for and applied to the establish-
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ment of a quantum kinetic field theory[12–14] with applica-
tions to problems in gravitation and cosmology[15,16], par-
ticles and fields[17,18], BEC [19,20], and condensed-matter
systems[21] as well as addressing the issues of thermaliza-
tion and quantum phase transitions[22–24].

In Sec. II we present a brief review of the Bose-Hubbard
model and its ground-state properties. In Sec. III we summa-
rize the mean-field results obtained in previous studies[6]. In
Sec. IV we introduce the 2PI generating functional to con-
struct the 2PI effective actionG2 and Green’s functions. In
Sec. V we perform perturbative expansions onG2 and define
the various approximation schemes. In Sec. VI we introduce
the CTP formalism. We then derive the equation of motion
and discuss the results under each approximation scheme,
starting with the Hartree-Fock-Bogoliubov(HFB) approxi-
mation in Sec. VII, followed by second-order expansions in
Sec. VIII, which includes the 1/N expansion and the full
second-order expansion. The numerical implementation is
discussed in Sec. IX. In Sec. X we present our results and
determine the range of validity of the approximations by
comparisons with the exact(numerical) solution. We con-
clude that our truncated 2PI approach is an effective tool for
describing nonequilibrium dynamics in regimes in which
higher-order correlations are unimportant. It includes effects
of collisions that are not present in the HFB approximation,
and goes beyond the Markovian assumptions generally used
in kinetic theories.

II. BOSE-HUBBARD HAMILTONIAN

The dynamics of an ultracold bosonic gas in an optical
lattice can be approximated by a Bose-Hubbard model where
the system parameters are controlled by laser light. For a
one-dimensional lattice the starting Hamiltonian is

Ĥ = − Jo
i

sF̂i
†F̂i+1 + F̂i+1

† F̂id + o
i

eiF̂i
†F̂i

+
1

2
Uo

i

F̂i
†F̂i

†F̂iF̂i , s1d

where F̂i and F̂i
† are the bosonic operators that annihilate

and create an atom on the sitei. Here, the parameterU de-
notes the strength of the on-site repulsion of two atoms on
the sitei; the parameterei denotes the energy offset of each
lattice site due to an additional slowly varying external po-
tential that might be presentssuch as a magnetic trapd andJ
denotes the hopping rate between adjacent sites. Because the
next-to-nearest-neighbor amplitudes are typically two orders
of magnitude smaller, tunneling to them can be neglected.
The Bose-Hubbard Hamiltonian should be an appropriate
model when the loading process produces atoms in the low-
est vibrational state of each well, with a chemical potential
smaller than the distance of the first vibrationally excited
state. This is the case of the experiment that motivates this
work f5g.

Throughout this paper we denote the total number of at-
oms by N and the number of lattice sites byI. Here we
consider only a one-dimensional homogeneous lattice with
periodic boundary conditions. All results presented here are

approximations to solving the problem of time evolution un-
der the action of the Hamiltonian of Eq.(1). Treatment of the
transverse degrees of freedom and harmonic confinement of
atoms in the direction of the lattice are relegated to a future
work.

The physics described by the Bose-Hubbard Hamiltonian
is very rich and depends strongly on the parametersU, J, N,
and I. Although the main focus of this paper is on treatment
of a nonequilibrium system, it is useful to keep in mind the
nature of the ground state for the different ranges of the
physical parameters.

Ground-state properties

A detailed analysis of the superfluid properties of atoms in
an optical lattice can be found in Ref.[25]. Here we only
outline the principal ideas which can be important to under-
stand the dynamical behavior discussed in this work.

A dimensionless parameter that is convenient to describe

the different regimes ofĤ is the coupling strengthl
;NU/ IJ. Different from a homogeneous system without a
lattice where at zero temperature the superfluid fraction is
always unity, the presence of the lattice changes the super-
fluid properties and even at zero temperature, the superfluid
fraction decreases with the lattice depth. For strong-coupling
strengths[26] l.lcrit,

lcrit ,
2N

I2 f2N + I + Îs2N + Id2 + I2g, s2d

it is known that the ground state undergoes a quantum phase
transition from a superfluid to a Mott insulator.

In the weakly interacting regime,l!1, where tunneling
overwhelms the repulsion, to a good approximation quantum
fluctuations can be neglected and the properties of the system
can be described by replacing the operator on the lattice site
i by a classicalc number. It can be said that most of the
atoms are in the zero quasimomentum state.

In the intermediate regime 1,l,lcrit /2 the interactions
between the bosons can be very strong but the ground state is
nevertheless a superfluid. For these interaction parameters a
self-consistent HFB-Popov theory gives a good description
of the system. However, different from the weak interacting
regime where the depletion of the zero quasimomentum state
is very small and has a little effect on the superfluid proper-
ties, in this intermediate regime, depleted atoms spread over
the central part of the band and reduces the superfluid frac-
tion. As interactions are further increased the depleted popu-
lation completely fills the band and cancels the superfluid
properties. The system reaches the Mott insulator regime,
where atoms are completely localized at each lattice site,
there is no coherence, and the eigenstates of the system are
almost Fock states with a vanishing number fluctuations per
lattice site.

The main purpose of this paper is to study the dynamics
in the intermediate regime where the superfluid properties
are important but quantum fluctuations cannot be ignored.
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III. MEAN-FIELD DYNAMICS

By making the mean-field ansatz in the Bose-Hubbard
Hamiltonian, that is, replacing the field operator by ac num-
ber fistd, it is possible to show that the amplitudesfistd
satisfy the discrete nonlinear Schrödinger equation(DNLSE)
which in the case of zero external potential has the form

i
] fi

] t
= − sfi−1 + fi+1d +

UN

J
ufiu2fi , s3d

where we have defined a new time scaledt; tJ/" and have
imposed unit normalization uponf having unit norm, so that
N is the total number of atoms.

We treat a model case in which the initial occupancies of
each third site are the same, and in which the condensate
initially has a uniform phase. Thus att=0, the amplitudes
fistd are given by f3is0d=Î3/I, f3i+1s0d=f3i+2s0d=0,
where I is the total number of lattice sites. For an infinite
lattice, or one with periodic boundary conditions, the ampli-
tudes for all initially occupied sitesf3i evolve identically in
time, and the amplitudes for the initially unoccupied sites
satisfy f3i+1std=f3i+2std for all t. This allows us to reduce
the full set of equations(3) to a set of two coupled equations
for f0std andf1std.

The solutionsuf0stdu and uf1stdu are oscillatory functions
whose amplitudes and common periodTsgd are determined
by the parameterg;3sNU/ IJd=3l. It is useful to qualita-
tively divide the dynamical behavior into two regimes.

a. The tunneling dominated regimesg,1d. In this regime
we find that the oscillation period is essentially constant, the
role of interactions is relatively small, and the equations of
motion are equivalent to those of a two-state Rabi problem.
This system will undergo Rabi oscillations whereby atoms
periodically tunnel from the initially occupied site into the
two neighboring sites. Forg=0 the period of oscillation is
2p /3.

b. Interaction dominated regime.The effect of interac-
tions on the mean-field dynamics is to cause the energies of
the initially occupied sites to shift relative to those of the
unoccupied sites. Asg increases the tunneling between sites
occurs at a higher frequency, but with reduced amplitude.
The population of the initially occupied sites becomes effec-
tively self-trapped by the purely repulsive pair interaction.

To check the validity of the mean-field approximation, we
made comparisons with the exact many-body solution for six
atoms and three wells. We use a modest number of atoms
and lattice sites for the comparisons, due to the fact that the
Hilbert space needed for the calculations increases rapidly
with the number of atoms and wells. The exact solution was

obtained by evolving an initial statese−N/2eÎNF̂o
†
u0ld ^ u0l

^ u0l with the Bose-Hubbard Hamiltonian. The initial state
represents just a coherent state with an average ofN atoms in
the initial populated well.(See Sec. IX A.)

In Fig. 1 we plot the average population per well

kF̂i
†stdF̂istdl and the condensate population per wellukF̂istdlu2

and compare them with the mean-field predictions, i.e.,
ufistdu2, for three different values ofg. The salient features
observed in these comparisons are as follows.

(1) Weakly interacting regimesg=0.2d: In this regime the
DNLSE gives a good description of the early time dynamics.
We observe in Fig. 1 that the total population per well pre-
dicted by the mean-field solution agrees with the exact solu-
tion and also that the condensate population remains big for
the time under consideration. We expect the semiclassical
approach to be valid for time scales less than the inverse
energy-level spacing. In Ref.[27] the authors show for two
lattice sites the validity of the semiclassical approach when
t, tcl,N/ Ig. This time scale is in good agreement with the
numerical results shown in Fig. 1. Aftertcl quantum effects
become important.

(2) Intermediate regimesg=2d: Quantum fluctuations lead
to a nontrivial modulation of the classical oscillations. In this
regime the ratio between interaction and kinetic energy is
small enough to allow the atoms to tunnel but not too small

FIG. 1. Comparisons between the exact and the DNLSE solu-
tions for six atoms and three wells. The time is given in units of
" /J. Top panel, strongly correlated regimesg=12d; middle panel,
intermediate regimesg=2d; bottom panel, weakly interacting re-
gimesg=0.2d. The solid line is the DNLSE prediction for the popu-
lation per well:uf0stdu2 and uf1,2stdu2 [see Eq.(3)], the triangles are
used to represent the exact solution for the population per well
calculated using the Bose-Hubbard Hamiltonian[Eq. (1)]:

kF̂0
†F̂0l ,kF̂1,2

† F̂1,2l. The pentagons show the condensate population

per well calculated from the exact solution:ukF̂0lu2 and ukF̂1,2lu2.
Due to the symmetry of the initial periodic conditions the curves for
the i =1 and 2 wells are the same in all depicted curves.
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to make interaction effects negligible. Mean-field results are
accurate only for a short time. In this regime, the exact so-
lution exhibits damped oscillations of the atomic population.
Quantum scattering effects are crucial, even for rather early
times.

To understand the dynamics in the weak and intermediate
regimes, we have to focus on the coherent properties of the
system. Even though interactions can be strong, the ground
state is indeed superfluid. If we look at the initial coherence

of the system, determined bykF̂i
†s0dF̂ js0dliÞ j, it can be seen

that it is zero due to the patterned loading. However, this is
no longer the case fort.0, and nonzero correlations are
developed in the dynamics. The dynamical restoration of the
phase coherence which tends to distribute atoms uniformly
among the lattice sites and to damp the oscillations charac-
terizes the dynamics in the superfluid regime. In Ref.[27],
the authors show, not for a patterned loaded initial state but
for an initial Mott state also with zero initial phase coher-
ence, how the phase coherence is restored dynamically.

(3) Strongly correlated regimesg=12d: The system exhib-
its macroscopic quantum self-trapping of the population.
Qualitatively, both the mean field and the exact solutions
agree, in the sense that both predict self-trapping of atoms in
the initially populated wells, due to interactions. However,
the fast decrease of the condensate population and its subse-
quent revivals(as found in the exact solutions) give us an
idea of the importance of correlation effects beyond mean
field. The collapse and revivals of the condensate in this
strong interacting regime and the importance of quantum ef-
fects have been experimentally observed[28].

Even though there is not initial coherence between adja-
cent sites due to the patterned loading procedure we are still
preparing the system in a superfluid state in the initial popu-
lated well. At time t=0 we have a condensate fraction of
order one. However, the ground state of the system is not
superfluid. It is expected then that, after some time, the phase
is going to randomize and this will lead to the collapse of the
condensate population. After the collapse, the system will
remain for a while with zero condensate population. How-
ever, it cannot remain zero forever because we are dealing
with a close quantum system, with finite recurrence time.
Therefore at some timetrev we expect the condensate to re-
vive again. The collapses and revivals of the condensate
population in the strong interacting regime can be easily es-
timated by considering the energy spectrum. In this regime
the energy eigenstates of the system are almost number Fock
states and the energy spectrum is almost quadratic,En
<nsn−1dU /2. The dynamics of the system is described by
the interference of the differentn-particle Fock states that
span the coherent state of the initially populated well. At
integer values oftrev=sU /hd−1, the phase factors add to an
integer value of 2p, leading to a revival of the initial state.
This time scale agrees with the one estimated in Ref.[29] for
a more general situation. In this reference, they also show
how the collapse timetcoll depends on the variance of the
initial atomic distribution and is given bytcoll, trev / s2psd. If
the initial state is a coherent state, the initial distribution is
Poissonian andtcoll is given by tcoll," / sÎNUd. For the pa-
rameters used in the strong correlated regime,g=12 andN

=6, we observe that the estimated collapses and revival times
are in agreement with what is shown in Fig. 1.

Because our main interest is the tunneling dynamics we
will focus on the intermediate regime, where the ratioU /J is
small but interaction effects are not negligible. In this regime
a perturbative expansion aroundU /J still makes sense.

IV. 2PI EFFECTIVE ACTION G„f ,G…

The first requirement for the study of nonequilibrium pro-
cesses is a general initial-value formulation depicting the dy-
namics of interacting quantum fields. The CTP or
Schwinger-Keldysh effective action formalism[10] serves
this purpose. The second requirement is to describe the evo-
lution of the correlation functions and the mean field on an
equal footing. The 2PI formalism[11] where the correlation
functions appear also as independent variables serves this
purpose. By requiring the generalized(master) CTP effective
action [13] to be stationary with respect to variations of the
correlation functions an infinite set of coupled(Schwinger-
Dyson) equations for the correlation functions is obtained
which is a quantum analog of the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy. The 2PI effective action produces
two such functions in this hierarchy. In this section we shall
focus on the 2PI formalism and then upgrade it to the CTP
version in the following section.

The classical action associated with the Bose-Hubbard
Hamiltonian(1), is given in terms of the complex fieldsFi
andFi

* by

SfFi
* ,Fig =E dto

i

i"Fi
*std]tFistd +E dto

i

JfFi
*stdFi+1std

+ FistdFi+1
* stdg −E dto

i

U

2
Fi

*stdFi
*stdFistdFistd.

s4d

To compactify our notation we introduceFi
asa=1,2d de-

fined by

Fi = Fi
1, Fi

* = Fi
2. s5d

In terms of these fields the classical action takes the form

SfFg =E dto
i

1

2
habFi

astd"]tFi
bstd

+E dto
i
SJsabFi+1

a stdFi
bstd −

U

4N fsabFi
astdFi

bstdg2D ,

s6d

whereN is the number of fields,which is 2 in this case, and
summation over repeated field indicesa,b=s1,2d is implied.
hab and sab are matrices defined as

REY et al. PHYSICAL REVIEW A 69, 033610(2004)

033610-4



hab = iS0 − 1

1 0
D, sab = S0 1

1 0
D . s7d

In terms of the familiar Pauli matrices,sab=sx and hab
=−sy.

After second quantization the fieldsFi
a are promoted to

operators. We denote the expectation value of the field op-
erator or mean field byfi

astd and the expectation value of the
composite field byGij

abst ,t8d. Physically,ufi
astdu2 is the con-

densate population and the composite fields determine the
fluctuations around the mean field:

fi
astd = kFi

astdl, s8d

Gij
abst,t8d = kTCFi

astdFi
bst8dl − kFi

astdlkFi
bst8dl. s9d

The brackets denote taking the expectation value with re-
spect to the density matrix andTC denotes time ordering
along a contourC in the complex plane.

All correlation functions of the quantum theory can be
obtained from the effective actionGff ,Gg, the two-particle
irreducible generating functional for Green’s functions pa-
rametrized byfi

astd and the composite fieldGij
abst ,t8d. To get

an expression for the effective action we first define the func-
tional ZfJ ,K g [11] as

ZfJ,K g = ei/"WfJ,K g

= p
a
E DFa expH i

"SSfFg +E dto
i

JiastdFi
astd

+
1

2
E dtdt8o

i j

Fi
astdF j

bst8dK ijabst,t8dDJ , s10d

where we have introduced the following index lowering con-
vention:

Xa = sabX
b. s11d

The functional integrals10d is a sum over classical histories
of the fieldFi

a in the presence of the local sourceJia and the

nonlocal sourceK ijab. The coherent-state measure is in-
cluded in DF. The addition of the two-particle source
term is what characterizes the 2PI formalism.

We defineGff ,Gg as the double Legendre transform of
WfJ ,K g such that

dWfJ,K g
dJiastd

= fi
astd, s12d

dWfJ,K g
dK ijabst,t8d

=
1

2
ffi

astdfi
bst8d + Gij

abst,t8dg. s13d

ExpressingJ andK in terms off andG yields

Gff,Gg = WfJ,K g −E dto
i

Jiastdfi
astd

−
1

2
E dtdt8o

i j

fi
astdf j

bst8dK ijabst,t8d

−
1

2
E dtdt8o

i j

Gij
abst,t8dK ijabst,t8d. s14d

From this equation the following identity can be derived:

dGff,Gg
dfi

astd
= − Jiastd −E dt8o

j

fK i jadst,t8dgf j
dst8d, s15d

dGff,Gg
dGij

abst,t8d
= −

1

2
K ijabst,t8d. s16d

In order to get an expression forGff ,Gg notice that by
using Eq.(10) for WfJ ,K g and placing it in Eq.(15) for
Gff ,Gg, it can be written as

expS i

"
Gff,GgD = p

a
E DFaexpH i

"
SSfFg +E dtiJiastdfFi

astd − fi
astdg

+
1

2
E dtidtj8fFi

astdK ijabst,t8dF j
bst8d − fi

astdK ijabst,t8df j
bst8dg −

1

2
TrGKDJ

= p
a
E DFaexpH i

"
SSfFg −E dti

dGff,Gg
dfi

astd
fFi

astd − fi
astdg−E dtidtj8fFi

astd − fi
astdg

dGff,Gg
dGij

abst,t8d

3fFi
bst8d − fi

bst8dg + TrG
dGff,Gg

dG
DJ , s17d
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where Tr means taking the trace. For simplicity we have
denoted edtoi by edti. Defining the fluctuation field,
wi

a;Fi
a−fi

a, we have

Gff,Gg − Tr G
dGff,Gg

dG

= − i" lnp
a
E Dwa expS i

"
Sff,G;wgD , s18d

Sff,G;wg = Sff + wg −E dti
dGff,Gg

dfi
astd

wi
astd

−E dtidtj8wi
astd

dGff,Gg
dGij

abst,t8d
wi

bst8d. s19d

By introducing the classical inverse propagatoriD−1sfd
given by

iDijabst,t8d−1 =
dSffg

dfi
astddf j

bst8d

= fdi jhab]t + Jsdi+1j + di−1jdsabgdst − t8d

−
U

N f2fiastdfibstd + sabfi
cstdficstdgdi jdst − t8d,

s20d

the solution of the functional integro-differential equation
s18d can be expressed as

Gff,Gg = Sffg +
i

2
Tr lnG−1 +

i

2
Tr D−1sfdG + G2ff,Gg

+ const. s21d

The quantityG2ff ,Gg is conveniently described in terms
of the diagrams generated by the interaction terms inSff
+wg which are of cubic and higher orders inw:

Sintff + wg = −
U

4N E dtifwibstdwi
bstdg2

−
U

N E dtiwi
astdfiastdwi

bstdwibstd. s22d

It consists of all two-particle irreducible vacuum graphssthe
diagrams representing these interactions do not become dis-
connected by cutting two propagator linesd in the theory with
propagators set equal toG and vertices determined by the
interaction terms inSff+wg.

Since physical processes correspond to vanishing sources
J and K , the dynamical equations of motion for the mean
field and the propagators are found by using the expression
(21) in Eqs. (15) and (16), and setting the right-hand side
equal to zero. This procedure leads to the following equa-
tions:

hab"]tfi
bstd = − Jffi+1astd + fi−1astdg

+
U

N ffidstdfi
dstd + Giic

c st,tdgfiastd

+
U

NFsGiiadst,td + Giidast,tdgfi
dstd −

dG2ff,Gg
dfi

astd

s23d

and

Gijab
−1 st,t8d = Dijabst,t8d−1 − Sijabst,t8d, s24d

Sijabst,t8d ; 2i
dG2ff,Gg
dGij

abst,t8d
. s25d

Equation (24) can be rewritten as a partial differential
equation suitable for initial-value problems by convolution
with G. This differential equation reads explicitly

hc
a"]tGij

cbst,t8d = − JfGi+1j
ab st,t8d + Gi−1j

ab st,t8dg

+
U

N ffidstdfi
dstdgGij

abst,t8d

+
2U

N fi
astdGij

cbst,t8dficstd

+ i E dtk9Sikc
a st,t9dGkj

cbst9,t8d + idabdi jdst − t8d.

s26d

The evolution offa andGab is determined by Eqs.s24d and
s26d onceG2ff ,Gg is specified.

V. PERTURBATIVE EXPANSION OF G2„f ,G…

AND APPROXIMATION SCHEMES

The diagrammatic expansion ofG2 is illustrated in Fig. 2,
where two- and three-loop vacuum diagrams are shown. The
dots where four lines meet represent interaction vertices. The
expression corresponding to each vacuum diagram should be
multiplied by a factors−idlsids−2, where l is the number of
solid lines ands the number of loops the diagram contains.

FIG. 2. Two-loop(upper row) and three-loop diagrams(lower
row) contributing to the effective action. Explicitly, the diagram(a)
is what we call thedouble-bubble, (b) the setting sun, and (c) the
basketball.

REY et al. PHYSICAL REVIEW A 69, 033610(2004)

033610-6



The actionG including the full diagrammatic series forG2
gives the full dynamics. It is of course not feasible to obtain
an exact expression forG2 in a closed form. Various approxi-
mations for the full 2PI effective action can be obtained by
truncating the diagrammatic expansion forG2. Which ap-
proximation is most appropriate depends on the physical
problem under consideration.

A. The standard approaches
(1) Mean-field approximation: If, in Eq.(21), we discard

all terms to the right ofSffg, we recover the DNLSE of Eq.
(3). This gives us the usual mean-field description, in which
the system remains a pure condensate.

(2) Bogoliubov (one-loop) approximation: The next ap-
proximation consists of discardingG2 altogether. This yields
the so-called Bogoliubov or one-loop approximation whose
limitations have been extensively documented in the litera-
ture [30,31].

(3) Time-dependent HFB approximation: A truncation of
G2 retaining only the first-order diagram inU, i.e., keeping
only the double-bubblediagram, Fig. 2(a), yields equations
of motion of f and G which correspond to the time-
dependent HFB approximation. This approximation violates
Goldstone’s theorem, but conserves energy and particle num-
ber [7,32,33]). The HFB equations can also be obtained by
using cumulant expansions up to the second order[34] in
which all cumulants containing three or four field operators
are neglected. The HFB approximation neglects multiple
scattering. It can be interpreted as an expansion in terms of
Ut /J (where t is the time of evolution) and is good for the
description of short-time dynamics or weak interaction
strengths. It will be described in Sec. VII.

B. Higher-order expansions

We make a few remarks on the general properties of
higher-order expansions and then specialize to two approxi-
mations.

a. 2PI and ladder diagrams.Since the work of Beliaev
[35] and Popov[36] it is well known in the literature(see,
for example, Refs.[19,37]) that including higher-order terms
in a diagrammatic expansion corresponds to renormalizing
the bare interaction potential to the four-point vertex, thus
accounting for the repeated scattering of the bosons. In Ref.
[38] the authors have shown explicitly for a homogeneous
Bose gas that taking into account the two-loop contribution
to the 2PI effective action leads to diagrams topologically
identical to those found by Beliaev but with the exact propa-
gator instead of the one-loop propagator. In the dilute gas
limit, where the interparticle distance is large compared with
the s-wave scattering length, the ladder diagrams give the
largest contribution to the four-point vertex. Every rung in a
ladder contributes to a factor proportional toUm. (In the
presence of the latticem should be replaced by the effective
massm*fm* ,"2/ sJa2dg with a as the lattice spacing.) The
ladder resummation results in an effective potential which is
called theT matrix. To lowest order in the diluteness param-
eter, theT matrix in three-dimensional systems can be ap-
proximated by a constant proportional to the scattering

length (pseudopotential approximation). However this ap-
proximation is only valid in the weak interaction limit and
neglects all momentum dependence which appear in the
problem as higher-order terms. In that sense the 2PI effective
action approach allows us to go beyond the weakly interact-
ing limit in a systematic way and to treat collisions more
accurately.

b. Nonlocal dissipation and non-Markovian dynamics.
Higher-order terms lead to nonlocal equations and dissipa-
tion. The presence of nonlocal terms in the equations of mo-
tion is a consequence of the fact that the 2PI effective action
really corresponds to a further approximation of the master
effective equation[13]. The 2PI effective action is obtained
by the slaving of the three-point functionC3 to the mean
field andG with a particular choice of boundary conditions.
See Ref.[13] for further details.

Non-Markovian dynamics is a generic feature of thenPI
formalism which yields integro-differential equations of mo-
tion. This makes numerical solution difficult, but is a neces-
sary price to pay for a fuller account of the quantum dynam-
ics. Many well acknowledged approaches to the quantum
kinetics of such systems adopt either explicitly or implicitly
(or at the end what amounts to) a Markovian approximation
[39]. It assumes that only the current configuration of the
system, but not its history, determines its future evolution.
Markovian approximations are made if one assumes instan-
taneous interactions, or in the kinetic theory context that the
time scales between the duration of binary collisionst0 and
the inverse collision ratetc are well separated. In the low
kinetic energy, weak interacting regime the time between
collisions (or mean free path) is long compared to the reac-
tion time (or scattering length): tc@t0. The long separation
between collisions and the presence of intermediate weak
fluctuations allow for a rapid decay of the temporal and spa-
tial correlations created between collision partners, which
one can use to justify the Markovian approximation. How-
ever, in the problem at hand, owing to the presence of the
lattice which confines the atoms to the bottom of the wells
with enhanced interaction effects, the low dimensionality of
the system, and the far-from-equilibrium initial conditions,
non-Markovian dynamics needs to be confronted squarely.
That is, the rationale for our adoption of the CTP 2PI
scheme. Now, for the specifics, we describe the following.

(1) Second-order expansion: A truncation retaining dia-
grams of second order inU consists of thedouble-bubble,
thesetting-sun, and thebasketball(see Fig. 2). By including
the setting-sun and the basketball in the approximations we
are taking into account two particle scattering processes
[14,16]. Second order terms lead to integro- differential
equations which depend on the time history of the system.

(2) Large-N approximation: The 1/N expansion is a con-
trolled nonperturbative approximation scheme which can be
used to study nonequilibrium quantum-field dynamics in the
regime of strong interactions[22,23]. In the largeN ap-
proach the field is modeled byN fields and the quantum-
field generating functional is expanded in powers of 1/N. In
this sense the method is a controlled expansion in a small
parameter but unlike perturbation theory in the coupling con-
stant, which corresponds to an expansion around the
vacuum, the largeN expansion corresponds to an expansion
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of the theory about a strong quasiclassical field.
In this work we derive the equations of motion and per-

form numerical calculations up to the second order in the
coupling constantU. This will enable us to determine the
range of validity of three types of approximations described
above, namely,(a) the HFB,(b) the full second order, and(c)
the next-to-leading-order(NLO) large N expansion up to
second order inU (in the figures we use the shorthand HFB,
2nd, and 1/N, respectively) by comparison with the exact
many body solution for a moderate number of atoms and
wells.

VI. CTP FORMALISM

In order to describe the nonequilibrium dynamics we will
now specify the contour of integration in Eqs.(24) and (26)
to be the Schwinger-Keldysh contour[10] along the real-
time axis or CTP contour. The Schwinger-Keldysh formalism
is a powerful method for deriving real and causal evolution
equations for the expectation values of quantum operators
for nonequilibrium fields. The basic idea of the CTP formal-
ism relies on the fact that a diagonal matrix element of a
system at a given timet=0 can be expressed as a product of
transition matrix elements fromt=0 to t8 and the time-
reverse(complex conjugate) matrix element fromt8 to 0 by
inserting a complete set of states into this matrix element at
the later timet8. Since each term in the product is a transition
matrix element of the usual or time-reversed kind, the stan-
dard path-integral representation for each one can be intro-
duced. However, to get the generating functional we seek,
we have to require that the forward time evolution takes
place in the presence of a sourceJ+ but the reversed time
evolution takes place in the presence of a different sourceJ−,
otherwise all the dependence on the source drops out.

The doubling of sources, the fields, and integration con-
tours suggest introducing a 232 matrix notation. This nota-
tion has been discussed extensively in the literature(see
Refs.[12,14]). However we are going to follow Refs.[22,23]
and introduce the CTP formalism in our equation of motion
by using the composition rule for transition amplitudes along
the time contour in the complex plane. This way is cleaner
notationally and has the advantage that all the functional
formalism of the preceding section may be taken with the
only difference of path ordering according to the complex
time contourCCTP in the time integrations.

The two-point functions are decomposed as

Gij
abst,t8d = uctpst,t8dGij

ab.st,t8d + uctpst,t8dGij
ab,st,t8d,

s27d

where

Gij
ab.st,t8d = kwi

astdw j
bst8dl, s28d

Gij
ab,st,t8d = kwi

bst8dw j
astdl, s29d

with wi being the fluctuation field defined prior Eq.s17d and
uCTPst− t8d being the CTP complex contour ordered theta
function defined by

uCTPst,t8d =5
ust,t8d for t and t8 both on C+

ust,t8d for t and t8 both on C−

1 for t on C− and t8 on C+

0 for t on C+ and t8 on C−.

s30d

With these definitions the matrix indices are not required.
When integrating over the second halfC−, we have to mul-
tiply by a negative sign to take into account the opposite
direction of integration.

To show explicitly that the prescription for the CTP inte-
gration explained above does lead to a well-posed initial-
value problem with causal equations, let us explicitly con-
sider the integral in Eq.(26). The integrand has the CTP
ordered form

Sst,t9dGst9,t8d = uCTPst,t9duCTPst9,t8dS.st,t9dG.st9,t8d

+ uCTPst,t9duCTPst8,t9dS.st,t9dG,st9,t8d

3 uCTPst9,tduCTPst9,t8dS,st,t9dG.st9,t8d

+ uCTPst9,tduCTPst8,t9dS,st,t9dG,st9,t8d,

s31d

where we have omitted the indices because they are not rel-
evant for the discussion. Using the rule for CTP contour
integration we get

E dt9Sst,t9dGst9,t8d =E
0

t

dt9fust9,t8dS.st,t9dG.st9,t8d

+ ust9,t9dS.st,t8dG,st9,t8dg

+E
t

`

dt9fust9,t8dS,st,t9dG.st9,t8d

+ ust8,t9dS,st,t9dG,st9,t8dg

−E
0

`

dt9S,st,t9dG.st9,t8d. s32d

If t. t8, we have

E dt9Sst,t9dGst9,t8d =E
0

t

dt9fS.st,t9d − S,st,t9dgG.st9,t8d

−E
0

t8
dt9S.st,t9d

3fG.st9,t8d − G,st9,t8dg. s33d

On the other hand, ift, t8,

E dt9Sst,t9dGst9,t8d =E
0

t

dt9fS.st,t9d − S,st,t9dgG,st9,t8d

−E
0

t8
dt9S.st,t9d

3fG.st9,t8d − G,st9,t8dg. s34d

The above equations are explicitly causal.

REY et al. PHYSICAL REVIEW A 69, 033610(2004)

033610-8



It is convenient to express the evolution equations in
terms of two independent two-point functions which can be
associated to the expectation values of the commutator and
the anticommutator of the fields. We define, following Ref.
[23], the functions

Gij
sFdabst,t8d =

1

2
fGij

ab.st,t8d + Gij
ab,st,t8dg, s35d

Gij
srdabst,t8d = ifGij

ab.st,t8d − Gij
ab,st,t8dg, s36d

where thesFd functions are usually called statistical propa-
gators and thesrd spectral functions.sSee Ref.f40g.d With
these definitions Eq.s26d can be rewritten as

hc
a"]tGij

sFdcbst,t8d = − JfGi+1j
sFdabst,t8d + Gi−1j

sFdabst,t8dg

+
U

N fficstdfi
cstdGij

sFdabst,t8dg

+
2U

N ffi
astdGij

sFdcbst,t8dficstdg

+E
0

t

dtk9oik

srdac
st,t9dGkj c

sFd bst9,t8d

−E
0

t8
dtk9oik

sFdac
st,t9dGkjc

srdbst9,t8d,

s37d

hc
a"]tGij

srdcbst,t8d = − JfGi+1j
srdabst,t8d + Gi−1j

srdabst,t8dg

+
U

N fficstdfi
cstdGij

srdabst,t8dg

+
2U

N ffi
astdGij

srdcbst,t8dficstdg

+E
t8

t

dtk9Sik
srdacst,t9dGkjc

srdbst9,t8d. s38d

In particular, we define the normal,r, and anomalous,m,
spectral and statistical functions as

Gij
21sFdst,t8d ; ri j

sFdst,t8d =
1

2
kwi

†stdw jst8d + w jst8dwi
†stdl,

s39d

Gij
21srdst,t8d ; ri j

srdst,t8d = ikwi
†stdw jst8d − w jst8dwi

†stdl,

s40d

Gij
11sFdst,t8d ; mij

sFdst,t8d =
1

2
kwistdw jst8d + w jst8dwistdl,

s41d

Gij
11srdst,t8d ; mij

srdst,t8d = ikwistdw jst8d − w jst8dwistdl.

s42d

With these relations in place, we now proceed to derive the
time-evolution equations for the mean field and the two-
point functions from the CTP 2PI effective action for the
Bose-Hubbard model under the three approximations de-
scribed before.

VII. HFB APPROXIMATION

As remarked in Sec. II the first-order mean-field approxi-
mation leads to a DNLSE which includes only the contribu-
tion from the condensate. The HFB equations go beyond the
first-order approximation and include the leading-order con-
tribution of G2. They describe the coupled dynamics of con-
densate and noncondensate atoms which arise from the most
important scattering processes which are direct, exchange,
and pair excitations. The basic damping mechanisms present
in the HFB approximation are Landau and Beliaev damping
associated with the decay of an elementary excitation into a
pair of excitations in the presence of condensate atoms, Refs.
[33,41]. However, these kinds of damping[42] found in the
HFB approximation(due to phase mixing, as in the Vlasov
equation Ref.[43]) are different in nature from the colli-
sional dissipation(as in the Boltzmann equation) responsible
for thermalization processes. Multiple-scattering processes
are neglected in this approximation. We expect the HFB
equations to give a good description of the dynamics in the
collisionless regime when interparticle collisions play a mi-
nor role.

The leading-order contribution ofG2 is represented by the
double-bubble diagram. Its contribution toG2 is f indepen-
dent and has an analytic expression of the form

G2
s1dfGg = −

U

4N E dtifGiia
a st,tdGiib

b st,td + 2Giiabst,tdGii
abst,tdg,

s43d

the factor of 2 arises because the direct and exchange terms
are identical.

Using the first-order expression forG2 in Eqs. (24) and
(26) yields the following equations of motion:

hb
a"]tfi

bstd = zHFB
f , s44d

zHFB
f ; − Jffi+1

a std + fi−1
a stdg +

U

N ffidstdfi
dstd

+ Giid
d st,tdgfi

astd +
2U

N ffibstdGii
abst,tdg,

hc
a"]tGij

cbst,t8d = zHFB
G ,
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zHFB
G ; − JfGi+1j

ab st,t8d + Gi−1j
ab st,t8dg +

U

N ffidstdfi
dstd

+ Gii d
d st,tdgGij

abst,t8d +
2U

N ffi
astdficstdGij

cbst,t8d

+ Gii d
a st,tdGij

dbst,t8dg + idabdi jdCst − t8d. s45d

In terms of the spectral and statistical functions, Eqs.
(39)–(42), and settingN=2, the above equations take the
form

i"]tfistd = − Jffi+1std + fi−1stdg + Ufufistdu2 + 2rii
sFdst,tdgfistd

+ Umii
sFdst,tdfi

*std, s46d

− i"
]

] t
ri j

sFdst,t8d = L ikstdrkj
sFdst,t8d + M ik

* stdmkj
sFdst,t8d,

s47d

− i"
]

] t
ri j

srdst,t8d = L ikstdrkj
srdst,t8d + M ik

* stdmkj
srdst,t8d,

s48d

i"
]

] t
mij

sFdst,t8d = L ikstdmkj
sFdst,t8d + M ikstdrkj

sFdst,t8d, s49d

i"
]

] t
mij

srdst,t8d = L ikstdmkj
srdst,t8d + M ikstdrkj

srdst,t8d, s50d

with

L i jstd = − Jsdi+1j + di−1jd + 2Udi j„ufistdu2 + rii
Fst,td…,

s51d

M i jstd = Udi j„fistd2 + mii
Fst,td…. s52d

The time-dependent HFB equations are a closed set of self-
consistent equations that describe the coupled dynamics of
the condensate and noncondensate components of a Bose
gas. It can be checked that they preserve important conser-
vation laws such as the number of particles and energy. The
conservation properties of the HFB equations can also be
understood by the fact that these equations can also be de-
rived using Gaussian variational methodsf7g. These methods
always yield a classical Hamiltonian dynamics which guar-
antees probability conservation. Because they are local in
time they can be decoupled by a mode decomposition.sSee
Appendix A for details.d

VIII. SECOND-ORDER EXPANSION

A. Equations of motion

1. Full second order

The second-order contribution toG2 is described in terms
of the setting-sun, Fig. 2(b), and the basketball, Fig. 2(c)
diagrams. The basketball diagram is independent of the mean

field and is constructed with only quartic vertices. The
setting-sun diagram depends onf and contains only three-
point vertices. The second-orderG2

s2d effective action can be
written as

G2
s2dff,Gg = iSU

ND2E dtidtjfibstdf jb8st8d

3fGij
bb8st,t8dGijdd8st,t8dGij

dd8st,t8d

+ 2Gij
bd8st,t8dGijdd8st,t8dGij

db8st,t8dg

+ iS U

2ND2E dtidtj8fGijbb8st,t8dGij
bb8st,t8d

3Gijdd8st,t8dGij
dd8st,t8d + 2

3Gijbb8st,t8dGij
bd8st,t8dGijdd8st,t8dGij

db8st,t8dg.

s53d

To simplify the notation, let us introduce the following defi-
nitions f23g:

Pi jst,t8d = −
1

2
Gijabst,t8dGij

abst,t8d, s54d

Jijabst,t8d = − Dst,t8dGijabst,t8d, s55d

Dst,t8d = fibstdf jast8dGij
bast,t8d − Pi jst,t8d, s56d

L̄i ja
b st,t8d = − Gij

cbst,t8dGijcast,t8d, s57d

Li j a
b st,t8d = − Gij

bcst,t8dGijacst,t8d, s58d

Qi j
acst,t8d = − ffidstdf jbst8d + Gijdbst,t8dgGij

abst,t8dGij
dcst,t8d

+ Ji j
acst,t8d. s59d

With the above definitions we find from Eqs.s24d and s26d
the following equations of motion:

hb
a"]tfi

bstd = zHFB
f + iS2U

N D2E dtj8f jbst8dfPi jst,t8dGji
bast8,td

+ L̄i jc
b st,t8dGij

acst,t8dg, s60d

hc
a"]tGij

cbst,t8d = zHFB
G + iS2U

N D2

fi
astd E dtk9fkcst9d

3fPikst,t9dGkj
cbst9,t8d + L̄ik d

c st,t9dGkj
dbst9,t8dg

+ iS2U

N D2E dt9fQikd
a st,t9d

+ Lik
cast,t9dficstdfkdst9dgGkj

dbst9,t8d, s61d

wherezHFB
f and zHFB

G are defined in Eq.s45d. For explicit
expressions in terms ofrsF,rd and msF,rd see Appendix B.
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2. 2PI-1/N expansion

The 2PI effective action is a singlet underOsNd rotations.
It can be shown that all graphs contained in anOsNd expan-
sion can be built from the irreducible invariants[23]: f2,
TrsGnd, and TrsffGnd, with n,N. The factors ofN in a
single graph contributing to the same 1/N expansion have
then two origins: a factor ofN from each irreducible invari-
ant and a factor of 1/N from each vertex. The leading-order
large N approximation scales proportional toN, the NLO
contributions are of order 1, and so on. At leading order only
the first term of Eq.(44) contributes. At the next-to-leading-
order level, if we truncate up to second order in the coupling
strength, the double-bubble is totally included but only cer-
tain parts of the setting-sun and basketball diagrams are in-
cluded: the first term in both of the integrals of Eq.(53),

G2
s2d1/Nff,Gg = iSU

ND2E dtidtjfibstdf jb8st8d

3fGij
bb8st,t8dGijdd8st,t8dGij

dd8st,t8dg

+ iS U

2ND2E dtidtj8fGijbb8st,t8dGij
bb8st,t8d

3Gijdd8st,t8dGij
dd8st,t8dg. s62d

The equations of motion under this approximation are the
ones obtained for the full second-order expansion but with

L=L̄=0, andQ=J.
In Appendix B we explicitly write the equations of motion

in terms of the spectral and statistical functions. We end this
section by emphasizing that the only approximation intro-
duced in the derivation of the equations of motion presented
here is the truncation up to second order in the interaction
strength. These equations depict the nonlinear and non-
Markovian quantum dynamics, which we consider as the pri-
mary distinguishing features of this work. It supersedes what
the second-order kinetic theories currently presented can do,
their going beyond the HFB approximation notwithstanding.
For example, Ref.[39] presents a kinetic theory approach
that includes binary interactions to second order in the inter-
action potential but uses the Markovian approximation. In
Ref. [44] the authors gave a non-Markovian generalization to
the quantum kinetic theory derived by Walseret al. [8] by
including memory effects. However in that work symmetry-
breaking fieldsf and anomalous fluctuationsm are ne-
glected.

B. Conservation laws

For a closed(isolated) system the mean total number of
particlesN and energy are conserved quantities as they are
the constants of motion for the dynamical equations.

Particle number conservation is a consequence of the in-
variance of the Hamiltonian under a global phase change.
The mean total number of particles is given by

kN̂l = o
i

kF̂i
†F̂il = o

i
Sufiu2 + rii

sFd −
1

2
D = N. s63d

The kinetic equation forN is then

d

dt
kN̂stdl = o

i

2 ReSfistd
]

] t
fi

*stdD
+ lim

t−.t8
S ]

] t
rii

sFdst,t8d +
]

] t8
rii

* sFdst8,tdD = 0.

s64d

All three approximations we have considered, namely,
HFB, 1/N expansion, and full second-order expansion, con-
serve particle number. This can be shown by plugging in the

kinetic equation ofkN̂stdl [Eq. (65)] the equation of motion
for the mean field and the normal statistical propagator[Eqs.
(45) and (46), Eqs. (B3) and (B4), and Eqs.(B10) and
(B11)], and canceling terms. It is important to note that even
though total population is always conserved there is always a
transfer of population between condensate and nonconden-
sate atoms.

While number conservation can be proved explicitly,
proving total-energy conservation is not obvious as the
Hamiltonian cannot be represented as a linear combination
of the relevant operators. It is clear that the exact solution of
a closed system is unitary in time and hence disallows any
dissipation. However, the introduction of approximation
schemes that truncate the infinite hierarchy of correlation
functions at some finite order with causal boundary condi-
tions may introduce dissipation[13].

To discuss energy conservation we can use the
f-derivable criteria[45] which state that nonequilibrium ap-
proximations in which the self-energyS is of the form
dF /dG, with F a functional ofG, conserve particle number,
energy, and momentum. All the approximations we consider
in this paper aref derivable and thus they obey energy,
particle number, and momentum conservation laws. For
HFB, F=G2

s1d, for the full second-order expansion,F=G2
s1d

+G2
s2d, and for the second-order next-to-leading-order 1/N

expansion,F=G2
s1d+G2

s2d1/N. See Eqs.(25), (43), (53), and
(62). For a detailed discussion of the complete next-to-
leading-order 1/N expansion see Refs.[22,23] and refer-
ences therein.

C. Zero-mode fluctuations

The spectrum of fluctuations above the condensate in-
cludes a zero mode. This mode is the Goldstone boson asso-
ciated with the breaking of global phase invariance by the
condensate. It is analogous to the collective modes which
arise in the spectrum of fluctuations around a bubble[46].
The zero mode is essentially nonperturbative. In linearized
theory, it introduces an artificial infrared divergence in low-
dimensional models. For this reason linearized theory is ac-
tually improved if the contribution from this mode is ne-
glected altogether[47]. A different way to deal with the zero
mode has been proposed by Gardiner[48] and Morgan[30].
Here the theory is written in terms of operators which ex-
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change particles between zero and nonzero modes, conserv-
ing the total particle number, and one further operator which
changes total particle number. The contribution from the zero
mode is then subtracted by expressing the normal and
anomalous densities in terms of the former alone. However,
from a physical point of view the zero mode exists and is
quantum in nature. We may think of it as the limit of Gar-
diner and Zoller’s[9] “condensate band ” when the width of
the band shrinks to zero. There are both fundamental and
practical reasons why isolating and subtracting the zero
mode is not as compelling in our case as in the problems
discussed by Gardiner and Morgan. In the problem we dis-
cuss, the initial state is a coherent state rather than a proper
state of the total particle number. As the total particle number
is not very high quantum fluctuations in the total particle
number are real and non-negligible. Discarding these fluc-
tuations would spoil the integrity of the formalism. Also,
because the 2PI formalism goes beyond the linearized ap-
proximation, the zero mode does not have the impact it has
in the linearized formalism and it is not clear that subtracting
it necessarily leads to a better approximation. Therefore, in
this paper we shall not attempt to isolate the contributions
from the zero mode. A full nonperturbative treatment in the
future is certainly desirable.

IX. NUMERICAL IMPLEMENTATION

A. Exact solution

The fully quantal solution was found by evolving in time
the initial state with the Bose-Hubbard Hamiltonian given by

Eq. (1), so that uwstdl=e−si/"dĤtuws0dl with uws0dl
=e−N/2eÎNF̂0

†
u0l0piÞ0u0li. To do the numerical calculations we

partitioned the Hilbert space in subspaces with fixed number
of atoms and propagated independently the projections of the
initial state on the respective subspaces. A subspace withNn
number of atoms andI number of wells is spanned bysNn

+ I −1d ! / Nn! sI −1d! states. This procedure could be done be-
cause the Hamiltonian commutes with the number operator

oiF̂i
†F̂ i, and thus during the dynamics the different sub-

spaces never get mixed. The number of subspaces used for
the numerical evolution were such that no change in plots of
the dynamical observables was detected by adding another
subspace. Generally forN atoms in the initial state, this con-
dition was achieved by including the subspaces betweenN
−4ÎN andN+4ÎN atoms.

B. Numerical algorithm for the approximated solution

The time-evolution equations obtained in Sec. VIII are
nonlinear integro-differential equations. Though the equa-
tions are very complicated, they can be solved on a com-
puter. The important point to note is that all equations are
causal in time, and all quantities at some later timetf can be
obtained by integration over the explicitly known functions
for times tø tf.

For the numerical solution we employed a time discreti-
zationt=nat, t8=mat, and took the advantage that due to the
presence of the lattice the spatial dimension is discrete(in-

dicesi and j). The discretized equations for the time evolu-
tion of the matricesrijnm

sF,rd, mijnm
sF,rd, andfin advance time-step-

wise in then direction for fixedm. Due to the symmetries of
the matrices only half of thesn,md matrices have to be com-
puted and the valuesrijnn

r =−i, mijnn
r =0 are fixed for all time

due to the bosonic commutation relations. As initial condi-
tions one specifiesri j 00

sF,rd, mij 00
sF,rd, andfi0.

To ensure that the discretized equations retain the conser-
vation properties present in the continuous ones one has to
be very careful in the evolution of the diagonal terms ofriinn

sFd

and take the limitm→n in a proper way:

rijn+1n+1
sF,rd − rijnn

sF,rd = srijn+1n
sF,rd − rijnn

sF,rdd ± sr jin+1n
* sF,rd − r jinn

* sF,rdd,

s65d

mijn+1n+1
sF,rd − mijnn

sF,rd = smijn+1n
sF,rd − mijnn

sF,rdd ± smjin+1n
sF,rd − mjinn

sF,rdd,

s66d

with the positive sign for the statistical propagators,sFd’s
and negative for the spectral ones,srd’s. We use the fourth-
order Runge-Kutta algorithm to propagate the local part of
the equations and a regular one-step Euler method to iterate
the nonlocal parts. For the integrals we use the standard trap-
ezoidal rule. Starting withn=1, for the time stepn+1 one
computes successively all entries withm=0, . . . ,n,n+1 from
known functions evaluated at previous times.

The time stepat was chosen small enough so that conver-
gence was observed, that is, further decreasing it did not
change the results. The greater the parameterUN/J, the
smaller is the time step required. The main numerical limi-
tation of the 2PI approximation is set by the time integrals,
which make the numerical calculations time and memory
consuming. However, within a typical numerical precision it
was typically not necessary to keep all the history of the two
point functions in the memory. A characteristic time, after
which the influence of the early time in the late-time behav-
ior is given by the inverse damping rate. This time is de-
scribed by the exponential damping of the two-point cor-
relator at timet with the initial time[23]. In our numerics we
extended the length of the employed time interval until the
results did not depend on it. In general, it was less than the
inverse damping rate. We used for the calculations a single
PII 400 MHz workstation with 260 Mb of memory. For a
typical run 1–2 days of computational time were required.

C. Initial conditions and parameters

To model the patterned loading the initial conditions as-
sumed for the numerical solutions werefi0=Ndi0, ri j 00

sFd

= 1
2di j , ri j 00

srd =−idi j , andmij 00
sFd =mij 00

srd =0. They correspond to an
initial coherent state withN atoms in the initial populated
well.

To study the kinetic-energy dominated regime we chose
for the simulations three different sets of parameters: The
first set was chosen to be in the very weak interacting re-
gime, I =3,N=6,J=1, andU /J=1/30. With this choice we
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wanted to show the validity of a mean-field approach to de-
scribe this regime and the corrections introduced by the
higher-order approximations. The second set of parameters
were I =3,N=8,J=1, andU /J=1/3. In this regime the ki-
netic energy is big enough to allow tunneling but the effect
of the interactions are crucial in the dynamics. Comparing
with the exact solution we could show the breakdown of the
mean-field approximation.

At the mean-field level(using the DNLSE) for a given
number of wells, the only relevant parameter for describing
the dynamics of the system is the ratioUN/J. For a fixed
UN/J the mean-field dynamics is independent of the number
of atoms in consideration. This is not the case in the exact
solution where bothUN/J and N are important. AsN is
increased, the bigger is the population in the initial coherent
matter field and therefore we expect a better agreement of the
truncated theories with the exact solution. To study the de-
pendence of the dynamics on the total number of atoms, the
third set of parameters in our solutions were chosen to beI
=2,J=1/2, andfixed NU/J=4 but we changed the number
of atoms from 20 to 80. To increase the number of atoms in
the calculations we had to reduce the number of wells to 2
due to the fact that the dimension of the Hilbert space scales
very badly withN and I.

X. RESULTS AND DISCUSSION

In Figs. 3–7 we show our numerical results. We focus our
attention on the evolution of the condensate population per
well, ufistdu2, the total atomic population per well,ufiu2

+rii
sFdst ,td− 1

2, the depletion per well or atoms out of the con-

densate,rii
sFdst ,td− 1

2, and the total condensate population,
oiufistdu2. The total population is also explicitly shown in the
figures to emphasize number conservation.

The quasimomentum distribution of the atoms released
from the lattice is important because it is one of the most
easily accessible quantities from an experiment. The quasi-
momentum distribution functionnk is defined as

nkstd =
1

I
o
i,j

eiksi−jdkFi
†stdF jstdl, s67d

where the quasimomentumk can assume discrete values
which are integral multiples of 2p / Ia, with I the total num-
ber of lattice sites anda the lattice spacing.

The basic features of the plots can be summarized as fol-
lows.

(a) In the very weak interacting regime(Fig. 3) the dy-
namics of the atomic population per well resembles the Rabi

FIG. 3. Comparisons between the exact solution(solid line), the HFB approximation(boxes), the second-order largeN approximation
(pentagons), and the full 2PI second-order approximation(crosses) for the very weak interacting regime. The parameters used wereI
=3,N=6,J=1, andU /J=1/30. The time is given in units of" /J. In the plots where the population, condensate, and depletion per well are
depicted the top curves correspond to the initially populated well solutions and the lower to the initially empty wells. Notice the different
scale used in the depletion plot. In the momentum distribution plot the upper curve corresponds to thek= ±2p /3 intensities and the lower
one to thek=0 quasimomentum intensity.
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oscillation phenomenon. Notice that even though there are
three wells, periodic boundary conditions enforce equal evo-
lution of the initial empty ones. In this regime damping ef-
fects remain very small for the time depicted in the plots.
The numerical simulations show a general agreement be-
tween the different approaches with the exact solution. The
effect of including higher-order terms in the equations of
motion introduce small corrections which improve the agree-
ment with the exact dynamics. This shows up in the plots of
the condensate population and depletion, where the small
differences can be appreciated better. The second-order 1/N
expansion gives an improvement over the HFB and the com-
plete second-order perturbative expansion almost matches
perfectly with the exact solution. In the duration depicted in

the plots of Fig. 3 the total condensate constitutes an impor-
tant fraction of the total population. Regarding the quasimo-
mentum distribution we observe that similar to the spatial
distribution where the initial configuration and periodic
boundary conditions reduce the three-well system to a
double-well one, they enforce equal evolution of the ±2p /3
quasimomentum intensities. Thek=0 and ±2p /3 intensities
oscillate with the same frequency as the atomic population
per well, both are also well described by the approximations
in consideration.

(b) In the intermediate regimewe can see the effect of the
interactions in the dynamics. They modulate the oscillations
in the population per well and scatter the atoms out of the
condensate.

(c) In Fig. 4 we plot the numerical solution for the param-
etersI =3,N=8,J=1, andU /J=1/3. In contrast to the case
of the very weak interacting regime, it is only at very early
times that any of these approximations is close to the exact
solution. Even though none of them are good after the first
oscillation, the HFB approximation is the only one that fails
to capture the exponential decrease of the condensate popu-
lation. This is expected, because even though this approxi-
mation goes beyond mean-field theory and takes into account
the most important scattering effects, it includes the effects
of collisions only indirectly through energy shifts, and breaks
down outside the collisionless regime where multiple-
scattering effects are important. In contrast, the exponential
decay of the condensate is present in the second-order ap-
proximations. Nonlocal parts of the self-energy included in
them encode scattering effects responsible for damping. It is
important to point out that, even though we observe the col-
lapse of the condensate population, the total population is
always conserved: As the condensate population decreases,
the number of atoms out of the condensate increases.

(2) Comparing the two second-order approaches we ob-
serve that the full second-order expansion gives a better de-
scription of the dynamics than the 1/N solution only in the
regime where the perturbative solutions are close to the exact

FIG. 4. Comparisons for the caseI =3,N=8,J=1, and U /J
=1/3. The time isgiven in units of" /J. In the plots the abbrevia-
tion 1st is used for the initially occupied well and 2nd for the
initially empty wells. In the quasimomentum plotsq=2p /a is the
reciprocal lattice vector witha the lattice spacing.

FIG. 5. Comparison between the evolution of the atomic population per well forI =2,J=1/2,NU/J=4, andN=20,40, and 80. Time is
in units " /J. In the plots P1 stands for the fractional atomic population in the initially populated wells and P2 for the population in the
initially empty wells. The number of atomsN is explicitly shown in each panel.
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dynamics. As soon as the third-order terms start to be impor-
tant, the large 1/N expansion gives a better qualitative de-
scription. This behavior is going to be appreciated better in
Figs. 5–7 as the number of atoms is increased(see discussion
below).

We observe as a general issue in this regime that, regard-
less of the fact that the second-order solutions capture the
damping effects, as soon as the condensate population de-
creases to a small percentage of the total population, they
depart from the exact dynamics: the second-order approaches
predict faster damping rates. The overdamping is more se-
vere in the dynamics of the population per well than in the
condensate dynamics. The failure can be understood under
the following lines of reasoning. At zero temperature con-
densate atoms represent the most “classical” form of a matter
wave. When they decay, the role of quantum correlations
become more important. At this point the higher-order terms
neglected in the second-order approximations are the ones
that lead the dynamical behavior. Thus, to have a more ac-
curate description of the dynamics after the coherent matter
field has decayed, one needs a better treatment of correla-
tions.

Damping effects are also quite noticeable in the quantum
evolution of the quasimomentum intensities. Similar to what
happens to the spatial observables, the HFB approximation
fails completely to capture the damping effects present in the
evolution of the Fourier intensities whereas the second-order
approaches overestimate them.

(3) In Figs. 5–7 we explore the effect of the total number
of atoms on the dynamics. In the plots we show the numeri-
cal solutions found for a double-well system with fixed ratio
UN/J=4 and three different values ofN,N=20,40, and 80.
We present the results obtained for the evolution of the
atomic population per well in Fig. 5, the condensate popula-
tion per well and total condensate population in Fig. 6, and
the quasimomentum intensities in Fig. 7. To make the com-
parisons easier we scaled the numerical results obtained for
the three different values ofN by dividing them by the total
number of atoms. In this way for all the cases we start with
an atomic population of magnitude one in the initial popu-
lated well. In the exact dynamics we see that as the number
of atoms is increased the damping effects occur at slower
rates. This feature can be noticed in the quantum dynamics
of all the observables depicted in Figs. 5–7. The decrease of

FIG. 6. Time evolution of the condensate population per well and the total condensate population, for the same parameters as in Fig. 5.
Time is in units of" /J. In the plots C1 stands for the fractional condensate population in the initially populated well, C2 for the fractional
condensate population in the initially empty one, and CT for the total condensate fraction.

NONEQUILIBRIUM DYNAMICS OF OPTICAL-LATTICE-… PHYSICAL REVIEW A 69, 033610(2004)

033610-15



the damping rates as the number of atoms is increased is not
surprising because by changing the number of atoms we af-
fect the quantum coherence properties of the system. As
comment in Sec. III the collapse time of the condensate
population is approximately given bytcoll, trev /2pÎN. The
revival time is proportional toU−1 and varies withN for
fixed UN/J as trev~N/J, thus tcoll~ÎN increases withN as
observed in the numerical calculations. Besides damping
rates, the qualitative behavior of the exact quantum dynamics
is not affected very much as the number of atoms is in-
creased for a fixedUN/J.

The improvement of the 2PI approximations asN is in-
creased, as a result of the increase in the initial number of
coherent atoms, is in fact observed in the plots. Even though
the problem of underdamping in the HFB approximation and
overdamping in the second-order approaches are not cured,
as the number of atoms is increased, we do observe a better
matching with the full quantal solution. The 1/N expansion
shows the fastest convergence. Perhaps this issue can be
more easily observed in the quasimomentum distribution
plots, Fig. 7. The better agreement of the 1/N expansion
relies on the fact that even though the number of fields is
only 2 in our calculations, the 1/N expansion is an expan-
sion about a strong quasiclassical field configuration.

XI. CONCLUSIONS

In this work we have used the CTP functional formalism
for 2PI Green’s functions to describe the nonequilibrium dy-
namics of a condensate loaded in an optical lattice on every
third lattice site. We have carried out the analysis up to sec-
ond order in the interaction strength. This approximation is
introduced so as to make the numerical solution manageable,
but it is sufficient to account for dissipative effects due to
multiparticle scattering that are crucial even at early times.

Our formulation is capable of capturing the salient features
of the system dynamics in the regime under consideration,
such as the decay of the condensate population and the
damping of the oscillations of the quasimomentum and
population per well unaccounted for in the HFB approxima-
tion. However, at the point where an important fraction of
the condensate population has been scattered out, the second-
order approximations used here predict an overdamped dy-
namics. To improve on this a better treatment of higher cor-
relations is required. One might try to include the full next-
to-leading-order largeN expansion without the truncation to
second order as done in Ref.[23] but it is not obvious that
this will lead to the required improvement. Alternatively, one
may try to adopt a stochastic approach, but the challenge will
be shifted to the derivation of a noise term(which is likely to
be both colored and multiplicative) which contains the ef-
fects of these higher correlations and the solution of the sto-
chastic equations. We hope to address this aspect of the prob-
lem in a future work.

Even though, as is clear in this paper, the second-order
2PI approximations fail to capture the fully correlated dy-
namics in the system, it has been proved to work at interme-
diate times when correlations are not negligible and standard
mean-field techniques fail poorly. Because of its success in
describing moderately correlated regimes, the second-order
approximations could become a useful tool for describing
experimental situations as the collapsing or colliding conden-
sate experiments[4] where striking dynamical behavior such
as collisional loss of condensate atoms has been observed.

In summary, we have presented an approach for the de-
scription of the nonequilibrium dynamics of a Bose-Einstein
condensate and fluctuations in a closed quantum field sys-
tem. The formalism allows one to go beyond the well-known
HFB approximation and to incorporate the nonlinear and
non-Markovian aspects of the quantum dynamics as manifest

FIG. 7. Dynamical evolution of the quasimomentum intensities. The parameters used wereI =2,J=1/2,NU/J=4, andN=20,40, and 80.
Time is in units of" /J. In the plots ko denotes thek=0 quasimomentum component and k1 thek=p /a one(a the lattice spacing). The plots
are scaled to set the integrated quasimomentum density to one for allN.
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in the dissipation and fluctuations phenomena. The 2PI ef-
fective action formalism provides a useful framework where
the mean field and the correlation functions are treated on the
same footing self-consistently and that respects conservation
of particle number and energy. The CTP formalism ensures
that the dynamical equations of motion are also causal. In
their current form the scattering terms are nonlocal in time,
are hard to estimate analytically, and their calculation is nu-
merically demanding. However, this systematic approach can
be used as a quantitative means to obtain solutions in differ-
ent regimes and make comparisons with kinetic theory re-
sults where a Markovian approximation is assumed. We have
not made such comparisons in this work, but a future test of
the consequences of the Markovian assumption would be of
great interest.
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APPENDIX A: MODE EXPANSION OF THE HFB
EQUATIONS

To decouple the HFB equations we apply the well-known
Bogoliubov transformation to the fluctuation field:

w jstd = o
q

ui
qstdâq − vi

*qstdâq
†, sA1d

where sâq,âq
†d are time-independent creation and annihila-

tion quasiparticle operators and all the time dependence is
absorbed in the amplitudeshui

qstd ,vi
*qstdj. To ensure that the

quasiparticle transformation is canonical, the amplitudes
hui

qstd ,vi
*qstdj have to fulfill the following relationsf49g:

o
i

ui
qstdui

*kstd − vi
qstdvi

*kstd = dqk, sA2d

o
i

ui
qstdvi

kstd − vi
qstdui

kstd = 0. sA3d

In the zero-temperature limit, wherekâq
†âkl=0, the statistical

and spectral functions take the form

ri j
sFdst,t8d =

1

2o
q

fvi
qstdv j

*qst8d + uj
qst8dui

*qstdg, sA4d

ri j
srdst,t8d = io

q

fvi
qstdv j

*qst8d − uj
qst8dui

*qstdg, sA5d

mij
sFdst,t8d −

1

2o
q

fui
qstdv j

*qst8d + uj
qst8dvi

*qstdg, sA6d

mij
srdst,t8d − io

q

fui
qstdv j

*qst8d − uj
qst8dvi

*qstdg. sA7d

Replacing Eqs.sA4d–sA7d by Eqs.s46d–s50d and using the
constraintssA2d and sA3d we recover the standard time-
dependent equations for the quasiparticle amplitudesf7g:

i"]tfistd = − Jffi+1std + fi−1stdg + Ufufistdu2 + 2rii
sFdst,tdgfistd

+ Umii
sFdst,tdfi

*std, sA8d

i"
]

] t
ui

qstd = − Jfui+1
q std + ui−1

q stdg + 2Ufufistdu2

+ rii
sFdst,tdgui

qstd

− Ufmii
sFdst,td + fistd2gvi

qstd, sA9d

− i"
]

] t
vi

qstd = − Jfvi+1
q std + vi−1

q stdg

+ 2Ufufistdu2 + rii
sFdst,tdgvi

qstd

− Ufmii
* sFdst,td + fistd*2gui

qstd. sA10d

Equations sA8d–sA10d correspond to a set ofIs2I +1d
coupled ordinary differential equations, whereI is the total
number of lattice sites. They can be solved using standard
time propagation algorithms. Once the time-dependent qua-
siparticle amplitudes are calculated we can derive the dy-
namics of physical observables constructed from them as a
function of time, such as the average number of particles in a
well, nistd, etc.

APPENDIX B: SECOND-ORDER EQUATIONS
OF MOTION

Here we explicitly write the equations of motion of the
1/N and full second-order approximations.

To simplify the notation let us introduce the functions

Vi j
sFdff,gg = f i j

sFdsti,tjdgi j
sFdsti,tjd −

1

4
ff i j

srdsti,tjdgi j
srdsti,tjdg,

sB1d

Vi j
srdff,gg = f i j

sFdsti,tjdgi j
srdsti,tjd + f i j

srdst,t8dgi j
sFdsti,tjd. sB2d

Using the spectral and statistical functions and settingN
equal to 2 the equations of motion derived in Sec. VII can be
written as follows:

(1) Full second-order expansion: If we take the complete
contribution of the setting-sun and basketball diagrams, the
equations of motion take the form
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i"]ti
fi = − Jffi+1stid + fi−1stidg + Usufiu2 + 2rii

sFddfi + Umii
sFdfi

* − 2U2o
k
E

0

ti
dtksfkVik

srdfr,r*g + fkVik
srdfm,m*g + fk

*Vik
srd

3fm,rgdrki
sFd − 2U2o

k
E

0

ti
sfk

*Vik
srdfr,r*g + fk

*Vik
srdfm,m*g + fkVik

srdfm* ,r*gdmki
sFd+ 2U2o

k
E

0

ti
dtksfkVik

sFdfr,r*g + fkVik
sFd

3fm,m*g + fk
*Vik

sFdfm,rgdrki
srd + 2U2o

k
E

0

ti
sfk

*Vik
sFdfr,r*g + fk

*Vik
sFdfm,m*g + fkVik

sFdfm* ,r*gdmki
srd, sB3d

− i"]ti
ri j

sFd = − Jfri+1j
sFd sti,tjd + ri−1j

sFd sti,tjdg + 2Usufiu2 + rii
sFddri j

sFd + Usmii
* sFd + fi

*2dmij
sFd− 2U2o

k
E

0

ti
dtksfifk

*Vik
srdfr,rg + 2fifkVik

srd

3fr,m*g + 2fi
*fk

*Vik
srdfm,rgdrkj

sFd− 2U2o
k
E

0

ti
dtkhVik

srdfr,Dg + 2fi
*fksVik

srdfr,r*g + Vik
srdfm,m*gdjrkj

sFd

− 2U2o
k
E

0

ti
dtks2fifk

*Vik
srdfm* ,rg + fifkVik

srdfm* ,m*g + 2fi
*fkVik

srdfr* ,m*gdmkj
sFd− 2U2o

k
E

0

ti
dtkhVik

srdfm* ,Yg

+ fi
*fk

*s2Vik
srdfr,r*g + 2Vik

srdfm,m*gdjmkj
sFd+ 2U2o

k
E

0

t j
dtksfifk

*Vik
sFdfr,rg + 2fifkVik

sFdfr,m*g + 2fi
*fk

*Vik
sFd

3fm,rgdrkj
srd+ 2U2o

k
E

0

t j
dtkhVik

sFdfr,Dg + 2fi
*fksVik

sFdfr,r*g + Vik
sFdfm,m*gdjrkj

srd+ 2U2o
k
E

0

t j
dtks2fifk

*Vik
sFdfm* ,rg

+ fifkVik
sFdfm* ,m*g + 2fi

*fkVik
sFdfr* ,m*gdmkj

srd+ 2U2o
k
E

0

t j
dtkhVik

sFdfm* ,Yg + 2fi
*fk

*sVik
sFdfr,r*g + Vik

sFdfm,m*gdjmkj
sFd,

sB4d

− i"]ti
ri j

srd = − Jfri+1j
srd sti,tjd + ri−1j

srd sti,tjdg + 2Usufiu2 + rii
sFddri j

srd + Usmii
* sFd + fi

*2dmij
srd− 2U2o

k
E

t j

ti
dtksfifk

*Vik
srdfr,rg + 2fifkVik

srd

3fr,m*g + 2fi
*fk

*Vik
srdfm,rgdrkj

srd− 2U2o
k
E

t j

ti
dtkhVik

srdfr,Dg + 2fi
*fksVik

srdfr,r*g + Vik
srdfm,m*gdjrkj

srd

− 2U2o
k
E

t j

ti
dtks2fifk

*Vik
srdfm* ,rg + fifkVik

srdfm* ,m*g + 2fi
*fkVik

srdfr* ,m*gdmkj
srd− 2U2o

k
E

t j

ti
dtkhVik

srdfm* ,Yg

+ 2fi
*fk

*sVik
srdfr,r*g + Vik

srdfm,m*gdjmkj
srd, sB5d

i"]ti
mij

sFd = − Jfmi+1j
sFd sti,tjd + mi−1j

sFd sti,tjdg + 2Usufiu2 + rii
sFddmij

sFd + Usmii
sFd + fi

2dri j
sFd− 2U2o

k
E

0

ti
dtks2fi

*fkVik
srdfm,r*g + fi

*fk
*Vik

srd

3fm,mg + 2fifk
*Vik

srdfr,mgdrkj
sFd− 2U2o

k
E

0

ti
dtkhVik

srdfm,Yg + 2fifksVik
srdfr,r*g + Vik

srdfm,m*gdjrkj
sFd

− 2U2o
k
E

0

ti
dtksfi

*fkVik
srdfr* ,r*g + 2fi

*fk
*Vik

srdfr* ,mg + 2fifkVik
srdfm* ,r*gdmkj

sFd− 2U2o
k
E

0

ti
dtkhVik

srdfr* ,Dg

+ 2fifk
*sVik

srdfr,r*g + Vik
srdfm,m*gdjmkj

sFd+ 2U2o
k
E

0

t j
dtks2fi

*fkVik
sFdfm,r*g + fi

*fk
*Vik

sFdfm,mg + 2fifk
*Vik

sFdfr,mgdrkj
srd

+ 2U2o
k
E

0

t j
dtkhVik

sFdfm,Yg + 2fifksVik
sFdfr,r*g + Vik

sFdfm,m*gdjrkj
srd+ 2U2o

k
E

0

t j
dtksfi

*fkVik
sFdfr* ,r*g + 2fi

*fk
*Vik

sFd

3fr* ,mg + 2fifkVik
sFdfm* ,r*gdmkj

srd+ 2U2o
k
E

0

t j
dtkhVik

sFdfr* ,Dg + 2fifk
*sVik

sFdfr,r*g + Vik
sFdfm,m*gdjmkj

srd, sB6d
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i"]ti
mij

srd = − Jsmi+1j
srd sti,tjd + mi−1j

srd sti,tjdd + 2Usufiu2 + rii
sFddmij

srd + Usmii
sFd + fi

2dri j
srd+ 2U2o

k
E

t j

ti
dtks2fi

*fkVik
srdfm,r*g + fi

*fk
*Vik

srd

3fm,mg + 2fifk
*Vik

srdfr,mgdrkj
srd+ 2U2o

k
E

t j

ti
dtkhVik

srdfm,Yg + fifks2Vik
srdfr,r*g + 2Vik

srdfm,m*gdjrkj
srd

+ 2U2o
k
E

t j

ti
dtksfi

*fkVik
srdfr* ,r*g + 2fi

*fk
*Vik

srdfr* ,mg + 2fifkVik
srdfm* ,r*gdmkj

srd+ 2U2o
k
E

t j

ti
dtkhVik

srdfr* ,Dg

+ 2fifk
*sVik

srdfr,r*g + Vik
srdfm,m*gdjmkj

srd, sB7d

with

Di j
sF,rd = Vi j

sF,rdfr,r*g + 2Vi j
sF,rdfm,m*g, sB8d

Yi j
sF,rd = 2Vi j

sF,rdfr,r*g + Vi j
sF,rdfm,m*g. sB9d

Second-order 1/N expansion:

i"]ti
fi = − Jffi+1stid + fi−1stidg + Usufiu2 + 2rii

sFddfi + Umii
sFdfi

*− U2o
k
E

0

ti
dtkPik

srdsfkrki
sFd + fk

*mki
sFdd

+ U2o
k
E

0

ti
dtkPik

sFdsfkrki
srd + fk

*mki
srdd, sB10d

− i"]ti
ri j

sFd = − Jfri+1j
sFd sti,tjd + ri−1j

sFd sti,tjdg + 2Usufiu2 + rii
sFddri j

sFd + Usmii
* sFd + fi

*2dmij
sFd− U2o

k
E

0

ti
dtksfifk

*Vik
srdfr,rg + fifkVik

srd

3fr,m*g + fi
*fk

*Vik
srdfm,rgdrkj

sFd− U2o
k
E

0

ti
dtkhVik

srdfr,Pg + fi
*fks2Vik

srdfr,r*g + Vik
srdfm,m*gdjrkj

sFd

− U2o
k
E

0

ti
dtksfifk

*Vik
srdfm* ,rg + fifkVik

srdfm* ,m*g + fi
*fkVik

srdfr* ,m*gdmkj
sFd− U2o

k
E

0

ti
dtkhVik

srdfm* ,Pg + fi
*fk

*sVik
srd

3fr,r*g + 2Vik
srdfm,m*gdjmkj

sFd+ U2o
k
E

0

t j
dtksfifk

*Vik
sFdfr,rg + fifkVik

sFdfr,m*g + fi
*fk

*Vik
sFdfm,rgdrkj

srd

+ U2o
k
E

0

t j
dtkhVik

sFdfr,Pg + fi
*fks2Vik

sFdfr,r*g + Vik
sFdfm,m*gdjrkj

srd+ U2o
k
E

0

t j
dtksfifk

*Vik
sFdfm* ,rg + fifkVik

sFd

3fm* ,m*g + fi
*fkVik

sFdfr* ,m*gdmkj
srd+ U2o

k
E

0

t j
dtkhVik

sFdfm* ,Pg + fi
*fk

*sVik
sFdfr,r*g + 2Vik

sFdfm,m*gdjmkj
sFd, sB11d

− i"]ti
ri j

srd = − Jfri+1j
srd sti,tjd + ri−1j

srd sti,tjdg + 2Usufiu2 + rii
sFddri j

srd + Usmii
* sFd + fi

*2dmij
srd− U2o

k
E

t j

ti
dtksfifk

*Vik
srdfr,rg + fifkVik

srd

3fr,m*g + fi
*fk

*Vik
srdfm,rgdrkj

srd− U2o
k
E

t j

ti
dtkhVik

srdfr,Pg + fi
*fks2Vik

srdfr,r*g + Vik
srdfm,m*gdjrkj

srd

− U2o
k
E

t j

ti
dtksfifk

*Vik
srdfm* ,rg + fifkVik

srdfm* ,m*g + fi
*fkVik

srdfr* ,m*gdmkj
srd− U2o

k
E

t j

ti
dtkhVik

srdfm* ,Pg + fi
*fk

*sVik
srd

3fr,r*g + 2Vik
srdfm,m*gdjmkj

srd, sB12d
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i"]ti
mij

sFd = − Jfmi+1j
sFd sti,tjd + mi−1j

sFd sti,tjdg + 2Usufiu2 + rii
sFddmij

sFd + Usmii
sFd + fi

2dri j
sFd− U2o

k
E

0

ti
dtksfi

*fkVik
srdfm,r*g + fi

*fk
*Vik

srd

3fm,mg + fifk
*Vik

srdfr,mgdrkj
sFd− U2o

k
E

0

ti
dtkhVik

srdfm,Pg + fifksVik
srdfr,r*g + 2Vik

srdfm,m*gdjrkj
sFd

− U2o
k
E

0

ti
dtksfi

*fkVik
srdfr* ,r*g + fi

*fk
*Vik

srdfr* ,mg + fifkVik
srdfm* ,r*gdmkj

sFd− U2o
k
E

0

ti
dtkhVik

srdfr* ,Pg + fifk
*s2Vik

srd

3fr,r*g + Vik
srdfm,m*gdjmkj

sFd+ U2o
k
E

0

t j
dtksfi

*fkVik
sFdfm,r*g + fi

*fk
*Vik

sFdfm,mg + fifk
*Vik

sFdfr,mgdrkj
srd

+ U2o
k
E

0

t j
dtkhVik

sFdfm,Pg + fifks2Vik
sFdfr,r*g + Vik

sFdfm,m*gdjrkj
srd+ U2o

k
E

0

t j
dtksfi

*fkVik
sFdfr* ,r*g + fi

*fk
*Vik

sFdfr* ,mg

+ fifkVik
sFdfm* ,r*gdmkj

srd+ U2o
k
E

0

t j
dtkhVik

sFdfr* ,Pg + fifk
*s2Vik

sFdfr,r*g + Vik
sFdfm,m*gdjmkj

srd, sB13d

i"]ti
mij

srd = − Jfmi+1j
srd sti,tjd + mi−1j

srd sti,tjdg + 2Usufiu2 + rii
sFddmij

srd + Usmii
sFd + fi

2dri j
srd+ U2o

k
E

t j

ti
dtksfi

*fkVik
srdfm,r*g + fi

*fk
*Vik

srd

3fm,mg + fifk
*Vik

srdfr,mgdrkj
srd+ U2o

k
E

t j

ti
dtkhVik

srdfm,Pg + fifksVik
srdfr,r*g + 2Vik

srdfm,m*gdjrkj
srd

+ U2o
k
E

t j

ti
dtksfi

*fkVik
srdfr* ,r*g + fi

*fk
*Vik

srdfr* ,mg + fifkVik
srdfm* ,r*gdmkj

srd+ U2o
k
E

t j

ti
dtkhVik

srdfr* ,Pg + fifk
*s2Vik

srd

3fr,r*g + Vik
srdfm,m*gdjmkj

srd, sB14d

with

Pi j
sF,rd = Vi j

sF,rdfr,r*g + Vi j
sF,rdfm,m*g. sB15d

In the above equations we have simplified the notation replacingfkstkd by fk andmkjstk,tjd by mkj.
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