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Abstract
The general solution of Laplace and Poisson equations in multiple-connected domains, in terms of the

group of automorphism, is summarized. The particular application to the analysis of rods under torsion
is presented. Di�erent generalizations are discussed.

1 Introduction
The study of the behavior of rods under torsion is fundamental in the design of structural elements. For this
reason it is one of the classical problem in the theory of elasticity [1], [2], [3]. At present, there are some
analytical solutions found for simple shapes as those de�ned by circles, annulus, ellipses or other elementary
geometrical forms. In any other cases, numerical methods as the �nite element one, are necessary[5].

At his respect, it is worth notice that a wide variety of technological problems related not only to torsion
of bars, but also in connection with electric power transmission, the heat transport etc. can be reduced to
the determination of harmonic functions and Green functions in a multiply connected domain. In fact, the
cylindrical symmetry present in a large variety of cases, allows one to restrict the original problem to the
solution of the Laplace, or the Poisson equation, in a two dimensional domain with holes. In general, the
boundaries could be of any geometrical form, making the exact solution of the problem quite di�cult or
even impossible.

We are particularly interested in the solution of the Laplace and the Poisson equations in the presence of
a system of hollowed tubes with circular section and Dirichlet boundary conditions: the unknown function
(namely the stress function, the temperature, the electric potential, etc) is given on the boundaries de�ned
by the holes. In recent years, this problem has received considerable attention in engineering literature,
where various approximate methods of varying degrees of accuracy have been devised in order to solve it
[4], [5]. However, the construction of harmonic functions in multiply connected domains is well known and
extensive mathematical literature exists on the subject [6]. The general results that we shall summarize
here are already indicated in a nice mathematical paper published by Burnside in 1891 [7]. This kind of
problems can be exactly solved, even in the case in which the holes are not circular but have any shape,
in terms of the so-called "automorphic functions" which are a generalization for surfaces with many holes
of the elliptic functions, solutions of the harmonic problems in surfaces with only one hole. These exact
analytic solutions are given in terms of series called "Poincare theta series". It is worth mentioning that
there are recent contributions on constructive theory of functions in multiply connected domains designed to
cope with a variety of problems, most of them related to �uid dynamics, mainly developed by D.G. Crowdy
and collaborators [8].

The main purpose of this paper is to recall this general method of solution based on the group of
automorphisms of the domain de�ned by the section of the structure under study. In a 1974 paper [4] we
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have already presented the exact solution of the electrostatic problem for a system of parallel cylindrical
conductors based on the mentioned method. The idea of the present paper is to translate all the procedure
to the problem of elasticity. In particular, to the analysis of rods under torsion. In this case one needs to deal
explicitly with Green functions, because the equation of the stress function is not homogeneous. We show
that these exact solutions are easy to handle in practical technological applications related to the analysis
of torsion of bars.

We present in the next Section 2, in a simplify way, the mathematical background that is necessary for
dealing with the general solution of Laplace and Poisson equations in a multiply connected domain. Section
3 is devoted to the presentation and solution of a simple case of interest in the theory of elasticity, to be
taken as an example. Finally in Section 4 we state our conclusions.

2 Mathematical Background
2.1 Projective Transformations
The exact solution of two-dimensional harmonic problems in multiply connected domains, the basis of our
problems of interest, rests heavily on the systematic use of projective transformations. We shall therefore
present here a summary of the elementary properties of these transformations that are used in the rest of
the paper.

A projective transformation is a conformal transformation of the form

z′ = T (z) =
(a z + b)
(c z + d)

(1)

These transformations are the only conformal transformations that map the whole of the complex plane
onto itself. They also map circles or straight lines into circles or straight lines. The parameters a, b, c, d
are in general complex. Notice however that the transformation (1) depends only on three of them because,
being a homogeneous transformation, it does not change if we multiply all parameters by the same complex
constant. We can therefore always choose one of them to be equal to 1 or alternatively, as we shall do in
what follows, we can impose the normalization condition ad−bc = 1. Another important point to be noticed
is that since we have three parameters at our disposal, we can always �nd a projective transformation that
maps three given points into three other given points in the complex plane.

It is very convenient to associate to the projective transformation T (z) a 2× 2 matrix

τ =
(

a b
c d

)
, (2)

with det τ = ad− bc = 1. This matrix arises very naturally if one introduces homogeneous coordinates in (1)
and writes z = x/y; z′ = x′/y′, all of them being complex numbers. Then it follows that (1) can be written
in matrix notation as (

x′

y′

)
=

(
a b
c d

) (
x
y

)
. (3)

Using this representation it can now be easily checked that if we perform two successive projective
transformations

z′′ = T ′′(z) = T ′(T (z)) =
(a′′ z + b′′)
(c′′ z + d′′)

(4)

then the parameters of the resulting projective transformation T ′′(z) are given by a 2×2 matrix equal to the
product τ ′′ = τ ′ τ . Notice that τ ′′ is automatically normalized because of the properties of the determinants.
Therefore, the operation of performing successive projective transformations is entirely equivalent to the
matrix multiplication of the associated matrices. One therefore usually refers to the projective transformation
T ′′ as the product of the transformations T ′ T .
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We shall need very often the concepts of �invariant points� and �multiplier� of a given projective trans-
formation T (z). The equation

T (z) = z (5)
has in general two distinct complex roots that we shall denote by ξ and η and which are called the invariant
points of T . It may happen that ξ = η in which case the transformation T (z) is called parabolic, but we
shall never need to consider parabolic transformations in what follows, so from now on we shall assume that
the roots are di�erent.

The invariant points are easily obtained from the representation of T (z) in terms of homogeneous coor-
dinates. Notice that the couples (x, y) and (λx, λy) give the same complex number z = x/y. Let us now
compute the eigenvalue and the eigenvectors of τ . We shall �nd in general two complex eigenvalues λ1,2 and
the associated complex eigenvectors (x1, y1) and (x2, y2), respectively . So we conclude that the eigenvectors
of τ are the homogeneous coordinate representation of the invariant points. Then we �nd

ξ =
x1

y1
; η =

x2

y2
(6)

We �nally de�ne the multiplier κ as the ratio of the two eigenvalues of τ

κ =
λ1

λ2
(7)

so the eigenvectors and eigenvalues of τ determine the invariant points and the multiplier of T (z) respectively.
One can now use the three complex parameters ξ, η and κ to characterize the projective transformation T (z),
that in terms of these parameters can be written as

T (z)− ξ

T (z)− η
= κ

z − ξ

z − η
(8)

The parameter κ is called multiplier because one can always perform a particular projective transforma-
tion that maps (ξ, η) to (0,∞) as follows

z′ = Q(z) =
z − ξ

z − η
(9)

Consequently, the projective transformation changes according to T ′ = QT Q−1 In terms of the transformed
variable, (8) reads

T ′(z′) = κ z′ (10)
and the projective transformation T ′(z′) reduces to a scale transformation in the z′ complex plane. We
use below this property to relate two geometrical situations of interest. Namely, the case of a circle and a
straight line and the case of two coaxial cylinders.

An important point to be emphasized here is that one can always choose the ratio of the eigenvalues
λ1/λ2 in such a way that |κ| < 1. So we de�ne ξ as the invariant point determined from the eigenvector of
τ associated with the smallest eigenvalue (in magnitude).

Another useful concept that we need in what follows is that of �isometric circle� of a transformation T (z)
(and that of its inverse transformation T−1(z)). Given T (z), its inverse transformation has an associated
matrix τ−1, and is given by

T−1(z) =
(dz + b)

(−cz + a)
; da + bc = 1 (11)

The isometric circle of T (z)- denoted by I(T ) - is the circle de�ned by

|cz + d| = 1 (12)

so its center J and radius R are given by

R =
1
|c| ; J = −d

c
(13)
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Likewise the isometric circle of T−1(z) denoted by I(T−1) and de�ned by | − cz + a| = 1 has

R =
1
|c| ; J−1 =

a

c
(14)

These concepts are very important because the radii and centers of the isometric circles of some projective
transformations will be identi�ed with the radii and the centers of the cylindrical boundaries we are interested
in. Moreover, the fundamental result that we shall need in what follows is that T (z) maps its isometric circle
I(T ) into I(T−1) and the interior (or exterior) of I(T ) into the exterior (or interior) of I(T−1). Likewise,
T−1(z) maps I(T−1) into I(T ) and the interior (or exterior) of I(T−1) into the exterior (or interior) of I(T ).

Since a circle is uniquely determined by three points in the complex plane, and projective transformations
transform circles into circles and are also uniquely determined by stating how three given points in the
complex plane transform into three other given points, it is clear that one can always �nd a projective
transformation T that maps a given circle C into another given circle C ′. However, if C and C ′ have the
same radius, the problem of �nding T is particularly simple, because C will be the isometric circle of T , and
C ′ the isometric circle of T−1. The formulae written above allow us to �nd the parameters of T in terms of
the radius R and centers of the circles. We shall come back to this point when presenting the example in a
next section.

We shall need often to compute a power of a projective transformation, Tn(z), de�ned as the successive
application of T (z), n times. Clearly its associated matrix is τn, and the eigenvectors of τn are the same
as those of τ . Therefore, the invariant points of Tn(z) are the same as those of T (z). It follows that the
multiplier κn of Tn(z) is given by κn = κn, κ being the multiplier of T (z). This makes it simple therefore
to compute the powers of a projective transformation. If the invariant points of T (z) are mapped to (0,∞)
by the transformation z′ = S(z), then

Tn(z′) = κn z′

Consequently, from (8)
Tn(z)− ξ

Tn(z)− η
= κn z − ξ

z − η
(15)

Since |κ| < 1, when n →∞, κn → 0 and we see immediately that

lim
n→∞

Tn(z) = ξ (16)

This important result means that after a su�cient large number of transformations T , any point in the
complex plane is mapped into a point arbitrarily close to the invariant point ξ of T . One can rephrase this
result by saying that the successive images of a point z cluster at the invariant point ξ, where by image of z
we understand T (z). Moreover, one can easily show that T−1(z) has the same multiplier κ as T (z), but the
invariant points are interchanged: ξ′ = η and η′ = ξ . Then we can also conclude that

lim
n→∞

T−n(z) = η

2.2 General Solution of Laplace Equation
Just to make as clear as possible our presentation, let us start by considering the case of a system of
N cylindrical tubes placed above a plane. The plane is taken to be the real axis and the circular holes
representing the cylinders are taken in the upper half-plane. We shall restrict ourselves to this con�guration
since the case of N cylindrical tubes placed inside another cylinder can be transformed into the �rst case
by means of a projective transformation. This fact is explicitly used in the analysis of torsion of bars that
we present below. In the case presently under consideration one is interested in solving a two-dimensional
Dirichlet problem in a multiply connected domain with N + 1 boundaries -N circles and the real axis - in
which the unknown function φ(x, y) takes a constant value φi over the boundary and 0 on the plane. In this
case, it is very convenient to introduce a set of N + 1 harmonic functions called "harmonic measures" that
are solutions of the Laplace equation and each one with the following boundary condition: the ith harmonic
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measure ωi takes the value 1 on the ith boundary and zero on the others. Each tube and the plane have
their associated harmonic measure. The harmonic measures can be calculated once the Green function of
the system is known, but we shall obtain them in a di�erent way. Once the harmonic measures ωi(z) are
known, the solution of the Dirichlet problem in which φ(z) takes the value φi on the ith boundary is given
by

φ(z) =
N+1∑

i=1

φi ωi(z) (17)

as it can easily be checked by inspection. However, not all N + 1 harmonic measures can be independent of
each other. This can be seen considering the solution of the Dirichlet problem in which all φi = 1. Since a
harmonic function cannot have local maxima or minima, the solution is a constant equal to 1. Then

φ(z) =
N+1∑

i=1

ωi(z) = 1

We conclude then that there are only N independent harmonic measures that we shall take as being the ones
associated with the N cylindrical boundaries. Using the last expression to eliminate ωN+1 -the harmonic
measure of the plane-we �nd

φ(z) = φN+1 +
N∑

i=1

(φi − φN+1) ωi(z) (18)

so we see that the only relevant physical quantities of interest for the determination of the distribution we are
looking for, are the values the function takes measured with respect to the plane, as it was to be expected.
As we already stated, without loss of generality we shall set φN+1 = 0 in what follows.

The second step is to construct a set of N basic projective transformations Ti; (i = 1, · · · , N) de�ned as
follows: We call Ci the original circles representing the cylindrical tubes and C ′i their images with respect to
the plane (real axis). The parameters of the projective transformation Ti are entirely determined in terms
of the center and radius of the circle Ci. Remember that from

Ti(z) =
(aiz + bi)
(ciz + di)

one obtains that
Ri = |ci|−1

and
Ji = −di

ci
= i Ri di

The basic Ti's are called "generators". The identity and the products of any number of them and of their
inverses give rise to an in�nite set of projective transformations that form a group Tα called the "group
of automorphism" of the surface with N holes under consideration and is completely determined by the
geometry of the problem.

Now, after the construction of the group of automorphism of the surface, we can introduce a set of
analytic functions that are the building blocks of the harmonic measures. The basic object is the Poincaré
theta series de�ned as

θ(z, a) =
∑
α

1
(cα z + dα)2

1
(Tα(z)− aα)

(19)

where the summation extends to all the elements of the group of automorphism including the identity I.
The proof of the convergence of the Poincaré theta series is one of the basic results in Burnside's paper.
The key convergence factor is (cα z + dα)−2 , that occurs in every term of the series. This factor is always
smaller in modulus than 1 inside (or outside) the corresponding isometric circle. Now a fundamental result
concerning the group of automorphism states that the isometric circle of Tα is always inside the isometric
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circle of one of the generators, so we are sure that in the region of interest (outside the 2N circles Ci and
C ′i) this convergence factor is smaller than 1.

In terms of this Poincaré theta series, Burnside introduces N functions θ(z, Ji) (i = 1, · · · , N), where Ji

is the center of the circle Ci (the isometric circle of Ti). The integrals of these functions

φi(z)− φi(z0) =
∫ z

z0

θ(z, Ji) dz =
∑
α

ln
(

Tα(z)− Ji

Tα(z0)− Ji

)
(20)

form a basic set of N analytic functions in terms of which the harmonic measures can be constructed. In
this equation, z0 stands for an arbitrary point of the complex plane where φi(z) is normalized to zero. By
construction, these functions, called automorphic functions, satisfy the central property

φi(Tα(z)) = φi(z) (21)

for any element Tα of the group of automorphisms. These N analytic functions φi(z) themselves have a nice
physical interpretation which follows from three basic properties shown by Burnside:

• (i) The functions φi(z) are analytic functions of z for any value of z in the region outside the 2N holes.
Indeed, one can write φi(z) in the form

φi(z) = ln(z − Ji) +
∑

α 6=I

ln
(

z − Jiα

z − Jα

)
+ const. (22)

This means that in the case of an electrostatic problem, of more intuitive interpretation, Re φi(z) is
precisely the potential distribution generated by an in�nite set of sources located at the centers of
isometric circles. Since we have already mentioned that the centers of the isometric circles of any
element of the group are always inside some of the 2N circles or is analytic in the region outside the
cylindrical conductors.

• (ii) If we write the two harmonic functions associated with φi(z) = ui(z) + i vi(z) ; i = 1 · · ·N , then
the functions ui(x, y) = Reφi(z) are constant on the 2N circular boundaries and on the real axis. This
means that they are solutions of N Dirichlet problems in which the unknown takes some (yet to be
determined) constant values on the boundaries and on the real axis.

• (iii) ui(x, y) are single valued in the domain under consideration, but the conjugate functions vi(x, y)
are not.

We have already remarked that the functions ui(x, y) are the solutions of Dirichlet problems in which
the circular boundaries and the real axis are at constant values of the function under analysis. Let us now
consider the �ow q generated by the function ui(x, y). We can compute the total �ow per unit length going
out from the jth cylindrical tube. Using the Cauchy-Riemann relations, we �nd

qj =
∮

Γj

∂ui(x, y)
∂n

ds =
∮

Γj

∂vi(x, y)
∂s

ds = 2 π δij (23)

so we conclude that the harmonic functions ui(x, y) give the distribution corresponding to a physical situation
where the boundary Ci gives rise to a �ow per unit length qi = 2π, and all the other boundaries have zero
net �ow per unit length.

Let us go back for a moment to (22) and examine more closely the structure of the function whose real
part as we have just seen represents the distribution generated by the system of N cylindrical tubes kept at
some constant (but yet unknown) values but with a net �ow per unit length equal to 1 inside the ith tube
and zero on the others.

Finally, we come to the point of determining the boundary values of the set of ui(x, y). First note that
since they are de�ned up to an arbitrary constant, we can always choose this constant so as to make them
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vanish on the real axis. Going back to (20), this is accomplished by choosing φi(z0) = 0 and the normalization
point z0 somewhere on the real axis.

Let us now consider a point Aj on the jth circular boundary Cj . We know by the de�nition of the
projective transformation Tj that the point A′j = Tj(Aj) is on the image boundary C ′j . We can now
compute how much the analytic function φi(z) changes when going from the boundary Cj to its image C ′j
and de�ne a matrix by

Aij = φi (Tj(Aj))− φi(Aj) (24)
This matrix Aij is called the �period matrix� . Burnside showed that it is

• (a) real, so Aij gives directly the jump of potential ui(x, y) when going from Cj to C ′j

• (b)symmetric: Aij = Aji

• (c) positive de�nite (its eigenvalues are positive).

Before we embark on a discussion of how the period matrix is uniquely de�ned by the geometry of the
problem and is therefore an intrinsic property of the two-dimensional domain under consideration, we want
to show how from the knowledge of the N functions φi(z) and the period matrix Aij we can completely solve
the problem of the distribution of the function of interest of the system of cylindrical conductors. First we
compute the boundary values of φi(z) in terms of the period matrix. We make use of a property of the theta
series valid in the symmetric case under consideration:

θ(z, Ji) = −θ∗(z∗, Ji) (25)

and then (remember that z0 is real)
φi(z∗) = −φ∗i (z) (26)

so we �nd for the real part
ui(z∗) = −u∗i (z) (27)

but since A′j = Aj , we �nd the system of equations

ui(A′j) + ui(Aj) = 0 (28)
ui(A′j)− ui(Aj) = Aij (29)

from which we determine the boundary values of ui(x, y): : ui(A′j) = −ui(Aj) = 1/2 Aij

We can now determine the harmonic measures ωi(x, y) in terms of our set of functions ui(x, y). Since
each one of these is the solution of a Dirichlet problem in which the jth circular boundary is set at a value
1/2 Aij , using (30) we can write

ui(x, y) = −1
2

N∑

j=1

Aij ωj(x, y) (30)

and inverting it, we �nd

ωi(x, y) = −2
N∑

j=1

Cij uj(x, y) (31)

where the NxN matrix C with matrix elements Cij is given by the inverse of the period matrix. As the matrix
A is positive de�nite the inverse A−1 always exists. The fact that C = A−1 together with the last equation
solve our problem of determining the harmonic measures in terms of the real part of the function φ(z)
obtained by integrating the Poincare theta series and its associated period matrix Aij . We have therefore an
explicit algorithm that provides us with an exact solution for the problem under consideration. It is quite
interesting to note that the inverse of the period matrix is proportional to the corresponding coe�cients of
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the system under consideration (thermal resistance, capacities, etc.) . The solution to our problem is given
by the potential function

φ(z) =
N∑

i=1

φi ωi(x, y) (32)

that �nally provides the relationship

qi = −4π

N∑

j=1

Cij φj (33)

Before we end this section we want to make a comment about the period matrix Aij . We have de�ned
it as the jump of the function φi(z) between a point Aj on the boundary Cj and its image A′j = Tj(Aj) on
the boundary C ′. However, a fundamental result in the theory of harmonic functions in multiply connected
domains states that

Aij = φi (Tj(z))− φi(z) (34)
for any point z in the domain under consideration. Using 20 we can then write the period matrix as

Aij =
∫ Tj(z)

z

θ(z′, Ji)dz′ =
∑
α

ln
(

Tα(Tj(z))− Ji

Tα(z)− Ji

)
(35)

and this should be independent of z.
This series of logarithms has the same defect as the series (22) for the φi(z) functions, it is an exact

solution for the period matrix and the series is convergent, but there are in�nite cancelations of logarithms
involved. We shall give below an exact series for both φi(z) and Aij where this in�nite cancellation has
already been taken care of. To sum up, in order to solve the problem we are concerned with, one has to
compute the period matrix Aij using (35) and the function φi(z) using (20). The harmonic measures are
then given by (31) and the general solution by (32). Since (35) for Aij does not really depend on the variable
z that appears on the right-hand side, it should be clear that the period matrix is a purely geometrical factor
depending only on the geometrical con�guration of the boundaries involved.

Let us end this section by quoting the improved results for the function φi(z) and for the period matrix,
once the in�nite cancelation is worked out.

φi(z)− φi(z0) =
∑

α∈Oi

ln
(

z − Tα(ξi)
z − Tα(ηi)

z0 − Tα(ηi)
z0 − Tα(ξi)

)
(36)

with 1 = 1, · · · , N . The sum is restricted to the group elements belonging to the class Oi de�ned as containing
the identity I and those elements Tα such that does not end up with Tn

i or T−n
i . Consequently, the group

elements of the form TβTn
i or TβT−n

i are not to be included. These are precisely the elements that have
been summed up.

The similar improved formula for the period matrix reads

Aij = δij ln κi +
∑

α∈Oij

ln
(

ξi − Tα(ξj)
ξi − Tα(ηj)

ηi − Tα(ηj)
ηi − Tα(ξj)

)
(37)

Now the sum is restricted to the class Oij of group elements that do not have Tn
j on the right and Tm

i

on the left (n,m 6= 0). The identity is also excluded because it was explicitly indicated. Notice that this
last expression no longer exhibits the spurious dependence on the variable z making evident that Aij only
depends on the geometry of the problem.

We comment now on a criterion for the convergence of the series involved in (36) and (37). Remember
the de�nition of the anharmonic ratio of four points, namely,

(z1, z2, z3, z4) = (z1 − z2)(z3 − z4)/(z1 − z3)(z2 − z4)
= (T (z1), T (z2), T (z3), T (z4)) (38)
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where he have made explicit the fact that the anharmonic ratio is invariant under any projective transfor-
mation of the complex plane onto itself.

In both mentioned series, the argument of the logarithm is an anharmonic ratio. Consequently, we can
perform a projective transformation of the type (9) to obtain (for the case (36))

ln
(

z′ −Kαξ′i
z′ −Kαη′i

z′0 −Kαη′i
z′0 −Kαξ′i

)
(39)

while retaining its value. In this expression, Kα is the driving parameter for the convergence of the series.
In fact, having de�ned |Kα| < 1, one can expand the argument of the logarithm as

1 + Kα(ξ′i − η′i)(1/z′0 − 1/z′) + O(K2
α)

showing that the rate of convergence of the series is controlled by the smallness of Kα. The same arguments
apply to (37).

2.3 Green Function
For some applications of interest, as it is the present case of elasticity, due to the presence of an inhomogeneity
it is necessary to solve the Poisson equation. One can treat easily the presence of a source term by knowing
the Green function of the domain under consideration. Let us remember that the Green function G(p, q)
de�ned in a multiply-connected domain D bounded by a set of (M + 1) circles is the harmonic function of
D which vanishes at the boundary and has a logarithmic singularity at p = q, namely

G(p, q) = ln
∣∣∣∣

1
p− q

∣∣∣∣ + regular terms (40)

were the regular terms, necessary to ensure the boundary condition, can be explicitly expressed with the aid
of the automorphic group technology. In fact, the Green function can be written [6], [9] as

G(p, q) =
1
2

{
−

∑
α

ln
[
Tα(p)− q

Tα(p)− q̃

]
+

∑
α

ln
[
Tα(p̃)− q

Tα(p̃)− q̃

]

+
M∑

i,j=1

[φi(p)− φi(p̃)]
(
A−1

)
ij

Re [φi(q)− φi(q̃)]



 (41)

where p̃ and q̃ are the inverses of p and q with respect to one particular circle taken as the reference (for
example, the external one). Notice that the logarithmic singularity comes from the identity element of the
group. In this last expression φi(p) is the analytic function given in (36) and A is the period matrix given in
(37). From the expression above, and taking into account (21), it is evident that the Green function vanishes
on all the boundaries of the domain, as it should be.

Notice that we have been dealing here with the case of Dirichlet boundary conditions but the alternative
possibility of Neumann boundary conditions can be equally treated without further di�culties.

3 Torsion of Bars
After a brief account of the general problem of torsion of bars of any shape, we particularize our analysis to
the case of sections of circular shape and apply all the tools we have introduced in the previous section.

The particular case of bars in which the cylinder has one or several hollows is certainly of practical interest.
For this reason, our presentation points to this case that generalizes the typical problem of a cylinder with a
solid cross-section and which solution requires extensively the mathematical methods previously presented.

The cross-section of a cylinder of the kind considered is made up of a region D bounded by an external
contour Γ0 and a set of internal contours Γi ; i = 1, 2, · · · , N . Clearly [1], the torsion function, that we call
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Θ(z), must satisfy Laplace equation in D with the boundary condition in every contour imposed by the
equilibrium condition. As these constraints are not simple to be implemented, it is suitable to introduce the
so called stress function Ψ(z) by means of

∂Θ
∂x

= y + 2
∂Ψ
∂y

(42)

∂Θ
∂y

= −x− 2
∂Ψ
∂x

(43)

This function Ψ(z) satis�es the Poisson equation

∇2Ψ(z) = −1 (44)

with the property of being Ψ(Γ0) = 0 while taking constant values on the other contours that are a con-
sequence of the one valuedness, as a function of the coordinates, of the displacement due to the torsion.
Consequently, integrating on a closed contour, one has

∮
dΘ = 0 = −2

∮ (
∂Ψ
∂x

dy − ∂Ψ
∂y

dx

)
− 2

∮
(x dy − y dx) (45)

Being the last integral de area inside the integration contour, one can write for each contour
∮

Γi

∂Ψ(z)
∂ni

d` = Si (46)

where Si is the area circled by Γi.
Just to simplify the presentation of the solution, let us introduce still another auxiliary function χ(z)

such that
∇2χ(z) = −1 (47)

with the boundary condition χ(z ∈ Γj) = 0 ; j = 0, 1, 2, · · · , N . Taking pro�t now of the second Green
identity, one easily obtains

χ(z) =
1

2 π

∫

D

G(z, ζ) dSζ (48)

Just to �nally obtain the stress function, one has to include the solution of the homogeneous equation
that is written in terms of a set of parameters αi to be �xed in terms of the boundary conditions of Ψ(z),
as it was stated before, in order to get a one-valued torsion function. In this way one writes

Ψ(z) = χ(z) +
N∑

i=1

αi ωi(z) (49)

where ωi(z) are the harmonic measures that, as it was de�ned before, take the value 1 on the ith boundary
and zero on all the others.

In order to determine the parameters αi, one uses the condition (46) that in terms of the relation (49)
allows to write

Si =
∫

D

dSζ
1

2 π

∮

Γi

∂G(z, ζ)
∂ni

d` +
N∑

j=1

αj

∮

Γi

∂ωj

∂ni
d` (50)

Now, the third Green identity provides the relationship

1
2 π

∮

Γi

∂G(z, ζ)
∂ni

d` = −ωi(ζ)

while ∮

Γi

∂ωj

∂ni
d` = Aij

10



are the elements of the period matrix. Consequently one �nds that the parameters αi can be obtained from
the expression

N∑

j=1

Aij αj =
∫

D

ωi(ζ) dSζ + Si (51)

where Aij is the period matrix of the domain and Si the area of each hollow.
We end by presenting a closed expression for the factor K, torsional rigidity, that measures the stress

concentration and is of particular interest in connection with any design of bars subdue to torsion. We give
this factor in units of µ, the material dependent modulus of rigidity. Remember that this K factor coincides
with the polar moment of inertia of the section when this section is circular. In any other case it is smaller
than the polar moment of inertia [10]. Using the de�nition

K = 4
∫

D

Ψ(z) dSz + 4
N∑

i=1

αi Si (52)

the �nal result for the torsional rigidity is

K =
2
π

∫ ∫

D

G(z, ζ) dSζ dSz + 4
N∑

i,j=1

αi Aij αj (53)

This expression allows one to compute the K factor for the most general case of a bar section corresponding
to a multiply connected domain of circular boundaries.

3.1 Example
We consider, as an example of application of the general method just introduced, the case of a cylindrical
bar whose cross section is an annulus of internal radius a and external one b.

When we introduced the projective transformations and de�ned the multiplier κ, we called the attention
to the fact that one can always perform a particular projective transformation that maps the invariant
points (ξ, η) to (0,∞) by means of the mapping (9). This transformation connects the situation where we
are dealing with concentric circles to the one of a given circle an a straight line. In other words, if we
were interested in electric problems, this transformation connects the case of coaxial lines with a line over a
grounded plane. We present in Fig.(1) the alternatives geometries that we have just described.

With the parameters de�ned in Fig.(1), the transformation between both complex planes is

z = −ı
z′ − b

z′ + b
(54)

or equivalently
z′ = −b

z − ı

z + ı
(55)

and the generator of the group of automorphisms (1), taking into account (13), clearly results in

T (z) =
y0 z/R− ı R

(
y2
0/R2 − 1

)

ı z/R + y0/R
(56)

Notice that in the chosen geometry there is only one generator T (z) and the corresponding invariant
points, using (6) result at ξ = ı and η = −ı, respectively. On the other hand, the multiplier (7) results
κ = a2/b2.

In order to build up the Green function, one needs the harmonic measures ωi(z). Certainly, in the present
example there is only one of them. This function is normalized to 1 at the boundary of radius a. By using
the expression for φ(z) given in (36), that in the present case includes the only generator T (z), one has

φ(z) = ln
(

z − ξ

z − η

)
+ cte = ln

(
z − ı

z + ı

)
+ cte (57)

11
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y0

ξ = i
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T−1(z)
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a
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O

z z′

. .

Figure 1: The two di�erent geometries related to the annulus

that, written in terms of z′ (55) provides

ω′(z′) = Re {φ′(z′)} = ln
( |z′

b

)
+ cte (58)

that with the appropriate normalization to 1 at the border a, reads

ω′(z′) =
ln (|z′|/b)
ln (a/b)

(59)

It is worth remembering that when only one hole is present, the harmonic measure is directly the real
part of the automorphic function. With all the ingredients at our disposal, one can immediately write the
Green function of the problem in the z′-plane

G(p′, q′) = − ln
∣∣∣∣

p′ − q′

b− p′ q′∗/b

∣∣∣∣ +
ln (|p′|/b) ln (|q′|/b)

ln (a/b)

−Re

{ ∞∑
n=−∞

ln
[

b2n p′ − a2n q′

b2n p′ − a2n b2/q′∗

]}
(60)

This expression shows the singularity at p′ = q′ and vanishes at the boundaries, as it should be.
It is possible to give a more adequate form to the Green function by expanding the logarithm in the last

term and performing the sum over n, the group elements. To this end, it is convenient to introduce polar
coordinates, namely

p′ = ρ exp(i θ) (61)
q′ = ρ′ exp(i θ′) (62)

that verify
a ≤ ρ , ρ′ ≤ b (63)

Introducing, as usual, the notation ρ< to indicate the smaller of ρ and ρ′ and ρ> to indicate the larger of
them and after a little algebra, one ends with

G(ρ ei θ, ρ′ ei θ′) = − ln
(ρ<

b

)
+

ln (ρ/b) ln (ρ′/b)
ln (a/b)

+ F (ρ, ρ′) cos m(θ − θ′) (64)
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where
F (ρ, ρ′) =

∞∑
m=1

1
m

b2m

b2m − a2m

[(
ρ<

ρ>

)m

+
(

a2 ρ>

b2 ρ<

)m

−
(

ρρ′

b2

)m

−
(

a2

ρρ′

)m]
(65)

is the contribution coming from the mentioned expansion of the logarithm in (60). Going back to the
expressions (48) and to (10), one gets, after performing the corresponding integrals, the value of the torsion
modulus of the annulus

K =
π

2
(b4 − a4) (66)

that certainly coincides with the well known value, given for example in [10].
Clearly, this simple example was included because of its simplicity, just to show how the method is

implemented. In the more general cases one has to resort to approximate approaches dictated by the
required precision. For example, in the case of a triply connected domain, the automorphic group has now
two generators. This fact implies that the series involved in the solution of the problem cannot be summed up
directly. One can obtain approximate results by an appropriate selection of the most relevant contributions
to the series. In Ref. [4] the triple connected geometry was explicitly considered and an analysis of the
convergence of the series was done in terms of the relative distance between the center of the holes and of
their radius. It was shown that even in critical con�gurations, when boundaries are very near to one another,
the method provides accurate results.

4 Final Remarks
We have adapted the general method for solving the Laplace and the Poisson equations in the framework of
projective transformations and the group of automorphism of a surface to the case of torsion of bars.

We call the reader attention to our formula (53) for the torsional rigidity K, not only for its completely
general character and for being a quite simple tool for performing computations, but also because, up to our
present knowledge, it was not stated before.

We have shown, as a trivial example, how our method works in the simple case of a bar whose cross-
section is an annulus, obtaining the well known result for the K parameter in this case. The procedure to
obtain the torsional rigidity in more general geometries was also discussed.

One can ask oneself if the strong mathematical tool that we have presented is really necessary for obtaining
the result of the trivial example above. Obviously, this was only presented in order to see the method doing
its job but the important point to be stressed is that this method is absolutely general. It allows one to treat
the more complex case of cylindrical symmetry that you can think about. Moreover, it clearly goes beyond
the determination of the K factor because it provides the entire solution for the stress function and in this
way one can determine the complete distribution of tensions. It is also worth mention that with the same
technique, and using the Green identity, one can solve the problem with Neumann boundary conditions to
�nd the torsion function. In this case without going through the function χ(z).

The general approach we have presented here permits to consider cases where the circular geometrical
symmetry is not exact, once the case of the symmetric case is known, by means of the domain variational
theory, a mathematical method to systematically treat the general case of boundaries of any shape [11]. This
technique allows also the analysis of bars with polygonal cross-sections [12]. We hope to come back to these
points in a future publication.
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