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Abstract The paper deals with topology design of ther-
momechanical actuators. The goal of shape optimization is
to maximize the output displacement in a given direction
on the boundary of the elastic body, which is submitted
to a thermal excitation that induces a dilatation/contraction
of the thermomechanical device. The optimal structure is
identified by an elastic material distribution, while a very
compliant (weak) material is used to mimic voids. The
mathematical model of an actuator takes the form of a semi-
coupled system of partial differential equations. The bound-
ary value problem includes two components, the Navier
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Córdoba UNT/FRC - CONICET, Maestro M. López esq.
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equation for linear elasticity coupled with the Poisson
equation for steady-state heat conduction. The mechanical
coupling is the thermal stress induced by the temperature
field. Given the integral shape functional, we evaluate its
topological derivative with respect to the nucleation of a
small circular inclusion with the thermomechanical prop-
erties governed by two contrast parameters. The obtained
topological derivative is employed to generate a steepest
descent direction within the level set numerical procedure
of topology optimization in a fixed geometrical domain.
Finally, several finite element-based examples for the topol-
ogy design of thermomechanical actuators are presented.

Keywords Shape-topology optimization · Topological
derivative · Thermomechanical devices · Optimum design

1 Introduction

In this paper the topology design of thermomechanical actu-
ators is considered in two spatial dimensions for a linear
multiphysics model (Sigmund 1997; Kikuchi et al. 1998; Li
et al. 2004; Rubio et al. 2010). The boundary value problem
of elliptic type is given by the linearized elasticity coupled
with the steady-state heat conduction problem. The refer-
ence configuration of the structure is an open and bounded
domain � ⊂ R2, with Lipschitz boundary denoted as ∂�.
The topology is identified through the distribution of elas-
tic material within � and the voids are mimicked by a very
compliant (weak) material. Therefore, topological changes
of the reference domain are defined by the nucleation of
inclusions with the thermomechanical properties governed
by two contrast parameters. In order to determine the best
distribution of elastic material the method of topological
derivatives (Sokołowski and Żochowski 1999) is employed.
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The shape variations of boundaries and interfaces between
elastic and compliant materials are also allowed during
the shape-topological optimization. The displacement field
in the structure is determined within the framework of
linearized elasticity with thermally induced stresses. The
temperature field satisfies the steady-state heat conduction
equation. The state variables include the displacement field
u and the temperature field θ . The shape functional � �→
J (�) to be minimized is given by the line integral of g =
−u · e on the portion �� of the boundary ∂�. Hence, the
output displacement u on �� is maximized in a given direc-
tion e. For the sake of motivation, let us consider an example
which shows that the optimum design of the simple ther-
momechanical structure does not follow from an intuitive
reasoning, namely thermal distortion design of switching
device.

1.1 Simple example of a bar structure

Consider two bars AP and BP of the length l = L
2 and with

the joint at P , see Fig. 1. The bars are fixed at the points
A and B allowing for bar rotation. The length AB of the
isosceles triangle APB is 2a, while a is the design variable.
We set 2l = L = const , where a = l cos β = L

2 cos β is
varying, and h = l sin β = L

2 sin β. We want to specify the
configuration of two bars for which �h

L
is maximum within

the admissible configurations of 0 < β ≤ π
2 . The structure

is uniformly heated up to the temperature θ , which produces
a thermal distortion strain given by εθ = αθ , where α is
the thermal expansion coefficient. It is easy to derive the
expression for the non-dimensional displacement δ, namely

δ := �h

L
= 1

2

[√
sin2 β + 2αθ + α2θ2 − sin β

]

and evaluate its derivatives

Sβ := ∂

∂β

(
�h

L

)
= − δ cos β

2δ + sin β
< 0

and

Sθ := ∂

∂θ

(
�h

L

)
= 1

2

(
α + α2θ

2δ + sin β

)
.

Since the sensitivity derivative Sβ in function of the angle
β, decreasing in the interval (0, π

2 ], thus the maximum is
located at β = β0, where 0 < β0 � 1 is a small value of
β inducing an upward displacement. In particular, β = π

2
is actually the worst case. It is interesting to note that the
maximal value of �h due to combined rotation and exten-
sion of bars is reached at β = 0. This example provides
the insight into the principle of optimal design, where the
thermal strain induces large rotation of material elements.

(a)

(b)

Fig. 1 Truss subject to thermal effects: a initial guess and b optimal
layout

Calculating the value of δ for β = 0 and β = π
2 , their ratio

r can be expressed as follows:

r = δ(0)

δ(π/2)
=

√
1 + 2

αθ
.

Take, for instance bars of copper, for which α = 16 ×
10−6m/m◦C and assume the temperature θ = 100◦C. The
displacement ratio then equals r = 35.37. This calculation
illustrates how strong is the effect of induced rotation of
material element.

1.2 Topological derivative for inclusions

Without loss of generality the topological sensitivity anal-
ysis of the given shape functional � �→ J (�) can be
performed for a single circular inclusion ε �→ Bε(̂x). Here
Bε(̂x) = {‖x − x̂‖ < ε} is a ball with the fixed cen-
tre x̂ ∈ �, so the location of the ball in the reference
domain is uniquely determined by its centre. The insertion
of inclusion Bε into the reference domain results in the local
perturbation of material properties of the reference domain
and it makes the shape functional dependent on the small
parameter ε → 0. In particular, the topologically perturbed
counterpart of the shape functional ε �→ Bε �→ Jε(�) is
given by the line integral of gε = −uε · e on the portion
�� of the boundary ∂�. Hence, the output displacement uε

depends on the inclusion Bε with the centre x̂ and such that
ε → 0. The dependence of the shape functional results from
the state equation, where the small inclusion makes the coef-
ficients of Navier and Poisson equations dependent on the
characteristic function of Bε(̂x), with ε → 0 used for the
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asymptotic analysis. Thus, the interesting question from the
point of view of shape-topological optimization is the exis-
tence of the asymptotic expansion at ε = 0+ for the function
ε �→ Jε(�). Such an asymptotic expansion is established in
the paper. The first term of obtained asymptotic expansion is
the so-called topological derivative of the shape functional.
The topological derivative depends on the solutions u and
θ , as well as on their corresponding adjoint states p and ϕ,
all of them evaluated at the centre x̂. It also depends on the
material parameters of the background as well as on γ M

and γ T , which are called the contrast for mechanical and
thermal material properties of Bε, respectively. In this way
an optimal location of a small inclusion and its properties
can be determined in order to minimize the shape func-
tional associated with the model. The topological derivative
of the elastic energy associated with such a thermome-
chanical model has been derived by Giusti et al. (2013).
However, to the best of our knowledge the topological sen-
sitivity analysis of a shape functional specially designed
for topology optimization purposes of thermomechanical
actuators cannot be found in the literature. Therefore, we
derive with all details the topological asymptotic expansion
of the adopted shape functional and perform a complete
mathematical justification for the obtained formulas.

The paper is organized as follows. In Section 2 the topo-
logical derivative concept is introduced in the framework
of asymptotic analysis of a singular perturbed domain. The
semi-coupled system modeling the thermomechanical actu-
ator as well as the adopted shape functional are presented
in Section 3. The associated topological asymptotic expan-
sion is rigorously derived in Section 4. In Section 5 some
numerical experiments of topology optimization of thermo-
mechanical actuators are presented. Finally, the concluding
remarks and perspectives are given in Section 6.

2 Topological derivative concept

The mathematical model of the actuator is given by cou-
pled linear equations of elliptic type. Hence, it can be
shown by the standard procedure of the speed method
(Sokołowski and Zolésio 1992) that the elliptic boundary
value problem under consideration is well posed from the
point of view of shape optimization. In particular, it means
that by the elliptic regularity of the weak solutions to the
model, the existence of the shape and material derivatives
is ensured. This fact implies the existence of the shape
gradient for the boundary shape functional. Therefore, the
classical shape optimization method by boundary variations
can be applied for numerical solution of the shape opti-
mization problem. We are interested, however, in modern
approaches to shape-topological optimization, i.e., we want
to admit a broader family of admissible domains obtained

by non smooth perturbations of regular domains. In other
words, we perform the asymptotic analysis of solutions
to the state equation in the singularly perturbed geomet-
rical domains. The non smooth domain perturbations can
be analyzed only in the framework of asymptotic analysis
(Novotny and Sokołowski 2013) because such perturbations
cannot be described by bilipschitzian mappings of the speed
method. The singular perturbations include the insertion of
holes or cavities into the reference domain. It is known
(Novotny and Sokołowski 2013) that the holes or cavities
can be considered as the limit case of inclusions for the limit
passage of the so-called contrast parameters. For numerical
solution of optimum design problems it is useful to insert
inclusions made of a different material characterized by two
contrast parameters for elastic and thermal properties.

The starting point of the numerical procedure for struc-
tural optimum design is numerical evaluation of the topolog-
ical derivative. Actually, the topological derivative formula
is obtained at the continuous level. In order to use this
information for the purposes of identifying local minima or
maxima in a numerical optimization procedure we need the
discrete values of the topological derivative. The precision
of numerical evaluation of topological derivatives should be
sufficient for such an identification procedure. In the case
of minimization problems, we select the negative part of the
level-set function associated with the topological derivative
evaluated in the reference domain. Therefore, we are look-
ing for the local minima of the topological derivative for
one isolated circular inclusion Bε(̂x), for all x̂ ∈ �. Let us
recall that the topological derivative for one circular inclu-
sion Bε �→ Jε(�) is a function x̂ �→ T (̂x) defined in � such
that the following asymptotic expansion holds for ε → 0,

Jε(�) = J (�) + f (ε)T (̂x) + o(f (ε)). (2.1)

The function f (ε), such that f (ε) → 0+ with ε → 0+, can
be specified from the asymptotic analysis with respect to the
small parameter ε → 0.

The insertion of one inclusion results in perturbations of
the coefficients of the elliptic operators. For one inclusion,
we perform the sensitivity analysis of the perturbed coupled
equations with respect to the small parameter ε → 0. Such
an analysis gives rise for ε > 0 of the shape gradient of
the specific shape functional ε �→ Jε(�). By the limit tran-
sition ε → 0+ the topological derivative of the functional
is obtained as a function of the point x̂ ∈ �. This means
that for fixed ε there are known two expansions of the cost
ε �→ j (ε) := Jε(�), with respect to the small parameters
δ → 0 and ε → 0+, respectively

• for ε > 0,

j (ε + δ) = j (ε) + δj ′(ε) + O(δ2), (2.2)
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• for ε = 0+,

j (ε) = j (0) + f (ε)T (̂x) + o(f (ε)). (2.3)

By j ′(ε) is denoted the classical shape derivative of the cost
functional Jε(�) with respect to the shape perturbations
of the boundary of inclusion Bε(̂x). The second formula of
asymptotic type is established for the radius ε = 0+
of the inclusion. Therefore, we are going to determine the
unknown function

x̂ �→ T (̂x), (2.4)

by the method of asymptotic analysis. We recall (Żochowski
1988) that there is a relation between the two formulas (2.2)
and (2.3), namely:

T (̂x) = lim
ε→0+

j ′(ε)
f ′(ε)

. (2.5)

In addition, we point out that the topological derivative,
whenever it does exist, can be considered as an extension
of the shape derivative of the cost functional, since the
topological derivative can be evaluated in the domain �

as well as on its boundary ∂�. See for instance applica-
tions of the topological derivative concept in the context
of inverse problems (Hintermüller et al. 2012), structural
topology optimization (Mróz and Bojczuk 2012), image
processing (Hintermüller and Laurain 2009), multi-scale
material design (Amstutz et al. 2010) and mechanical mod-
eling including damage (Allaire et al. 2011) and fracture
(Van Goethem and Novotny 2010) evolution phenomena.

3 Problem formulation

Let us now introduce the thermomechanical semi-coupled
model. The displacement field is determined within linear
elasticity with thermally induced stresses for isotropic mate-
rials. The temperature field is described by the steady-state
heat conduction equation. The state variables include the
displacement field and the temperature field.

3.1 Unperturbed Problem

The shape functional to be minimized is given by a line
integral

j (0) = J (�) = J�(u) := −
∫

��

e · u, (3.1)

where �� is a part of the boundary ∂� and the structural dis-
placement u has to be maximized in a given unity direction
e.

The vector function u solves the following thermome-
chanical equilibrium problem:

u ∈ V(�) :
∫

�

S(u) · (∇v)s = 0 ∀v ∈ V(�). (3.2)

Some terms in the above equation require explanation. The
Cauchy stress tensor S(u) is given by

S(u) = C((∇u)s − αθ I) = σ(u) − βθ I, (3.3)

where (∇u)s is used to denote the symmetric part of the
gradient of the displacement field u, i.e.

(∇u)s := 1

2
(∇u + (∇u)). (3.4)

In addition, C denotes the fourth-order elasticity tensor,
which for isotropic materials is given by

C = 2μI + λ(I ⊗ I), (3.5)

where μ and λ are the Lamé coefficients. The second order
tensor σ(u) is related to the total displacement field by the
Hooke’s law

σ(u) := C(∇u)s, (3.6)

while the coefficient β is given by

β = α(2μ + 3λ), (3.7)

where α is the thermal expansion coefficient. In terms of
Young’s modulus E and Poisson ratio ν, there are

μ = E

2(1 + ν)
, λ = νE

(1 + ν)(1 − 2ν)
. (3.8)

For plane stress assumption λ and β must be replaced
respectively by λ� in (3.5) and β� in (3.7), where

λ� = 2μλ

λ + 2μ
= νE

1 − ν2
, β� = 2α(μ + λ�). (3.9)

The space of kinematically admissible displacements is
defined as

V(�) :=
{
φ ∈ H1(�) : φ|�u

= 0
}

, (3.10)

with H1(�) := H 1(�;R2) and �u is used to denote a part
of the boundary ∂� where the displacement u is prescribed.

From these elements, the equilibrium equation (3.2) leads
to the following variational problem: Find the displacement
field u ∈ V(�), such that∫

�

σ(u) · (∇v)s =
∫

�

βθdiv(v) ∀v ∈ V(�), (3.11)

where the scalar function θ is the solution to the following
variational problem: Find the temperature field θ ∈ H(�),
such that∫

�

q(θ) · ∇η +
∫

�

bη = 0 ∀η ∈ H0(�), (3.12)
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with b used to denote a heat source in �. The heat flux
vector field is defined as

q(θ) = −K∇θ, (3.13)

where K is a second order tensor representing the thermal
conductivity of the medium. In the isotropic case, the tensor
K can be written as

K = kI, (3.14)

being k the thermal conductivity coefficient. The set H(�)

and the space H0(�) are respectively defined as

H(�) :=
{
φ ∈ H 1(�) : φ|�θ

= θ
}

, (3.15)

H0(�) :=
{
φ ∈ H 1(�) : φ|�θ

= 0
}

, (3.16)

with �θ used to denote a part of the boundary ∂� where the
temperature θ is prescribed by a given function θ .

Let us also introduce two adjoint auxiliary problems in
order to simplify further analysis. The mechanical auxil-
iary problem reads: find the adjoint displacement field p ∈
V(�), such that∫

�

σ(p) · (∇v)s =
∫

��

e · v ∀v ∈ V(�). (3.17)

The thermal auxiliary problem is stated as: find the adjoint
temperature field ϕ ∈ H0(�), such that∫

�

q(ϕ) · ∇η =
∫

�

βdiv(p) η ∀η ∈ H0(�). (3.18)

These adjoint problems result from the Lagrangian for-
malism, where the associated augmented Lagrangian is
minimized with respect to the states u and θ .

3.2 Perturbed problem

The perturbation to the basic problem is now introduced by
considering a pair of piecewise constant functions γ M

ε and
γ T
ε , which respectively affect the constitutive tensors C and

K in some small subdomain of the initial structure. In par-
ticular, the topologically perturbed counterpart of the shape
functional is given by

j (ε) = Jε(�) = J�(uε) := −
∫

��

e · uε. (3.19)

The vector function uε is the solution to the perturbed cou-
pled system, namely: Find the displacement field uε ∈
V(�), such that∫

�

σε(uε) · (∇v)s =
∫

�

βεθεdiv(v) ∀v ∈ V(�), (3.20)

where

σε(uε) := γ M
ε C(∇uε)

s = γ M
ε σ(uε), (3.21)

with the contrast on the elastic properties defined as

γ M
ε :=

{
1 in � \ Bε

γ M in Bε
. (3.22)

Based on the above definition, the perturbed coefficient βε

in (3.20) takes the form

βε := γ M
ε β. (3.23)

The scalar function θε solves the following perturbed varia-
tional problem: Find the temperature field θε ∈ H(�), such
that∫

�

qε(θε) · ∇η +
∫

�

bεη = 0 ∀η ∈ H0(�), (3.24)

where

qε(θε) := −γ T
ε K∇θε, bε := γ T

ε b, (3.25)

with the contrast on the thermal properties defined as

γ T
ε :=

{
1 in � \ Bε

γ T in Bε
. (3.26)

Finally, the topologically perturbed counterpart of the
mechanical adjoint problem (3.17) reads: Find the adjoint
displacement field pε ∈ V(�), such that
∫

�

σε(pε) · (∇v)s =
∫

��

e · v ∀v ∈ V(�), (3.27)

while the topologically perturbed counterpart of the ther-
mal adjoint problem (3.18) is given by: Find the adjoint
temperature field ϕε ∈ H0(�), such that
∫

�

qε(ϕε) · ∇η =
∫

�

βdiv(p) η ∀η ∈ H0(�). (3.28)

Remark 1 The arguments concerning the existence of the
topological derivative associated with the problem under
analysis can be found in Appendix A.

Remark 2 Since we are dealing with a topology optimiza-
tion problem in a fixed domain �, the optimal structure
is identified by the elastic material, while a very compli-
ant (weak) material is used to mimic voids, both distributed
within �. Therefore, we consider contrasts in the Young’s
modulus E (assuming the Poisson ratio ν as constant) and
in the thermal conductivity k only, which are respectively
given by γ M and γ T . In fact, by setting γ M → 0 and
γ T → 0, the transmission conditions on ∂Bε(̂x) degener-
ate to homogeneous Neumann boundary conditions in both
mechanical (3.20) and thermal (3.24) problems, respectively
representing a void and an ideal thermal insulation. The gen-
eral case is much more involved, so that we left it for future
work.
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4 Topological asymptotic analysis

Since the problem under consideration is linear, we firstly
set γ M = 1 and develop the topological asymptotic anal-
ysis for γ T �= 1. Next, we set γ T = 1 and develop the
analysis for γ M �= 1. Finally, the obtained results are super-
posed, leading to the associated topological derivative for
any pair of γ M and γ T . Let us start by evaluating the differ-
ence between the original and perturbed shape functionals
given respectively by (3.1) and (3.19), which leads to

J�(uε) − J�(u) = −
∫

��

e · (uε − u). (4.1)

4.1 Contrast on the elastic coefficients

Let us set γ T = 1 and develop the analysis for γ M �= 1.
In this case we have immediately that θε ≡ θ . By taking
v = uε − u in (3.27), we obtain the equality
∫

�

σε(pε) · (∇(uε − u))s =
∫

��

e · (uε − u). (4.2)

Now, let us set v = pε in (3.11) and (3.20). After evaluating
the difference between the obtained results we get

∫
�

σε(pε) · (∇(uε − u))s = 1 − γ M

γ M

∫
Bε

σε(pε) · (∇u)s

− (1 − γ M)

∫
Bε

βθdiv(pε). (4.3)

Therefore, after comparing the last two results with (4.1) we
have

J�(uε) − J�(u) = − 1 − γ M

γ M

∫
Bε

σε(pε) · (∇u)s

+ (1 − γ M)

∫
Bε

βθdiv(pε). (4.4)

Let us propose an ansätz for pε in the form pε = p + wε +
p̃ε, which allows us to choose wε as a solution to: Find the
exterior displacement field wε ∈ W1(R2)/R, such that
∫
R2

σε(wε) · (∇v)s = (1 − γ M)σ(p)(̂x) ·
∫

Bε

(∇v)s

∀v ∈ W1(R2)/R. (4.5)

where the weighted quotient space W1(R2)/R has been
introduced in Amstutz et al. (2014, App. C) to ensure
existence and uniqueness of a solution to the above exte-
rior problem. From Eshelby’s Theorem (Eshelby 1957;
1959), the exterior problem (4.5) admits an explicit solution,
namely

σε(wε) = Tσ(p)(̂x) in Bε, (4.6)

where T is a fourth order isotropic tensor written as

T = γ M 1 − γ M

1 + γ Mα2

(
α2I + α1 − α2

2(1 + γ Mα1)
I ⊗ I

)
, (4.7)

with the constants α1 and α2 given by

α1 = μ + λ

μ
, α2 = 3μ + λ

μ + λ
. (4.8)

See, for instance, the book (Novotny and Sokołowski
2013, Ch. 5, pp. 156). From Lemma 6 in Appendix A the
remainder p̃ε has an estimate of the form ‖p̃ε‖H1(�) ≈ o(ε).
Finally, by taking into account these last results, we have the
following expansion for the shape functional

J�(uε) − J�(u) = − πε2
Pσ(u)(̂x) · (∇p)s (̂x)

+ πε2β(1 + α1)
1 − γ M

1 + γ Mα1

× θ (̂x)div(p)(̂x) + o(ε2). (4.9)

where P is the Polya-Szëgo polarization tensor given by
Ammari and Kang (2007)

P= 1 − γ M

1 + γ Mα2

(
(1+ α2)I + 1

2
(α1 − α2)

1 − γ M

1 + γ Mα1
I ⊗ I

)
.

(4.10)

4.2 Contrast on the thermal coefficients

Let us now set γ M = 1 and develop the analysis for γ T �= 1.
By taking v = uε − u in (3.27), we obtain∫

�

σ(p) · (∇(uε − u))s =
∫

��

e · (uε − u). (4.11)

Now, let us set v = p in (3.11) and (3.20). After evaluating
the difference between the obtained results we get∫

�

σ(uε − u) · (∇p)s =
∫

�

β(θε − θ)div(p). (4.12)

Therefore, after comparing the last two results with (4.1) we
have

J�(uε) − J�(u) = −
∫

�

β(θε − θ)div(p). (4.13)

By setting η = θε − θ in (3.28) we obtain the following
equality∫

�

qε(ϕε) · ∇(θε − θ) =
∫

�

β(θε − θ)div(p), (4.14)

which leads to

J�(uε) − J�(u) = −
∫

�

qε(ϕε) · ∇(θε − θ). (4.15)
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Now, let us set η = ϕε in (3.12) and (3.24). After evaluating
the difference between the obtained results we get∫

�

qε(θε − θ) · ∇ϕε = (1 − γ T )

∫
Bε

q(θ) · ∇ϕε

+ (1 − γ T )

∫
Bε

bϕε. (4.16)

After comparing the last two results with (4.15) we finally
obtain

J�(uε) − J�(u) = − 1 − γ T

γ T

∫
Bε

qε(ϕε) · ∇θ

− (1 − γ T )

∫
Bε

bϕε. (4.17)

Let us propose an ansätz for ϕε in the form ϕε = ϕ + ϑε +
ϕ̃ε, which allows us to choose ϑε as a solution to: Find the
exterior temperature field ϑε ∈ W 1(R2)/R, such that∫

R2
qε(ϑε) · ∇η = (1 − γ T )q(θ)(̂x) ·

∫
Bε

∇η ∀η ∈ W 1(R2)/R, (4.18)

where the weighted quotient space W 1(R2)/R has been
introduced in Amstutz et al. (2014, App. C) to ensure exis-
tence and uniqueness of a solution to the above exterior problem.
The exterior problem (4.18) admits an explicit solution, namely

qε(ϑε) = γ T 1 − γ T

1 + γ T
q(ϕ)(̂x) in Bε. (4.19)

See, for instance, the book (Novotny and Sokołowski
2013, Ch. 5, pp. 144). From Lemma 7 in Appendix A we
have that the remainder ϕ̃ε has an estimate of the form
‖ϕ̃ε‖H 1(�) ≈ o(ε). From these last results, we have the
following expansion for the shape functional

J�(uε) − J�(u) = − πε2Pq(θ)(̂x) · ∇ϕ(̂x)

− πε2(1 − γ T )bϕ(̂x) + o(ε2), (4.20)

where P is the Polya-Szëgo polarization tensor given by
Ammari and Kang (2007)

P = 2
1 − γ T

1 + γ T
I. (4.21)

4.3 Topological derivative

Since the problem is linear, we can sum the obtained
expansions (4.9) and (4.20) to obtain

J�(uε) − J�(u) = − πε2
Pσ(u)(̂x) · (∇p)s (̂x)

+ πε2β(1 + α1)
1 − γ M

1 + γ Mα1
θ (̂x)div(p)(̂x)

− πε2Pq(θ)(̂x) · ∇ϕ(̂x)

− πε2(1 − γ T )bϕ(̂x) + o(ε2), (4.22)

which ensures the existence for the topological derivative
of the shape functional J (�) for f (ε) = πε2, provided
that the remainder has order o(ε2). Finally, the topological
derivative can be promptly identified, which is given by the
following closed formula

T (̂x) = − Pσ(u)(̂x) · (∇p)s (̂x) + β(1 + α1)
1 − γ M

1 + γ Mα1

× θ (̂x)div(p)(̂x) − Pq(θ)(̂x) · ∇ϕ(̂x)

− (1 − γ T )bϕ(̂x). (4.23)

For the reader convenience, we present the above formula in
standard index notation, namely

T (̂x) = − 1

2
α̃2(1 + α2)σij (u)(̂x)(∂ipj (̂x) + ∂jpi (̂x))

− 1

2
(α1 − α2)̃α1α̃2σii(u)(̂x)∂ipi (̂x)

+ β(1 + α1)̃α1θ (̂x)∂ipi (̂x)

− 2
1 − γ T

1 + γ T
qi(θ)(̂x)∂iϕ(̂x)

− (1 − γ T )bϕ(̂x). (4.24)

where the coefficients α̃1 and α̃2 are respectively given by

α̃1 = 1 − γ M

1 + γ Mα1
and α̃2 = 1 − γ M

1 + γ Mα2
(4.25)

Notice that the closed formula for the topological deriva-
tive depends only on the solution of the direct and adjoint
problems, given by (3.11), (3.12), (3.17) and (3.18), evalu-
ated at the point x̂. This derivative represents the sensitivity
of the multi-physics problem presented in Section 3 to the
insertion of a circular inclusion of radius ε and center at
an arbitrary point x̂ ∈ �, whose constitutive properties are
characterized by the contrasts γ M and γ T .

5 Numerical experiments

In this section two numerical examples of topology design
of thermomechanical actuators into plane stress assump-
tions are presented. The topology design algorithm devel-
oped by Amstutz and Andrä (2006) is adopted in order to
solve the optimization problem, which is based on the topo-
logical derivative concept together with a level-set domain
representation method. For further details of the algorithm
we refer to the work by Amstutz and Novotny (2010). In all
examples we consider the following constitutive properties:
E = 1 GPa (Young’s modulus), ν = 0.3 (Poisson’s ratio),
α = 1.0 × 10−6 K−1 and k = 1.0 W/mK. The contrast
parameters are given by γ M = γ T = 1.0 × 10−4, which
are used to mimic the voids. In the part of the boundary
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where nothing is specified, we consider homogeneous Neu-
mann boundary conditions in both problems (mechanical
and thermal). The direction e is given by a unit vector on
��. In addition, we do not consider a heat source, i.e. b = 0.
The thermomechanical problem (3.11), the steady-state heat
conduction problem (3.12) and the adjoint equations (3.17)
and (3.18) are solved by using the standard finite element
method (Zienkiewicz and Taylor 2000). The initial mesh is
generated from a regular grid of size 20 × 12, where each
resulting square is divided into four triangles, leading to 960
elements. Then, four steps of uniform mesh refinement are
performed during the iterative process. In the figures, black
and white are respectively used to represent solid and void,
whereas the color levels black/brown to yellow/white indi-
cate colder to hotter, respectively. Finally, the procedures
described by Campeão et al. (2014) were used to impose a
targeted final volume.

Remark 3 We point out that numerical results obtained in
the paper are not directly utilizable in engineering practice.
In particular, in practical designs all singularities of solu-
tions to state equations should be removed to avoid e.g.,
the damage. In addition, it is remarked that a local, mesh-
dependent optimal design was found for the problems under
consideration.

(a)

(b)

Fig. 2 Example 1. Domain and boundary conditions: a mechanical
problem and b heat problem

(a)

(b)

Fig. 3 Example 1. Results for different volume fractions: a 30 % and
b 50 %

5.1 Example 1: amplifier

The first example is the optimization of a displacement
amplifier. This device is used to amplify the displace-
ments in a given direction generated by thermal effects.
In particular, the design domain considered is presented in
Fig. 2, in which only one quadrant of the complete domain
is represented, based on horizontal and vertical symmetry
assumptions (the dashed-dot lines indicate the axes of sym-
metry). The objective is the maximization of the outward
output displacement in the direction e on �� in response to

Fig. 4 Example 1. Amplifier from Fig. 3b
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Fig. 5 Example 1. Effectiveness factor vs. final volume fraction

a thermal excitation imposed on �θ . In this case, the bound-
ary condition is given by a linear temperature distribution
on �θ , as shown in Fig. 2b. The material properties are opti-
mized in white subdomains, while in the light grey regions
of Fig. 2a and b the material properties are fixed.

In Fig. 3, the results for two different volume fractions
are shown. Also, in Fig. 4 a selected result is shown without
the symmetry boundary condition. The amplified deformed

(a)

(b)

Fig. 6 Example 1. Amplified deformed configurations and tempera-
ture distributions: a optimal configuration from Fig. 3b and b intuitive
solution

(a)

(b)

Fig. 7 Example 2. Domain and boundary conditions: a mechanical
problem and b thermal problem

configuration of a selected result is shown in Fig. 6a. In
order to analyze the results from a quantitative point of view
we define an effectiveness factor � := J�(uini)/J�(uopt ),

(a)

(b)

Fig. 8 Example 2. Results for different volume fractions: a 45 % and
b 60 %
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Fig. 9 Example 2. Inverter from Fig. 8b

where uini and uopt are the displacements of the initial
and optimized configurations, respectively. This effective-
ness factor can be viewed as a particularization of the
standard geometric advantage (GA) metric, used in the
design and performance studies of compliance mechanisms.
See for instance Howell et al. (2013). The GA measures
the relation between the obtained displacement uout when
the device is actuated by an input displacement uin, i.e.
GA := uout/uin. Here, the factor � measures the GA
with respect to the obtained displacement of the reference
(initial) configuration.

The variation of the effectiveness values � with respect
to the final volume fraction are presented in Fig. 5. From the
amplified deformed configurations we noticed that the actu-
ator generates the desired displacement. The behavior of the
effectiveness factor with respect to the final volume fraction
suggests that there exists a volume fraction close to the 40 %
where the displacement on �� is maximal in the direction e.
This value can be interpreted as an optimal volume fraction
whose associated effectiveness factor is � = 4.01.

After an inspection of the obtained results, we note the
presence of flexible hinges in the design (see Remark 3).

Fig. 10 Example 2. Effectiveness factor vs. final volume fraction

These hinges allow for high values of �. The hinges gener-
ated in optimal design, see Fig.6a, assure easy rotation of the
upper lever elements in order to produce maximal displace-
ment along the symmetry axis. Here, we can refer to the
simple example in Section 1.1 illustrating the optimal mode
of deformation. However, the hinges are undesirable for
obvious reasons. Actually, they can induce large local stress
concentration, so in real design the final material segments
should be used. Such a pathology is a consequence of the
adopted formulation based on compliance maximization.
How to avoid these hinges is a subject of recent research
and it is out of the scope of this paper (see, for instance,
the papers by Lee and Gea (2014) and Lopes and Novotny
(2016)). On the other hand, the results previously presented
can be interpreted, from an engineering point of view, as
a ring connected by a transversal bar. This intuitive solu-
tion is hinge-free and produces a displacement in the desired
direction e, but with an effectiveness factor smaller than
the one obtained through the methodology presented in this
paper. Actually, in Fig. 6 the amplified deformed configu-
rations of a selected optimal solution and from an intuitive
solution are presented (we recall that only a quarter of the
domain is modeled). Also, the temperature distribution field
in both devices are shown together with their associated
effectiveness factors �.

(a)

(b)

Fig. 11 Example 2. Amplified deformed configuration a for result
from Fig. 8b and temperature distribution (b)



Topology design of thermomechanical actuators

5.2 Example 2: inverter with eccentricity effect

The second example considers the same domain from
the previous experiment, however, the output displacement
region �� is changed as depicted in Fig. 7. This apparently
simple modification in the design domain actually results in
a completely different mechanism, since the optimizer seeks
an output displacement contrary to the natural movement
of the thermomechanical device. In addition, all symmetry
assumptions remain valid and the boundary condition for
thermal problem is given by a linear temperature distribu-
tion on �θ , as shown in Fig. 7b. The material properties
are optimized in white subdomains, while in the light grey
regions of Fig. 7a and b the material properties are fixed, as
in the previous example.

In Fig. 8, the results for two different volume fractions
are shown. In Fig. 9 a selected result is shown without
the symmetry boundary condition. The amplified deformed
configuration of a selected result is shown in Fig. 11a. Here,
also, we notice the presence of flexible hinges in the design
(see Remark 3). Referring to Figs. 8 and 9 it is seen that
the contact forces at hinge points with upper lever elements
induce the rotation moments producing large displacement
in the e-direction. The values for the effectiveness factor �

for the obtained results are presented in Fig. 10, where the
negative sign for � indicates the inversion of the direction
of the displacement (as shown in the amplified deformed
configuration Fig. 11a). Also, in this example, the effective-
ness factor has a minimum value between 45 % and 50 %
of volume fraction. This behavior suggests that there exists
a volume fraction where the displacement on �� is maximal
in the direction e.

6 Concluding remarks

In the paper the topological derivative of the tracking-type
shape functional for the semi-coupled thermomechanical
model are derived in two spatial dimensions. In order to
avoid complicated theoretical derivations such as the ones
presented by Giusti et al. (2013), the thermal expansion
coefficients have been fixed. By introducing contrasts on
the thermal conductivity coefficient and elastic modulus, the
derivations become much simpler, allowing us to focus on
the main contribution of the paper, namely: a simple and
analytical expression of the topological derivative to be used
in the design of thermal-mechanical actuators, where the
contrasts in the material properties are used just to mimic
voids. Actually, the information provided by the topological
derivative T (x̂) can be used as a steepest descent direction
in an optimal design algorithm. To illustrate this feature,
two numerical experiments associated with the topology

optimization of actuators have been presented. These simple
examples show the applicability of the proposed methodol-
ogy in the context of optimal design of thermomechanical
devices. Furthermore, we have shown that the proposed
methodology allows for finding the optimal volume fraction
after some realizations. That is, the volume of the actuator
which produces the maximal effectiveness factor � for a
given direction e. Finally, the remarkable simplicity of topo-
logical derivative formula (4.23) has to be noted: once the
temperature distribution θ (solution of (3.12)), displacement
field u (solution of (3.11)), thermal adjoint state ϕ (solu-
tion of (3.18)) and mechanical adjoint state p (solution of
(3.17)) are obtained in the original (unperturbed) domain
�, the topological derivative T (̂x) can be evaluated at all
x̂ ∈ � using standard postprocessing procedures. Therefore
the resulting topology design algorithms based on the topo-
logical derivative concept are in general very fast and easy
to implement.
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Appendix A: Existence of the topological derivative

The following results ensure the existence of the topological
derivative associated with the problem under analysis.

Lemma 4 Let θ and θε be solutions to (3.12) and (3.24),
respectively. Then we have that the following estimate holds
true

‖θε − θ‖H 1(�) ≤ Cε. (A.1)

Proof We start by subtracting the variational problem (3.12)
from (3.24). After some manipulations there is:∫

�

qε(θε − θ) · ∇η = (1 − γ T )

∫
Bε

q(θ) · ∇η

+ (1 − γ T )

∫
Bε

bη, (A.2)

where we have used the fact that qε(φ) = q(φ) and bε = b

in � \ Bε, and qε(φ) = γ T q(φ) and bε = γ T b in Bε. By
taking η = θε − θ as a test function in the above equation
we obtain the following equality
∫

�

qε(θε − θ) · ∇(θε − θ) = (1 − γ T )

∫
Bε

q(θ) · ∇(θε − θ)

+ (1 − γ T )

∫
Bε

b(θε − θ). (A.3)
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From the Cauchy-Schwartz inequality it follows that∫
�

qε(θε − θ) · ∇(θε − θ) ≤ C1‖q(θ)‖L2(Bε)
‖∇(θε − θ)‖L2(Bε)

+ C2‖b‖L2(Bε)
‖θε − θ‖L2(Bε)

≤ εC3‖θε − θ‖H 1(�), (A.4)

where we have used the interior elliptic regularity of func-
tion θ and the continuity of the function b at the point
x̂ ∈ �. Finally, from the coercivity of the bilinear form on
the left-hand side of (A.2), namely

c‖θε − θ‖2
H 1(�)

≤
∫

�

qε(θε − θ) · ∇(θε − θ), (A.5)

we obtain the result with the constant C = C3/c indepen-
dent of the small parameter ε.

Lemma 5 Let u and uε be solutions to (3.11) and (3.20),
respectively. Thenwehave that the followingestimate holds true

‖uε − u‖H1(�) ≤ Cε. (A.6)

Proof Let us subtract the variational problem (3.11) from
(3.20), so that after some manipulations we have:∫

�

σε(uε − u) · (∇v)s =
∫

�

β(θε − θ)div(v)

+ (1 − γ M)

∫
Bε

(σ (u) + βθ I) · (∇v)s

− (1 − γ M)

∫
Bε

β(θε − θ) div(v), (A.7)

where we have used the fact that σε(φ) = σ(φ) and βε = β

in � \ Bε, and σε(φ) = γ Mσ(φ) and βε = γ Mβ in Bε. By
taking v = uε − u as test function in the above equation we
obtain the following equality∫

�

σε(uε − u) · (∇(uε − u))s =
∫

�

β(θε − θ)div(uε − u)

+ (1 − γ M)

∫
Bε

(σ (u)

+ βθ I) · (∇(uε − u))s

− (1 − γ M)

∫
Bε

× β(θε − θ)div(uε− u). (A.8)

From the Cauchy-Schwartz inequality it follows that∫
�

σε(uε − u) · (∇(uε − u))s ≤ C1‖θε − θ‖L2(�)‖
∇(uε − u)‖L2(�)

+ C2‖σ(u) + βθ I‖L2(Bε)
‖

∇(uε − u)‖L2(Bε)

+ C3‖θε − θ‖L2(Bε)
‖

∇(uε − u)‖L2(Bε)

≤ C4‖θε − θ‖H 1(�)‖uε

− u‖H1(�) + εC5‖uε

− u‖H1(�), (A.9)

where we have used the interior elliptic regularity of func-
tion u and the continuity of the function β at the point
x̂ ∈ �. From Lemma 4 we have now∫

�

σε(uε − u) · (∇(uε − u))s ≤ C6ε‖uε − u‖H1(�). (A.10)

Finally, from the coercivity of the bilinear form on the left-
hand side of (A.7), namely

c‖uε − u‖2
H1(�)

≤
∫

�

σε(uε − u) · (∇(uε − u))s, (A.11)

we obtain the result with the constant C = C6/c indepen-
dent of the small parameter ε.

Lemma 6 Let p and pε be solutions to (3.17) and (3.27),
respectively. Thenwehave that the followingestimateholds true

‖pε − p‖H1(�) ≤ Cε. (A.12)

Proof After subtracting the variational problem (3.17) from
(3.27) we have:∫

�

σε(pε − p) · (∇v)s = (1 − γ M)

∫
Bε

σ (p) · (∇v)s, (A.13)

where we have used the fact that σε(φ) = σ(φ) in � \ Bε and
σε(φ) = γ Mσ(φ) in Bε. By taking v = pε−p as test function
in the above equation we obtain the following equality∫

�

σε(pε − p) · (∇(pε − p))s = (1 − γ M)

∫
Bε

σ (p)

·(∇(pε − p))s . (A.14)

From the Cauchy-Schwartz inequality it follows that∫
�

σε(pε − p) · (∇(pε − p))s ≤ C1‖σ(p)‖L2(Bε)
‖

∇(pε − p)‖L2(Bε)

≤ εC2‖pε − p‖H1(�), (A.15)

where we have used the interior elliptic regularity of func-
tion p. Finally, from the coercivity of the bilinear form on
the left-hand side of (A.13), namely

c‖pε − p‖2
H1(�)

≤
∫

�

σε(pε − p) · (∇(pε − p))s, (A.16)

we obtain the result with the constant C = C2/c indepen-
dent of the small parameter ε.

Lemma 7 Let ϕ and ϕε be solutions to (3.18) and (3.28),
respectively. Thenwehave that the followingestimate holds true

‖ϕε − ϕ‖H 1(�) ≤ Cε. (A.17)

Proof After subtracting the variational problem (3.18) from
(3.28) there is:∫

�

qε(ϕε − ϕ) · ∇η = (1 − γ T )

∫
Bε

q(ϕ) · ∇η, (A.18)
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where we have used the fact that qε(φ) = q(φ) in �\Bε and
qε(φ) = γ T q(φ) in Bε. By taking η = ϕε−ϕ as test function
in the above equation we obtain the following equality∫

�

qε(ϕε − ϕ) · ∇(ϕε − ϕ) = (1 − γ T )

∫
Bε

q(ϕ) · ∇(ϕε − ϕ).

(A.19)

From the Cauchy-Schwartz inequality it follows that∫
�

qε(ϕε − ϕ) · ∇(ϕε − ϕ) ≤ C1‖q(ϕ)‖L2(Bε)
‖

∇(ϕε − ϕ)‖L2(Bε)

≤ εC2‖ϕε − ϕ‖H 1(�), (A.20)

where we have used the interior elliptic regularity of func-
tion ϕ. Finally, from the coercivity of the bilinear form on
the left-hand side of (A.18), namely

c‖ϕε − ϕ‖2
H 1(�)

≤
∫

�

qε(ϕε − ϕ) · ∇(ϕε − ϕ), (A.21)

we obtain the result with the constant C = C2/c indepen-
dent of the small parameter ε.
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