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ABSTRACT
In this paper we extend a methodology developed recently to study type-III intermittency considering different

values of the noise intensity and the lower boundary of reinjection (LBR). We obtain accurate analytic expressions
for the reinjection probability density (RPD). The proposed RPD has a piecewise definition depending on the non-
linear behavior, the LBR value and the noise intensity. The new RPD is a sum of exponential functions with exponent
α+2, where α is the exponent of the noiseless RPD. The theoretical results are verified with numerical simulations.

1 Introduction
One of the routes to chaos is produced by intermittency, where the dynamic system has transitions between regular (or

laminar) phases and chaotic bursts (or non regular phases). The laminar phases are regions of pseudo-equilibrium and/or
pseudo-periodic solutions and the burst ones are regions where the evolution is chaotic. The concept of intermittency was
introduced by Pomeau and Manneville [1, 2]. Traditionally, intermittency is classified into three different types called I,
II and III [3, 4] according to the Floquet multipliers of the system or to the eigenvalues of the local Poincaré map. More
recent studies have extended the classification to other types of intermittencies such as type V, X, on-off, eyelet, ring and
in-out [5–10].

Considering type I, II and III intermittency phenomena, when a control parameter exceeds a threshold value, a bifurca-
tion leads to a change of the system behavior towards a chaotic motion. In all cases, a fixed point of the local Poincaré map
becomes unstable or even vanishes for some values of the control parameter ε. Intermittency has been observed in several
physical topics such as the Lorenz system, Rayleigh-Bénard convection, forced nonlinear oscillators, plasma physics, elec-
tronic circuits, turbulent flows [11–16]. Also, intermittency has been used to describe the behavior of economy and medicine
systems [17–19]. The accurate description of intermittency helps to improve the knowledge about these phenomena. On the
other hand, the proper characterization of the RDP function is important for a correct description of intermittency.

Type-III intermittency occurs in a subcritical period-doubling bifurcation in which an unstable period-2 orbit meets and
destabilizes a stable period-1 orbit; this type of intermittency is characterized by the gradual increasing during the laminar
phase of a period-2 component in the motion [20]. A one dimensional map f (x) that displays a subcritical period-doubling
bifurcation has a positive Schwartzian derivative: S f (x) = f ′′′(x)/ f ′(x)−1.5 ( f ′′(x)/ f ′(x))2 > 0.

Intermittency can be studied using Poincaré maps [3, 4], which have two main chaotic intermittency characteristics:
1) a specific local map and 2) a reinjection mechanism. The local Poincaré map for type-III intermittency is given by:
xn+1 = −(1+ ε)xn−a x3

n, where the control parameter ε and the coefficient a are larger than zero [20, 21]. The reinjection
mechanism maps the system back into the local regular or laminar zone from the chaotic one. This mechanism is described



by means of a probability function called reinjection probability density (RPD) which gives the probability that trajectories
are reinjected into the laminar zone, close to the unstable fixed point. This function depends on the nonlinear dynamics of
the system itself and can lead to a broad range of different behaviors. Therefore, it is not an easy task to obtain an analytical
expression for the RPD; only in few cases this is possible. A direct experimental or numerical evaluation of the RPD function
is also not a simple task due to the huge amount of data needed to deal with. Moreover, the statistical fluctuations induced in
the numerical computations and the experimental measurements are difficult to estimate.

As noise is always present in nature [22], it is important to describe how it affects the intermittent RPD. The noise effects
on the intermittency phenomenon was studied using a renormalization group analysis and the Fokker-Plank equation [23–25].
Note that all the mentioned references analyze the effects of noise on the laminar zone; however, it has been recently shown
that noise strongly influences the RPD function [26,27]. Moreover, as there is experimental evidence of the lower boundary of
reinjection (LBR) for type III intermittency [11] we decided to focus in the analysis of phenomena with type-III intermittency
where LBR and noise are present.

The RPD function allows to determine the statistical properties of the intermittency process like the average laminar
length -the average time that trajectories spend close to the vanished or unstable limit cycle-, and the characteristic equation
-the scaling relation of the average laminar length. The characteristic equation gives the relation between the average laminar
length, l̄ and the control parameter ε: l̄ ∼ ε−β, where β is the characteristic exponent of the scaling relation and depends on
of reinjection probability distribution. This characteristic relation allows to estimate the duration of the laminar phases -the
time interval between chaotic phases. They depend on the RPD, which depends on the global maps behavior. Therefore, the
accurate evaluation of the RPD function is extremely important to describe the chaotic intermittency. Several approaches
were used to obtain the intermittent RPD function. The usual assumption is to consider a uniform reinjection using a
constant RPD function [3,4]. Other implemented approaches built the RPD using peculiar features of the nonlinear processes.
Nevertheless, these RPD functions cannot be successfully applied to other nonlinear systems. Two examples are given
in [25,28]: 1) for type-III intermittency in an electronic circuit the RPD was considered proportional to 1/

√
x− xs in [25], and

2) to investigate the effect of noise in type-I intermittency, it is assumed that the reinjection is localized in a fixed point [28].
There was not an efficient method to obtain the RPD function until a general technique, called here M methodology, which
includes the uniform reinjection as a particular case, was introduced in the last years [21,26,29–34]. In this paper this general
methodology is used to describe the reinjection processes for type-III intermittency considering noise effects, and to extend
the effects of noise to cases not previously considered as lower boundaries of reinjection different from zero (LBR 6= 0).
Several new theoretical noisy RPD functions defined as the addition of exponential functions are obtained. The new noisy
RPD functions are compared with numerical results showing a very good agreement for two maps with different non-linear
behaviors.

2 Type-III Intermittency
We analyze two one dimensional maps with type-III intermittency. We select these maps because they were studied

using the M methodology in preceding papers [21, 31]. However, these papers do not analyze the effects of noise and LBR
on the RPD function. Both maps have a fixed point in x = 0, and they are symmetric around this point. The first map was
presented in [21], and can be written as:

xn+1 = F(xn) =−(1+ ε)xn−ax3
n +bx6

nsin(xn) (1)

where ε is the control parameter. The map has a fix point x0 = 0 at the origin, which is stable for −2 < ε < 0. When ε > 0,
the fix point becomes unstable and type-III intermittency arises. The reinjection mechanism depends on the map extreme
values, xm, satisfying dF(xm)/dx = 0 (see Figure 1). In particular, this odd map has two extreme points. The iteration
procedure, which is governed by the parameters ε, a and the cubic exponent, leads to increasing values of xn generated from
an initial one, close to the origin. For large enough values of n, the influence of the RHS third terms in Eq. (1) increases as
xn approaches to an extreme point xm, rendering the reinjection into the laminar zone.

The second map was given in [20]:

xn+1 = F(xn) =−((1+ ε)xn + x3
n)e
−bx2

n (2)

This map has a single fix point at x0 = 0 with a slope dF(x0)/dx = −(1+ ε), being stable for −2 < ε < 0. There is a
subcritical period-doubling bifurcation at ε = 0 for b < 1. The reinjection mechanism is governed by the factor e−bx2

n : when
the amplitude xn is large enough, this factor becomes small and the iteration n+1 falls close the unstable fix point (see Figure
1).
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Fig. 1. Left: Map (1). The parameters are: ε = 0.01, a = 1,0 and b = 1.1. Right: Map (2). The parameters are: ε = 0.1 and b = 0.1.

Both maps have xm points with dF(xm)/dx= 0 (local maximum or local minimum). These points have a strong influence
on the reinjection processes, but the reinjection mechanism is different for each map because the derivative dF(xn)/dx, where
xn+1 is a reinjected point inside the laminar interval, are different. Therefore, the implementation of these two maps permits
to analyze different non-linear behaviors, i.e., different reinjection processes. We highlight the points close to xm need two
iterations to be reinjected.

3 Evaluation of the RPD function. The M methodology.
The description of the theoretical framework that accounts for a wide class of maps and dynamical systems exhibiting

intermittency, called M methodology, is briefly presented. Consider a general one-dimensional map: xn+1 = F(xn). The
noiseless RPD function, denoted here by φ(x), determines the probability that trajectories are reinjected into a point x inside
the laminar interval. The RPD specifies the statistical behavior of the reinjection trajectories, which depends on the specific
form of F(x) [3, 4].

In the methodology developed to deal with intermittency the RPD function is not directly obtained from the numerical
or experimental data. A new function, M(x), is calculated [21, 26, 29–32]:

M(x) =


∫ x

xs
τφ(τ)dτ∫ x

xs
φ(τ)dτ

, if
∫ x

xs
φ(τ)dτ 6= 0,

0, otherwise,
(3)

where τ represents the reinjected points around the unstable fixed point, and xs is the closest reinjection point to the unstable
fixed point, i.e., the lower boundary of reinjection point. To calculate M(x), the symmetry reinjection process around the
fixed point is considered; only x≥ 0 are used.

M(x) is an auxiliary function used to evaluate the RPD, it is a quotient between two integrals which softens the fluc-
tuations of the experimental or numerical data used to construct it [21, 26, 29–34]. On the other hand, M(x) corresponds to
the average over the reinjection points in the laminar interval, hence its numerical estimation is more robust than the direct
evaluation of the function φ(x). In addition, the calculation of M(x) from the data series is very simple: M(x) ∼= 1

N ∑
N
j=1 x j,

where the data set (reinjection points) {x j}N
j=1 must be sorted from the lowest to the highest, i.e. x j ≤ x j+1.

In previous papers, we found that M(x) satisfies a linear approximation for a wide class of maps exhibiting type I, II and
III intermittencies without noise [21, 26, 29, 30, 32]:

M(x) =
{

m(x− xs)+ xs, if xs ≤ x≤ c,
0, otherwise, (4)

where the slope m ∈ (0,1) is a free parameter -determined for the non-linear map- that governs the reinjection process.
Introducing Eq. (7) in Eq. (6) the corresponding RPD function results [21, 29, 30]:

φ(x) = λ(x− xs)
α, with α =

2m−1
1−m

, (5)

where λ is a normalization parameter. The usually considered uniform RPD is recovered for m = 1/2 (α = 0), i.e., uniform



reinjection is obtained as a particular case of the new theoretical formulation. Note that φ(x) can depart from a uniform
reinjection, e.g., limx→0 φ(x) is infinity when 0 < m < 1/2 (α < 0) and zero, when 1/2 < m < 1 (α > 0).

The M(x) function is only determined by the parameter m, and it is easier to obtain among a huge amount of data than
the complete RPD function. Also M(x) satisfies M(xs) = xs; then, it allows to evaluate the LBR. For both maps, M(x) without
noise was numerically evaluated obtaining a linear form M(x) = m(x−xs)+xs for different values of b, a and ε [21]. Hence,
the RPD function can be expressed by Eq. (8) with λ = 0.5(α+1)/(c− xs)

α+1.
As the slope m determines the value of the exponent α in the RPD function (see Eq. (8)), it rules the reinjection

mechanism and has direct influence in the probability density of the laminar length, in the average laminar length and in
the characteristic relation. The probability density of the laminar lengths, φl(l), is a global property and is related to the
reinjection probability density function, φ(l,c), by the expression [21, 29]: φl(l,c) = 2λ [x(l,c)− xs]

α [εx(l,c)+ax(l,c)p],
where l is the laminar length.

For inttermitency without noise, the M function is determined by the nonlinear map; each map produces a different M
function, defined by the parameters m and xs. Then, the M function stores the nonlinear information of the map [35, 36].

4 Noise influence for LBR = 0
In this section the influence of noise on the statistical properties of type-III intermittency is analyzed [26]. Noise, present

in all natural dynamical system, will affect the RPD function. It is usually assumed that the noise strength σ is much smaller
than the control parameter ε. Here, we consider a general procedure where this hypothesis is avoided by transforming (1)
and (2) into noisy maps:

xn+1 = F(xn) =−(1+ ε)xn−ax3
n +dx3

nsin(xn)+σξn (6)

xn+1 = F(xn) =−((1+ ε)xn + x3
n)e

(−bx2
n)+σξn (7)

where ξn is a uniform distributed noise verifying that 〈ξm,ξn〉 = δ(m−n) and 〈ξn〉 = 0, with noise strength σ. Note that if
σ = 0, the previous maps (1) and (2) are recovered.

The reinjection processes in both maps (1) and (2) are different that those for type-II intermittency described in [27].
For type-III intermittency, a point (a trajectory) laying very close to the extreme points (maximum or minimum) will need
two iterations to be reinjected into the laminar zone. On the other hand, for type-II intermittency only one iteration was
necessary [27]. Through these iterations, type-III intermittency trajectories are stretching or contracting by the derivative
K = dF(xn)/dx, where xn+1 = F(xn) is a reinjected point into the laminar zone. The map (1) strengthens the trajectories,
however the map (2) can contract them. The slope K varies as xn changes, however in most maps, K can be approximated
by a constant because the laminar interval is small around the unstable fixed point. Accordingly, K corresponds to the mean
slope of the curve in the interval I, where I is the interval mapped backward of the laminar region.

Figure 2 shows the numerical results for the noisy M(x) considering Eq. (9) with ε = 0.01, a = 1.1, b = 1.35, c = 0.6
and σ = 0.02. To compare results we have considered, following the papers [21, 26], that the laminar interval length verifies
c = 0.6. As for the noiseless case, the functions M(x) smooths down the data. However, for the noisy tests, the function
M(x) has different behavior on each side of xc. We call singular points to those points where the behavior of M(x) changes,
e.g., xc. M(x) can be approximated by a piecewise linear function with two slopes. The xc value is approximately equal to
the product between the noise intensity and the slope K, xc ∼= Kσ. Note that σr = Kσ is the amplified noise intensity in the
reinjected point. For the figure K ∼= 11; therefore, σr ∼= 0.22. For x < xc the slope of M(x), ml , approaches 1/2, as expected
for the uniform reinjection. For x > xc, the slope of M(x), mr is similar to the noiseless slope. The total number of reinjected
point used was 300000, and 53483 reinjected points were used to evaluate mr (we calculate mr using the points indicated
by the darker (blue) line in Figure 2). This is a remarkable property of M(x) because we can obtain the RPD function for
the noiseless case by means of a noisy data analysis. Note that even when noise acts on the complete system, it does not
modify the slope of M(x) in the region x > xc. Hence, on the right side of xc, the RPD function is robust against noise without
adjacent reinjection [26,27]. However, in the region x < xc the noise modifies the RPD. When noise is considered and x < xc,
the RPD approaches the uniform reinjection case, at least locally around the unstable fix point x0 = 0, due to the symmetry
of the map around it. Therefore, point xc is a boundary that separates two regions inside the laminar zone. One region is
[0,xc] in which the noise governs the reinjection procces. The other region is (xc,c] in which the nonlinear map drives the
intermittency reinjection.

Following reference [26] we obtained an analytical expression for the noisy reinjection probability density, called NRPD.
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Fig. 2. Map (9). Left: M(x) from the numerical simulations, the darker (blue) line indicates the data used to calculate the exponent α.
Right: Theoretical and numerical RPD functions, the points corresponds to numerical data, the result of Eq. (13) is plotted as a solid line.
Parameters: ε = 0.0005, c = 0.6, a = 1.1 and b = 1.35, K = 10.5833.

The noiseless density φ(x) transforms in a new density Φ(x) according to the convolution integral:

Φ(x) =
∫

φ(y)G(x− y,Kσ)dy (8)

where Φ(x) is the NRPD and G(x,σ) is the probability density of the noise term σξn. A random variable ξ in the interval
[−1,1] is used as a noise source, then its probability density G(x,σ) results:

G(x,σ) =
Θ(x+Kσ)−Θ(x−Kσ)

2Kσ
(9)

where Θ(x) is the Heaviside step function. If the function φ(x) = λ|x|α is introduced in the convolution integral, the resulting
NRPD function is:

Φ(x) =
1

c1+α

(|x|+Kσ)1+α−Sg(|x|−Kσ) ||x|−σ|1+α

2Kσ
(10)

where Sg(x) is the sign function. However, to develop the Eq. (13) we considered only the case K >> 1 to use a single
convolution integral [26].

The NRPD for the same values of ε,c,a,b is shown in Figure 2-Right. The slope K is close to 11 (K = 10.5833). The
points represent the numerical data, and the continuous line is the analytical RPD calculated by Eq. (13). There is a good
correspondence between the numerical and theoretical data.

Figure 3-Left shows the results for the map (10), considering 150000 reinjected points. Eq. (11) is used to evaluate the
RPD, and considering now the approximation K ≈ 0, resulting:

Φ(x) =
1

c1+α

(|x|+σ)1+α−Sg(|x|−σ) ||x|−σ|1+α

2σ
(11)

Note that Eq. (14) is similar to Eq. (13); in Eq. (14), K is not explicitly present because K ≈ 0, therefore σ, the noise
intensity, governs the reinjection process.

If the slope K 6= 0 and K does not reach a high value, it influences the noisy reinjection process, resulting in a more
complex RPD structure. Thus, we need to consider the two iteration process until the reinjection to obtain an analytical
expression for the NRPD. We consider the map (10) as a composition of the noiseless map (2):

x′n = F(xn) =−((1+ ε)xn + x3
n)e

(−bx2
n) (12)

and the map defined as

xn+1 = R(x′n) = x′n +σξn (13)
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Fig. 3. Map (10). Left: M(x) from the numerical simulations, the darker (blue) line indicates the data used to calculate the exponent α.
Right: Theoretical and numerical RPD function, the points correspond to numerical data and the result of Eq. (14) is plotted as a solid line.
Parameters: ε = 0.005, c = 1.0, σ = 0.3, b = 0.05, K ∼= 0.

The density function produced by the map (16) can be calculated using the following convolution integral:

ρ(x) =
∫

ρ
′(t)G(x− t,σ)dt (14)

where ρ′(t) is the density produced by the noiseless map given by Eq. (15). If we consider points xn placed close to the
maximum (or minimum) of the map (15), the points xn+1 are not directly mapped inside of the laminar interval. It is
necessary to consider other iteration to reach the laminar interval:

x′n+1 = F(xn+1) =−((1+ ε)xn+1 + x3
n+1)e

(−bx2
n+1) (15)

and

xn+2 = R(x′n+1) = x′n+1 +σξn+1 (16)

The resulting density function, applying Eq. (18), can be written as:

ρl(x) =
dF−1(x)

dx
ρ(F−1(x)) = Kρ(F−1(x)) (17)

Finally, to obtain the noisy reinjection probability density function, Φ(x), it is necessary to apply a new convolution
integral as follow:

Φ(x) =
∫

ρl(y)G(x− y,σ)dy∼=
∫

ρ(y)G(x− y,Kσ)dy (18)

From the previous relations (17) and (21), we note that the amplified noise intensity is given by (K+1)σ and the NRPD
will have the exponent α+ 2, where α is the exponent for the RPD without noise. Note, that Eqs. (13) and (14) are two
extreme cases. For Eq. (13), K � 1 verifies, we can use the following approximation (K + 1)σ ≈ Kσ. For (14), K ≈ 0 is
verified, therefore, (K +1)σ≈ σ.

The presence of noise not only affects the RPD function, due to the deviations produced on the reinjection trajectories,
another reinjection mechanism can arise when the noise strength (K +1)σ is relatively large: the adjacent reinjection mech-
anism (AR). The AR mechanism can be described as follows: when a trajectory has a reinjected point close to the unstable
fixed point, the following iterative points increase driven by the parameters of the map until a point, x j, leaves the laminar
interval. If the difference between x j+1 (evaluated from maps (1) and (2), without noise) and the laminar boundary c is less
or equal than the noise intensity (xn+1− c≤ (K +1)σ), the trajectory may return into the laminar interval. The AR concept
and its influence in type-II intermittency was recently described in [27].



Φ(x) =
1

2σ(c− xc)(1+α)

∫
[(y+σ− xc)

(1+α)−H(y−σ− xc)(y−σ− xc)
(1+α)]G(x− y,Kσ)dy (19)

5 Noisy RPD without AR and LBR 6= 0
In this section we study the LBR influence on the noisy reinjection process without considering the AR mechanism. If

no restrictions are imposed to the noise strength ((K+1)σ) and the LBR (xs), two different processes can occur. One of them
develops when the amplified noise intensity is lower than the LBR, (K + 1)σ < xs. The other one occurs when the LBR is
lower or equal than the amplified noise intensity, (K +1)σ≥ xs. Also, for each one of these cases, different expressions for
the NRPD will be found, depending on the slope K.

5.1 NRPD without AR and amplified noise intensity < LBR
When (K+1)σ < xs, the LBR changes by the noise effect. A “new LBR” arises depending on the original LBR and the

amplified noise strength, defined as the difference xi = xs− (K + 1)σ. We use the convolution integral (21) to evaluate the
NRPD (Φ), explicitly given in Eq. (22). Where H(x) is the Haeviside function, and the expression inside the square brackets
is the density, ρ(x), after the first iteration for points close to the local maximum or minimum, xm (see Eq. (17)). According
to the convolution integral the NRPD depends on the value of the slope K, and three cases can appear: 0 < K ≤ 1; 1≤K ≤ 2;
and 2≤ K.

For all the tests that will be considered in this paper we will apply the M methodology to obtain the NRPD. The first step
of the M methodoloy is to evaluate the M function from the numerical data. Afterwards we obtain information from M(x);
finally we solve Eq. (22) considering different subintervals inside the laminar zone. These subintervals are determined by
the overlap of the functions in the convolution integral (22).

5.1.1 NRPD for 0 < K ≤ 1
Figure 4-Left shows M(x) verifying (K + 1)σ < xs. The used parameters are: ε = 0.005, b = 0.18, xs = 0.3181,

K ∼= 0.5366, c = 1, σ = 0.2 and 250000 reinjected points. Then, the new LBR results: xi ∼= 0.0108. The function M(x) can
be fitted by two straight lines having different slopes that correspond with two regions lying at both side of a small zone
around the point xc = xs +(K +1)σ ∼= 0.6254. The first one, ml , is the slope close to the new LBR point (xi), and mr is the
slope close to the point c (see the darker (blue) line in the figure). Therefore, ml approximately corresponds to the interval
[xs− (K +1)σ,xs +(K +1)σ), and mr approximately corresponds to [xs +(K +1)σ,c]. Similarly to the case without LBR,
mr is very close to the slope of M(x) without noise. The darker (blue) line indicates the points used to calculate mr ∼= 0.2922
(αr ∼= −0.5872). In the noiseless case m ∼= 0.2913 and α ∼= −0.5889. On the other hand, ml ' 0,685, on the contrary that
was report in [26], here there is not uniform reinjection close to xi. This occurs because there is not a direct influence of the
negative points (x < 0) in the evaluation of M(x).

There are two different behaviors between Figures 4-Left and 3-Left. The first one is associated with the matching
between the two straight lines. In Figure 4-Left we have small zone, and in Figure 3-Left we obtain only a point xc. The
second difference is due to the ml value; Figure 4-Left shows that there is not uniform reinjection close to the LBR.

Using Eq. (22), where α is the exponent of the noiseless RPD obtained from M(x) of Figure 4-Left, we get the NRPD
given by Eqs. (23), (24), (25) and (26).

To obtain Eq. (23), the interval boundaries are defined by the new LBR and the point xs +(K− 1)σ; this is the first
point where the total overlap between the probability density functions ρ(x) and G(x) occurs. Therefore, in this first interval,
these functions only overlap partially. Eq. (24) is obtained solving the convolution integral in the interval [xs +(K− 1)σ;
xs+(1−K)σ]. For points x≥ xs+(1−K)σ, ρ(x) changes due to the Heaviside function (see Eq. (22)). Thus to calculate the
convolution integral we use here only the first term of ρ(x). Eq. (25) is evaluated inside the third interval, which considers the
convolution integral for the points located between xs+(1−K)σ and xs+(1+K)σ. Thus, inside this interval the convolution
integral is calculated as the sum of two integrals. For one of them we need to consider only the first term of ρ(x) and for the
second we require the both terms of ρ(x). To evaluate the convolution integral, for points x≥ xs+(1+K)σ, it is necessary to
use the both terms in ρ(x). Finally, Eq. (26) is calculated inside the fourth interval, which considers the convolution integral
for points located between xs +(1+K)σ and c. Here, the convolution integral is calculated considering the two terms in the
expression of ρ(x).

The numerical and theoretical NRPD functions, for the same parameters used in Figure 4-Left, are shown in Figure 4-
Right. The points represent the numerical data, and the line represents the analytical NRPD. Note that the analytical results
accurately adjust the numerical data.
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For xs− (K +1)σ≤ x≤ xs +(K−1)σ

Φ(x) = Φ1(x) =
(x+σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(20)

For xs +(K−1)σ≤ x≤ xs +(1−K)σ

Φ(x) = Φ2(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(21)

For xs +(1−K)σ≤ x≤ xs +(1+K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(22)

For xs +(1+K)σ≤ x

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(23)

+
(x−σ(1+ k)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)

Figure 4-Right shows four different behaviors for the NRPD, each one inside of the intervals [xs− (K +1)σ,xs +(K−
1)σ], [xs +(K−1)σ,xs +(1−K)σ], [xs +(1−K)σ,xs +(1+K)σ], and [xs +(1+K)σ,c], respectively. This NRPD complex
behavior is produced by the iterative process: trajectories starting in points close to local maximum or minimum need, at
least, two iterations before the reinjection. Therefore, the noise strongly influences all the reinjection process. Unlike the
case with LBR = 0, the reinjection is not uniform around the unstable fix point because there is no reinjection from negative
x values, thus xi > 0. Three intervals are placed between the new LBR, xi, and the critical point xc. Therefore, the combined
influence of noise and LBR produces higher effects inside the interval [xi,xc]. Also, this behavior is shown by the slopes ml
and mr in Figure 4-Left: mr is very close to the noiseless M(x) slope, but ml is not equal to the uniform reinjection case, nor
to the noiseless reinjection.

Note that the NRPD given by Eq. (23) - Eq. (26) is represented by a serie of exponential functions with exponent α+2,
where α is the noiseless exponent. This results is different from that obtained in [26, 30] where the exponent was α+1 and
the NRPD was more simple. This occurs because the NRPD described in [26, 30] are only particular cases of the NRPD



developed in this work.

5.1.2 NRPD for 1 < K ≤ 2
Some differences appear when K > 1, we analyze the interval 1 < K ≤ 2. Figure 5-Left shows M(x) for ε = 0.005,

b = 0.21, xs ∼= 0.8076, K ∼= 1.1750, c = 2, σ = 0.2 and 150000 reinjected points. Therefore, (K +1)σ < xs is verified. The
new LBR results xi ∼= 0.5901. M(x) has also two straight lines with slopes ml and mr, separated by a reduced zone around
the point xc = xs+(K+1)σ∼= 1,0251. The slope ml corresponds to the interval [xs− (K+1)σ,xs+(K+1)σ), and the slope
mr corresponds to [xs +(K + 1)σ,c]. mr is close to the slope of M(x) for the reinjection process without noise. The darker
(blue) line indicates the points used to calculate this slope: mr ∼= 0.32 (αr ∼= −0.53). In the noiseless case m ∼= 0.33 and
α∼=−0.51. The behavior of ml is similar to that described in the previous subsection (0 < K ≤ 1): ml ∼= 0.675.
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Fig. 5. (K + 1)σ < xs and 1 < K ≤ 2. Left: M(x) function, the darker (blue) line shows the data used to calculate the exponent α.
Right: NRPD function, the points represent the numerical data and the line is the analytical NRPD. Parameters: c = 2, ε = 0.005, σ = 0.2,
xs ∼= 0.8076, K ∼= 1.1750.

To obtain the analytical expression for the NRPD function we solve Eq. (22). We calculate α using mr from M(x) of
Figure 5-Left. The NRPD is given by Eqs. (27), (28), (29) and (30). Figure 5-Right shows the numerical and theoretical
NRPD function. To obtain this figure we considered the same parameters used in Figure 5-Left. The points and the line
represent the numerical data and the analytical NRPD, respectively. The analytical results verify accurately the numerical
data.

The test gives similar results as for the 0 < K ≤ 1 case, but mr for 0 < K ≤ 1 has a better convergence towards the
noiseless slope.

5.1.3 NRPD for K > 2
For the case K > 2, we calculate the function Φ(x) using the convolution integral (22). It is given by (31), (32), (33),

and (34). As there is no slope K > 2 associated with the map (10) we cannot obtain numerical results. Still, the NRPD is
similar to those described previously, and is also defined inside four intervals.

5.2 NRPD without AR and amplified noise intensity ≥ LBR
We analyze the reinjection behavior when (K+1)σ≥ xs and σ < xs. The condition (K+1)σ≥ xs implies that the “new

LBR” is xi = 0 and reinjection trajectories coming from points x < 0 will occur. The restriction σ < xs implies that the “new
LBR” is the origin only when a two iteration reinjection process is considered for trajectories coming from points close to
xm. Then, σ alone is not enough to produce the reinjection from x < 0. Also, the function Φ depends on the value of the
slope K. Therefore, three cases can appear: 0 < K ≤ 1; 1≤ K ≤ 2; and 2≤ K. To obtain the function Φ we again calculate
the convolution integral (22).

Again, we consider the Eq. (10) to evaluate the reinjection process for different slopes K,

5.2.1 NRPD for 0 < K ≤ 1
We study the reinjection process when the following conditions are verified: (K + 1)σ ≥ xs, σ < xs, and 0 < K ≤ 1.

Following the proposed methodology, the first step is to evaluate M(x). Function M(x) is shown in Figure 6-Left. The
parameters are: b = 0.17, ε = 0.005, xs = 0.194, K ∼= 0.3459, c = 1, σ = 0.18 and 150000 reinjected points. Function
M(x) shows at least three different behaviors, each one represented by straight lines with different slopes, ml , mh and mr.



For xs− (K +1)σ≤ x≤ xs +(1−K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)
(24)

For xs +(1−K)σ≤ x≤ xs +(K−1)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(K−1)− xs)
2+α

4(c− xs)(α+1)σ2K(α+2)
(25)

For xs +(K−1)σ≤ x≤ xs +(1+K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(K−1)− xs)
2+α− (x+σ(1−K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)
(26)

For xs +(1+K)σ≤ x

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)
(27)

+
(x−σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)

For xs− (K +1)σ≤ x≤ xs +σ

Φ(x) =
(x+σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)
(28)

For xs +σ≤ x≤ xs +(2K−1)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(K−1)− xs)
2+α

4(c− xs)(α+1)σ2K(α+2)
(29)

For xs +(2K−1)σ≤ x≤ xs +(3K−1)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(K−1)− xs)
2+α− (x+σ(1−K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)
(30)

For xs +(3K−1)σ≤ x

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)
(31)

+
(x−σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+2)



The first line with slope ml falls inside the interval [0, |xs − (K + 1)σ)|, where xs − (K + 1)σ ∼= 0.05. The second line
with slope mh falls inside [xs − (K + 1)σ,xc) and the last one, with slope mr, corresponds to the interval [xc,c]; where
xc = xs+(K+1)σ∼= 0.4363. The slope ml is close to the slope of the uniform reinjection ml ∼= 0.5135. The slope mr is close
to the slope of the reinjection process without noise. The darker (blue) line indicates the points used to calculate this slope,
and it is mr ∼= 0.2560 (αr ∼=−0.656). In the noiseless case, we obtain m∼= 0.2780 and α∼=−0.61. The difference between
αr and the noiseless α is approximately 7%.
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Fig. 6. (K+1)σ≥ xs, σ< xs and 0<K ≤ 1. Left: M(x) function, the darker (blue) line indicates the data used to calculate the exponent
α. Center: NRPD function for αr = −0.656. Right: Comparison of the NRPD functions for αr = −0.656 and α = −0.61. Parameters:
c = 1, ε = 0.005, σ = 0.18, xs ∼= 0.194, K ∼= 0.3459.

Using the convolution integral, Eq. (22), we obtain the analytical expressions for Φ(x): Eqs. (35), (36), (37), (38) and
(39). Here, Φ(x) is defined in five intervals. The first one had not been considered in the previous sections, and it represents
the reinjection for x < 0. Note that the straight line with slope ml appears in the interval with reinjection from x < 0.

The numerical data and theoretical NRPD function, for the same parameters used in Figure 6-Left, are shown in Figure 6-
Center. To get the theoretical NRPD, we obtain α from M(x) of Figure 6-Left. The numerical results are shown by the points
and the line represents the analytical NRPD. A good agreement between numerical and theoretical results is obtained. A
better correspondence, principally inside of the interval [0,xs +(1−K)σ], between the theoretical NRPD and the numerical
results is obtained for the noiseless exponent α. Figure 6-Right shows the analytical NRPD functions for noisy αr and
noiseless α and the numerical results. The blue (clearer) curve represents the NRPD calculated with αr = −0.656 and the
black (darker) one is the NRPD with α =−0.61. The last figure shows that the NRPD is sensitive to the exponent α. A good
agreement is obtained when the difference between the noisy αr and the noiseless one is not higher than 10%.

5.2.2 NRPD for 1 < K ≤ 2
The reinjection process satisfying the following conditions: (K + 1)σ ≥ xs, σ < xs, and 1 < K ≤ 2 is studied. We

evaluate the function M(x) shown in Figure 7-Left. The parameters are: b = 0.21, ε = 0.005, xs = 0.7961, K ∼= 1.1669,
c = 2, σ = 0.5 and 250000 reinjected points. The function M(x) is represented by a continuous line. Unlike the previous
cases it is not possible to observe two or three straight lines with different slopes. Following the previous sections, we can
calculate the exponent α using the points represented by the darker (blue) line resulting αr ∼= −0.3195 (mr ∼= 0.4049). In
the noiseless case, we obtain α ∼= −0.4937 (m = 0.3361). The difference between αr and the noiseless α is approximately
35,5%. However, the difference between mr and the noiseless m only is approximately 17%. Also, we calculate a slope
ml ∼= 0.55 inside the interval [0, |xs− (K + 1)σ)|, where |xs− (K + 1)σ)| ∼= 0.287. Therefore, very close to the fixed point,
the slope ml is approximately 10% higher than the uniform reinjection slope.

Summarizing, if the noise intensity increases, the exponent αr obtained, using the noisy M(x), can reduce its accuracy,
and, for the last case the analytical results must be evaluated using the noiseless exponent α.

To obtain the NRPD function the convolution integral Eq. (22) is solved. In this test α is the noiseless exponent of
the RPD, which is obtained from the noiseless evaluation. The analytical expressions for Φ(x) are: Eqs. (40), (41), (42),
(43) and (44). The numerical and theoretical NRPD functions, for the same parameters used in Figure 7-Left, are shown
in Figure 7-Right. The numerical data are represented by points and the line corresponds to the theoretical NRPD. A good
correspondence between numerical and theoretical results is observed.

Although, the amplified noise is very high -(K+1)σ > 0.5c-, the NRPD remains as a sum of exponential functions with
exponent α+2; but the noisy M(x) is no longer adequate to correctly calculate the exponent α.

Considering (K + 1)σ ≥ xs the NRPD is a piecewise function determined by five intervals. Four intervals fall inside
[0,xs +(K +1)σ) and the noise strongly affects the zone around to the original LBR, xs.



For 0≤ x≤ (K +1)σ− xs

Φ(x) =
(x+σ(1+K)− xs)

2+α− (−x+σ(1+K)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(32)

For (K +1)σ− xs ≤ x≤ xs +(K−1)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(33)

For xs +(K−1)σ≤ x≤ xs +(1−K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(34)

For xs +(1−K)σ≤ x≤ xs +(1+K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(35)

For xs +(1+K)σ≤ x

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α +(x−σ(1+ k)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(36)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

x

M
(x
)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

Φ
(x
)

Fig. 7. (K +1)σ≥ xs, σ < xs, and 0 < K ≤ 1. Left: M(x) function. Right: NRPD function. Parameters: c = 1, ε = 0.005, σ = 0.18,
xs ∼= 0.194, K ∼= 0.3459.

6 Effects of adjacent reinjection (AR)
We now analyze the AR effects on maps (9) and (10). When a trajectory reinjects next to the unstable fixed point, the

absolute value of the next iterative points increases driven principally by the parameters ε, a and (K + 1)σ, until a point,
xn, leaves the laminar interval. If the difference between |xn+1| (obtained from (1) or (2), without noise) and the laminar
boundary |c| is less or equal than the amplified noise intensity (|xn+1| − |c| ≤ (K + 1)σ) the trajectory can return into the
laminar interval. This behavior is produced by the noise and has been recently defined as adjacent reinjection (AR) [27]. If
there is no noise (σ = 0) there is no AR.

The lower difference dl = |xn+1 = F(xn)| − |c| is given when |xn| is replaced by c. For the map (1), using ε = 0.01,
c = 0.4, a = 1, b = 1.1, we obtain: dl = 0.4662, implying that the amplified noise should be higher than the semi-length of
the laminar interval (Kσ> c) to obtain AR. In that case the noise effects on the RPD are more important than the intermittency



For 0≤ x≤ (K +1)σ− xs

Φ(x) =
(x+σ(1+K)− xs)

2+α− (−x+σ(1+K)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(37)

For (K +1)σ− xs ≤ x≤ xs +(1−K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(38)

For xs +(1−K)σ≤ x≤ xs +(K−1)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(K−1)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(39)

For xs +(K−1)σ≤ x≤ xs +(1+K)σ

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(K−1)− xs)
2+α− (x+σ(1+K)− xs)

2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(40)

For xs +(1+K)σ≤ x

Φ(x) =
(x+σ(1+K)− xs)

2+α− (x+σ(1−K)− xs)
2+α− (x+σ(K−1)− xs)

2+α +(x−σ(1+ k)− xs)
2+α

4(c− xs)(α+1)σ2K(α+1)(α+2)
(41)

mechanism, and other mathematical techniques are required to analyze the map behavior. A similar behavior is obtained for
map (2). If we use ε = 0.005, c = 1, b = 1, we obtain: dl = 1.8142. The amplified noise (K +1)σ should be approximately
of the order of c and the noise is stronger than the intermittency phenomenon.

For the type-II intermittency studied in [27], the AR mechanism is important, but in the two maps studied in this work
this mechanism is not significant, except for very large amplified noise values where the phenomenon is governed by the
noise and the intermittency is hidden.

7 Conclusions
In this work some recent studies proposed in [21, 26, 27, 30] were extended to consider type-III intermittency with

nonzero lower boundary of reinjection and high noise intensity. We studied the influence of the noise intensity and the LBR
on the reinjection probability density function. Also, the adjacent reinjection mechanism was evaluated.

To carry out this study we implemented a methodology developed recently. It evaluates an auxiliary function, M(x),
which is easier to calculate than the RPD. We found that, for LBR = 0 the laminar interval can be split in subintervals in
which the function M(x) preserves the linear form. However, for LBR 6= 0, different behaviors appear. For (K + 1)σ <
LBR a zone where the function M(x) is not linear is displayed. This zone is a matching between two linear behaviors of
M(x). For (K + 1)σ ≥ LBR, the function M(x) can be split in three straight lines with different slopes: ml , mh and mr;
where ml corresponds to a uniform reinjection and mr is approximately equal to the noiseless slope m. Even, for higher noise
intensities the function M(x) is represented by a smooth nonlinear curve.

By means of this methodology, it was possible to calculate the noisy RPD function considering the two iteration pro-
cesses occurring before the reinjection. Thus, it was necessary to solve two convolution integrals. The NRPD is represented
by series of exponential functions with exponent α+2, where α is the noiseless exponent. The new obtained NRPD presents
a more complex structure that those previously published [26, 30]. Also, the exponent α+2 is different from that presented
before [26, 27, 30].

Through these two iterations occurring before the reinjection, the type-III intermittency trajectories are stretched or



contracted by the derivative K = dF(xn)/dx, where xn+1 = F(xn) is a reinjected point into the laminar zone. The amplified
noise generated in the reinjection process can be calculated as (K + 1)σ. The previous studies [26, 30] are only particular
cases satisfying K ≈ 0 or K� 1.

In all the tests, the numerical data and the theoretical results showed a very good agreement. Note that using the NRPD
evaluated from the noisy data, allows to obtain a complete description of the noiseless system, if the noise intensity is not
high enough. If the noise strength is high, the noisy M(x) introduces large errors in the evaluation of the noiseless exponent
α. We suggest to use the noiseless α to evaluate the NRPD if the difference between the noisy α and the noiseless α is lower
than 10%.

The adjacent reinjection was evaluated and its effects on the RPD were analyzed. For the two maps with type-III
intermittency studied, the AR mechanism was not important. Only for very high noise intensity values -noise intensities
approximately equal to the laminar interval intensity- the AR has influences on the reinjection process. However, for these
cases the noise is the principal phenomenon, and the intermittency is hidden by the noise.
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