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A universal approach to decoherence control combined with quantum estimation theory reveals a critical
behavior, akin to a phase transition, of the information obtainable by a qubit probe concerning the memory
time of environmental fluctuations. This criticality emerges only when the probe is subject to dynamical
control. It gives rise to a sharp transition between two dynamical phases characterized by either a short or
long memory time compared to the probing time. This phase-transition of the environmental information is
a fundamental feature that facilitates the attainment of the highest estimation precision of the environment
memory-time and the characterization of probe dynamics.
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A simple quantum-probe, such as a qubit, is capable of
extracting information on the environment dynamics and
its space-time fluctuations through the spectrum of the de-
phasing noise the probe is subject to [1–14]. This informa-
tion is the subject of an emerging field of research dubbed
environmental quantum-noise spectroscopy [5, 6]. Its most
straightforward implementation is by monitoring the free-
induction decay of an initially-prepared qubit-probe co-
herence and inferring the dephasing characteristics from
this decay [15, 16]. A more promising option is to ex-
ert a control (driving) field, whether pulsed or continuous-
wave (CW), on the qubit-probe and study its dephasing as
a function of the control-field characteristics [4–6]. Pulsed
control of qubit dephasing is commonly described by dy-
namical decoupling [17–21]. However, for the purpose of
environment-noise spectroscopy it is useful to resort to the
universal formula for the rate of decoherence under dynam-
ical control [22–25], which is at the heart of the unified
theory of dynamically-controlled open quantum systems
[26–28]. This universal formula allows the design of con-
trol fields or pulse sequences that through the choice of a
spectral filter function are optimally tailored to the specific
environment-noise spectrum and the task at hand [25, 29]:
decoherence control [22, 23, 26, 27, 30–34], state-transfer
[35, 36] or storage [36–38] in a fluctuating environment.
Here, the filter function will be optimally adapted to the
task of probing the environment-noise spectrum by a qubit
[39].

Among environment-noise parameters whose estimation
is of practical interest in physics, chemistry and biology,
the memory or correlation time is particularly helpful [4–
8, 39–51]. On a fundamental level, memory effects of
the environment are associated with the concept of non-
Markovianity, whose definition is an outstanding issue
[52, 53].

For the purpose of characterizing the memory effects of
an environment that interacts with a qubit probe, we here
put forward an approach based on the aforementioned uni-
versal formula for decoherence control [22–29] combined
with quantum estimation theory [39, 54–57]. We show
that the information (estimation-precision) concerning the

environment-noise fluctuation-spectrum obtained by this
approach may exhibit critical behavior as a function of the
memory-time parameter. This critical behavior, akin to a
phase transition, is only revealed under dynamical control:
it defines a sharp boundary between the short- and long-
time regimes of the probe decoherence corresponding to
long- and short-memory of the environment respectively.
By contrast, free-induction decay of the probe coherence
undergoes the usual smooth transition between the two-
regimes, thus conforming to the gradual change from non-
Markovianity to Markovianity that has been previously an-
alyzed [52, 53]. The criticality or phase-transition of the
environmental information revealed here is a fundamental
feature that characterizes dynamical behavior with practi-
cal implications on the attainment of the highest estima-
tion precision of the environment memory-time (see Dis-
cussion).

Controlled qubit-probe as a sensor of the environmen-
tal fluctuations.— We consider a dynamically-controlled
qubit-probe experiencing pure dephasing in the weak-
coupling probe-environment regime (Fig. 1a), which is
characterized by the attenuation (decay) factor J (~xB, t)
of the qubit coherence [39]

〈σx(t)〉 = σx(0)e
−J (~xB ,t), (1)

where ~xB are a set of parameters that describe the environ-
ment and the attenuation factor obeys the universal formula
[22–29]

J (~xB, t) =
ˆ ∞
−∞

dωFt(ω)G(~xB, ω). (2)

Here G(~xB, ω) is the coupling spectrum (spectral density)
of the environment noise (the Fourier transform of its au-
tocorrelation function). Explicitly, ~xB = [g, τc, β], with
τc as the correlation or memory time of the environment
noise, i.e. the inverse width of its spectral density, g as
the effective probe-environment coupling-strength, and β
as a power law exponent that defines the type of stochastic
(noise) process. The filter function Ft(ω) explicitly de-
pends upon the dynamical control of the probe during time
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Figure 1: (a) Estimation of the environmental noise fluctuations
by a qubit that probes the environment. A dynamically controlled
qubit-probe undergoes pure-dephasing by the environment due to
the interaction HSB = gσzB, where σz is the Pauli operator for
the probe and B is the environment (bath) operator. The dephas-
ing is revealed by the attenuation (decay) factor J that charac-
terizes the optimal qubit-observable 〈σx(~xB , t)〉 = e−J (~xB ,t),
~xB being the set (unknown) noise parameters, for an (optimal)
initial state - the symmetric superposition of the spin-up/-down
states in the basis σz , 1√

2
(|↑〉+ |↓〉) = |+〉 [39, 57, 60]. Here we

focus in estimating xB = τc. (b) Time dependence of the normal-
ized attenuation factor J of the qubit-state probing an Ornstein-
Uhlenbeck process (β = 2) for free evolution (dashed) compared
to its counterpart under dynamical control (solid). The latter time
dependence exhibits a smooth transition (marked by a circle) be-
tween two well-defined dynamical phases (regimes) depending
on the ratio t

τc
.

t. The information about the unknown environment param-
eters ~xB is encoded by the probabilities p of finding the
qubit-probe in the |+〉 (symmetric) or |−〉 (antisymmetric)
superposition of the qubit energy states when measuring
σx. These probabilities obey

p±(~xB, t) =
1

2

(
1± e−J (~xB ,t)

)
. (3)

As a model to describe the memory time scales of the en-
vironment, we consider a generalized Ornstein-Uhlenbeck
spectral density [39]

Gβ([g, τc, β] , ω) = g2
Aβτc

1 + ωβτβc
, (4)

where Aβ is a normalization factor depending on the
power-law β ≥ 2. In fact, this model is the building block
of universal lineshapes: it may characterize the memory
time of arbitrary bosonic environments, if one assumes that
a chosen harmonic-oscillator mode constitutes an interface
between the qubit-probe and the modes of the environment
[58]. The combined spectrum of any environment plus the
interface mode is then reshaped, or "filtered", according
to the chosen oscillator-mode frequency and its coupling
strength with the probe, invariably resulting in a skewed-
Lorentzian lineshape [58, 59].

The power law regime∝ ω−β of the spectral density, ob-
tained for ωτc � 1, is the spectral range with the strongest
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Figure 2: Criticality of the probe-extracted information on the
environmental correlation (memory) time τc. (a) Spectral density
for the Ornstein-Uhlenbeck process (Lorentzian spectrum, β =

2: red solid line). The derivative of the spectrum
∣∣∣ dGdτc ∣∣∣ exhibits

a critical behavior
∣∣∣ dGdτc ∣∣∣ ∝ |ω − ω0| at ω0 = τ−1c (β − 1)−

1
β .

The two dynamical regimes occur when the narrow filters probe
frequency components ofG(ω) on both sides of the critical point.
Two typical continuous wave (CW-control) filter functions Ft(ω)
(green, in linear scale) scan the spectrum on both sides of the
transition (N = 20). (b) The attainable relative error εctrlF (τc, t =
πN
ωctrl

) on τc by the qubit-probe under CW control (
√
2Ngτc = 1,

β = 2 and ωctrl = πN
t ). The divergence ∝ |ωctrl − ω0|−1 at the

critical point gives evidence of the critical behavior.

dependence on the frequency ω, describing the short time
behavior of the probe-qubit dephasing. We define this limit
as the Long Memory (LM) regime. In the opposite limit
ωτc � 1, associated with long times, the spectral density
becomes independent of the frequency, and the probe co-
herence attenuation factor J (~xB, t) is then given by the
Fermi Golden Rule. We dub this limit the Short Memory
(SM) regime.

Identifying the dynamical regimes’ criticality by dynam-
ically controlled probes.— Under free induction decay,
the LM and SM regimes are attained at times t � τc
and t � τc, respectively. The respective decay (attenu-
ation) factors are J LM

free ∝ g2t2 (independent of τc) and

J SM
free ∝g2τct, by considering F free

t (ω)=
t²sinc2(ωt

2 )

2
[39].

The transition from the LM to the SM regime is smooth
(Fig. 1b) as the ratio t

τc
is varied and does not depend on

g. Invariably, ∂Jfree
∂τc

> 0, without sign change.
Consider now the change that may arise in the charac-

ter of this transition under dynamical control. An exam-
ple is a decoupling control sequence of N � 1 equidis-
tant π-pulses (known as CPMG) [16, 61, 62]. The fil-
ter function Ft(ω) [4, 22–29] then converges to a sum
of delta functions (narrowband filters) centered at the har-
monics of the inverse modulation period, kωctrl = πkN

t
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with k = 1, 2, 3, .. [5, 34]. Another suitable control is
CW qubit-driving, which has a single frequency compo-
nent (k=1). Under such controls, the LM and SM regimes
are attained for ωctrlτc � 1 and ωctrlτc � 1, respectively.
The corresponding decay factors, J ∝ Ft(ωctrl)G(ωctrl)
in Eq. (2), are (see Fig. 1b)

J LM ∝ g2t

ωβctrlτ
β−1
c

, J SM∝g2τct, (5)

respectively. This reflects the effect of a narrow-band fil-
ter Ft(ωctrl) that may be used to scan the spectral den-
sity G(ω) [4–6], upon varying the modulating frequency
(pulse-rate or Rabi-frequency) ωctrl of the control field, all
the way from the frequency-independent regime G ∝ τc
for ωτc � 1 to the power-law regime G ∝ ω−βτ−(β−1)c

for ωτc � 1 (Fig. 2a). In the limit of extremely narrow
spectral filters, i.e. N→∞, with ωctrl= πN

t
, we have

∂J
∂τc

∣∣∣∣
ωctrl∼ω0

∝ ∂G
∂τc

∣∣∣∣
ωctrl∼ω0

∝ωctrl−ω0; (6)

ω0=
1

τc(β − 1)
1
β

. (7)

An abrupt change (Fig. 2a) is then revealed in the para-
metric sensitivity of the attenuation-factor derivative ∂J

∂τc

through its change of sign: ∂J
∂τc
∝−(β−1)J

LM

τc
< 0 for LM

and ∂J
∂τc
∝ J SM

τc
>0 for SM, implying that

∂J
∂τc

∣∣∣∣
ωctrlτc(β−1)

1
β ≈1

= 0, (8)

at a value dependent on the control (modulating) frequency
ωctrl.

The central result of this paper is that Eq. (8) signifies the
vanishing of the quantum Fisher information (QFI) [54],
which quantifies the attainable amount of information on
τc that can be extracted from the measured probe-(qubit-
) state probabilities p± obeying Eq. (3). This vanishing
becomes apparent upon considering the expression for QFI
[39, 60]

FQ(τc, t) =
e−2J

1− e−2J

(
∂J
∂τc

)2

. (9)

Hence, at the value ωctrlτc(β − 1)
1
β ≈ 1 no information

can be extracted, FQctrl = 0. Since the minimum achiev-
able relative error (per measurement) of the (unbiased) es-
timation of τc is related to the QFI through the Cramer-Rao
bound as

δτc
τc
≥ εF(τc, t) =

1

τc
√
FQ(τc, t)

, (10)

this error diverges as ωctrl → ω0 (Eq. (7)):

εctrlF

(
τc, t ≈

πN

ωctrl

)
∝ |ωctrl − ω0|−1 . (11)

Figure 3: Critical transition of the minimal error in environment
memory-time estimation determined by a probe under dynamical
control CW in the narrow filter approximation. The noise spec-
trum is a Lorentzian (β = 2). (a) The minimum relative error per
measurement εctrlF (τc, topt) of the environmental correlation time
τc, as a function of

√
2Ngτc, obtained by optimizing the control

time topt. It exhibits a critical behavior at
√
2Ngτc ≈ 1. Insets:

εctrlF (τc, t = πN
ωctrl

) for global minima located in the SM (left
inset) and LM (right inset) regimes. The critical point emerges
when both local minima are equal (as in Fig. 2b). (b) The op-
timal scaled measurement time topt

t0
as a function of

√
2Ngτc.

(c-d) Probability p+(t) as a function of time. For
√
2Ngτc < 1,

the optimal time tSMopt (red circles) corresponds to a linear at-
tenuation factor J SM ∝ t (panel (c) and Fig. (1)b), while for√
2Ngτc > 1, the optimal time tLMopt (blue solid circles) belongs

to a regime where J LM ∝ tβ+1 (panel (d)). At
√
2Ngτc ≈ 1

(vertical dashed line) the transition between the two regimes is
observed. The optimal time jumps between tLMopt and tSMopt at the

critical point avoiding the time t0 = πNτc(β − 1)
1
β (horizon-

tal dashed line) where no-information about τc can be extracted
from the probe.

The relative error, εctrlF , thus exhibits a sharp transition
between the LM and SM dynamical regimes (Fig. 2b),
allowing their clear distinction. This critical behavior of
the relative error provides a signature of the environmental
noise spectral density through the values of τc and β, pro-
vided we apply an appropriate dynamical control that gen-
erates a sufficiently narrow spectral filter, so as to scan the
sign change of ∂G

∂τc

∣∣∣
ω∼ω0

at the critical point (Fig. 2). By

contrast, such criticality does not arise under free-induction
decay, for which the filter function, F free

t (ω) is a much
broader sinc function centered around ω = 0.

Critical behavior of the maximal estimation precision of
τc.— The critical behavior shown above is also manifest,
under the same control on the probe, for the maximized es-
timation precision, i.e. the smallest possible minimal rela-
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Figure 4: Minimal relative error per measurement in the estima-
tion of τc as a function of gτc for a Lorentzian environmental
spectrum under dynamical control. Practical limitations on the
number of pulses of a CPMG sequence, such that N ≤ Nmax,
may prevent to attainment of the ultimate bound (dashed line)
[39]. Then, a sudden change of the dynamical control strategy
as a function of gτc may help: For gτc lower than the critical
value, the highest precision is achieved by the single-pulse Hahn
echo (N = 1). However, if gτc is larger than the critical value
CPMG sequence with N = Nmax is optimal. This dynamical
control strategy under practical limitations reduces the minimal
error represented by the shaded area, which is determined by the
optimal control on each side of the intersection (critical value) of
the Hahn and the CPMG curves.

tive error in the estimation of τc in Eq. (10),

εctrlF (τc, topt) = min
t
εctrlF (τc, t). (12)

The error minimization is the outcome of selecting the op-
timal time topt at which the measurement (cf. Eqs. (1), (2))
is performed on the probe, following its dephasing under
the control we have applied.
Figure 3 shows the critical behavior of the maximum pre-
cision per measurement, εctrlF (τc, topt) for the Lorentzian
spectrum (β = 2) following CW control of the qubit-probe
as a function of

√
2Ngτc. The critical point
√
2Ngτc ≈ 1 (13)

separates two regions characterized by different scaling-
laws of the minimal relative-error as a function of

√
2Ngτc

(Fig. 3a). These scaling-laws are dictated by the different
dynamical regimes for the attenuation (decay) factor shown
in Figs. 3c,3d.
The optimal probing (measurement) and control time topt
is also shown to undergo a sudden transition at the crit-
ical point (13), as shown in Fig. 3b. This optimal time
corresponds to the best tradeoff between a signal ampli-
tude contrast, e−2J

1−e−2J , and the parametric sensitivity of the

signal attenuation factor,
(
∂J
∂τc

)2
. The optimal tradeoff oc-

curs (Fig. 3b) at either a long time, tSMopt (red circle) cor-
responding to a linear attenuation factor J SM ∝ t (Fig.
3c) or at a short time, tLMopt (blue circle) corresponding to
J LM ∝ tβ+1 (Figs. 3d). These optimal control times in
the two regimes are situated on both sides of the critical
value (Fig. 3b)

tLMopt < t0 < tSMopt , t0 =
πN

ω0

. (14)

The criticality of the relative error as a function of ωctrl
described by Eq. (11), defines two local, unequal minimum
values of εctrlF , located on either side of the critical point
(Fig. 2b and insets Fig. 3a). What determines the global
minima of εctrlF is the optimal time topt obtained from Eq.
(12). The critical behavior emerges when this global min-
imum jumps between the two local minima as a function
of the parameter

√
2Ngτc (Fig. 3b). At the critical point,

both local minima are equal, as displayed in Fig. 2b.
Discussion.— We have demonstrated a critical behav-

ior of information (estimation-precision) on the environ-
ment fluctuation (noise) spectrum of generalized Ornstein-
Uhlenbeck process extracted by a probe subject to appro-
priate dynamical control as a function of the environment
memory-time gτc. This finding applies to any bosonic en-
vironment, provided the probe and the environment are
suitably interfaced by a chosen oscillator mode [58, 59]
(cf. discussion following Eq. (4)).

We have shown that similar critical behavior is manifest
for the maximal estimation precision of τc. At the critical
point there is a massive loss of information on τc. Near
this point, the optimal time for measuring and controlling
the quantum-probe is either very short, corresponding to
little parametric sensitivity, or very long, corresponding to
significant decay of the signal.

The critical behavior of the maximal estimation preci-
sion of τc has paramount practical implications:

(i) Complete dynamical behavior characterization:
Rather than mapping out the long- and short-memory probe
dynamics regimes by varying the probing time, the critical
behavior demonstrated here, allows one to characterize the
complete dynamics as consisting of two distinct dynami-
cal phases (regimes) according to the maximal information
they yield near the critical point (13).

(ii) Sudden change of the optimal dynamical control se-
quence: The critical point depends on the control scheme:
thus, for CPMG control [16, 61, 62] gτc ≈ 1√

2N
when

probing a Ornstein-Uhlenbeck process (Lorentzian spec-
tra). This fact highlights the importance of optimizing the
number of pulses N so as to improve the estimation preci-
sion, ifN is bounded byNmax due to practical limitations.
Under these conditions, the ultimate bound on the estima-
tion precision found in Ref. [39]

εF(τc, t) ≥ ε0, (15)

where ε0 =

√
1−e−2J0

J0e−J0
≈ 2.48, may not be attained for

gτc ≈ 1√
2Nmax

. Then, a sudden change of N should be
undertaken as a function of gτc in order to optimize the es-
timation: For gτc lower than a certain critical value shown
in Fig. 4, the best precision is achieved by the single-pulse
Hahn echo (N = 1). However, if gτc is larger than this
critical value, then the CPMG sequence with N = Nmax

is optimal. Qualitatively similar considerations apply for
generalized Ornstein-Uhlenbeck processes.
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To sum up, the critical behavior of the environmental in-
formation revealed here is a fundamental feature that fa-
cilitates the attainment of the highest estimation precision
of the environment memory-time. It represents an alter-
native characterization of the probe-qubit dynamics under
suitable control or observation that leads to a phase transi-
tion on the dynamical behavior [44, 63–67]. Intriguingly,
the absence of information has been shown to provide a
distinctive signature of the environmental noise estimation.

Such information may be useful e.g., for studying molec-
ular diffusion at the nanoscale and thereby characterizing
biological systems [8, 39–41] or chemical-shift effects [7];
charge diffusion in conducting crystals [42] or spin diffu-
sion in complex spin-networks [5, 43–45, 68]. Knowledge
of the memory time may also be important for studying
fundamental effects, such as quantum phase transitions in
a spin environment [46, 47] or nonlocal correlations within
a composite environment [48–51].
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