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Abstract

In the past decades a considerable amount of literature has been published addressing the study of the mechanical
behavior of arterial walls. Ex-vivo experimentation made possible the development of constitutive models and the
characterization of material parameters contributing to the understanding of the mechanobiological response of vascular
tissues. Moreover, the existence of residual stresses in configurations free of load was revealed, and its impact in
the general stress state of the tissue was quantified. In recent years, data assimilation techniques have seen a rapid
development in cardiovascular modeling field, primarily focusing on the estimation of material parameters for arterial
wall segments using information provided by medical imaging as well as by in-vitro settings. However, concerning the
estimation of residual stresses, this research field is in its early stages, and much work is still required for the full
functional characterization of arterial tissues.

In this context, a conceptual variational framework for the development of residual stress estimation tools is proposed.
Particularly, a variational formulation for the characterization of residual deformations and the associated stresses in
arterial walls, based on full displacement field measurements of the vessel, is presented. Considering as known data the
material parameters characterizing the behavior of the tissue and a set of arterial wall configurations at equilibrium
with well defined pressure loads, we propose a cost functional that measures the mechanical imbalance caused by the
lack of knowledge of residual stresses. In this manner, the characterization of residual stresses becomes a problem of
minimizing such cost functional. Three numerical examples are presented highlighting the potential of the proposed
approach. Among these examples, the characterization of residual stresses in a cylindrical geometry representing a
three-layered aorta artery is performed.

Keywords: Residual deformations, residual stresses, arterial wall, characterization, variational formulation

1. Introduction

As it is well known, in order to realistically model and
simulate the behavior of arterial tissues it is necessary to
account for the different mechanical properties of arterial
wall layers (intima, media, adventitia) considering the in-
teraction of the structurally relevant components, namely:
elastin, collagen fibers and smooth muscle cells [1]. A
considerable amount of literature has been published ad-
dressing the study of the constitutive behavior of these
soft tissues, developing comprehensive models [2, 3], and
performing parameter estimation based on ex-vivo exper-
imental data [4, 5]. However, it has also been recognized
[2, 6, 7] that the in-vivo unloaded configuration of any
vascular district is neither stress-free nor strain-free [8].
This led to an increasing number of investigations [9, 10]
studying the effects of residual stresses (RSs) in arterial
wall mechanics. In the last decades a shifting in the role
researchers assign to RSs has taken place, from conceiv-
ing RSs as a mere side effect of growth to a conception

in which RSs are viewed as an adaptive and protective
mechanism. Certainly, residual strains and stresses have
a functional role in determining suitable mechanobiologi-
cal conditions in vascular vessels [11, 12]. In fact, arteries
are living tissues that continuously adapt to their environ-
ment and to external stimuli [13, 14, 15]. This adaptation
is mediated by growth and remodeling processes that lead
to the occurrence of self-equilibrated RSs. In this con-
nection, it has been pointed out [16] that RSs contribute
to the transmural uniformity of the circumferential strains
under physiological conditions, lowering stress gradients
across the thickness of the vessel within each layer [17].

Reported experimental observations show that when an
arterial segment is removed from its surroundings, RSs are
manifested through the retraction of the vessel in the lon-
gitudinal direction as well as through the appearance of
an opening angle when the wall is radially cut all along its
axis. Moreover, in relatively recent works [5, 7], it has been
observed that different levels of RSs are associated to the
different constituent layers of the arterial wall. Most ef-
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List of symbols

Ωv Virtual (zero-stress) configuration
Ωm Material (zero-load) configuration

Ωa, Ωjb In-vivo configurations

Γm, Γa, Γjb Boundaries for configurations Ωm, Ωa, Ωjb
xv, xm, xa, x

j
b Coordinates associated to configurations Ωv , Ωm, Ωa, Ωjb

v, wj , uj Displacement fields
Fr Residual deformation field

Fv,Fw,Fu Deformation gradient tensors associated with v, wj , uj

Fvr,Fujr Total deformation gradient tensors for configurations Ωa and Ωjb
N Number of known configurations additional to Ωa

pa, pjb Pressure levels applied in Ωa and Ωjb
S(∗), C(∗) Second Piola-Kirchhoff and right Cauchy-Green tensors (superindex indicates related deformation)

σ(∗) Cauchy stress tensors (superindex indicates related deformation)
V Linear space of kinematically admissible variations

Kina Linear manifold of kinematically admissible displacements defined in Ωa
Ψ Strain energy function

F̃r, ṽ Arbitrary RRD and displacement fields

Fṽ Fṽr̃,F(ṽ+wj)r̃ Deformation tensors, considering arbitrary fields F̃r, ṽ

D Space of all tensor fields F̃ra defined in Ωa with positive determinant
Rm, Rb,j Functionals associated with the residuals of equilibrium equations

Φi Elements of a basis for Va
Rim , Rib,j Virtual power exerted between Rm and Rb,j and each element Φi

Rm, Rb Vectors containing components Rim , Rib,j
ηm, ηjb Weighting parameters
F , J Cost functionals

(·)i, i = m, a Subindex denotes that the quantity is expressed in terms of coordinates xi
v, w Displacement fields for 1D problems

eσ , eFr , ev Relative discrepancies for stress, deformation and displacement fields.

forts to account for RSs in arterial wall models are primar-
ily based on the incorporation of prestrains that are usu-
ally determined through experimental procedures. These
RSs are caused by the recoverable residual deformations 1

(RRDs) present in the tissue, and are necessary to main-
tain the kinematical compatibility at the structural level.
Among these, we highlight the contributions of [1] with
the first in-depth proposal of this idea, [5, 7] accounting
for the different behaviors presented for each constituent
layer, and [18, 19] displaying strategies to incorporate
data obtained using experimental techniques into patient-
specific geometries. It is also worthwhile to mention two
different approaches explored in the literature, i) incor-
porating RSs through growth processes, considering that
each mechanically relevant component is synthesized and
deposited in the tissue with a predefined deformation (and
consequently stress) level [20, 21]; and ii) introducing RSs
to achieve a uniform transmural distribution of stresses in
physiological conditions [22].

The past decade has seen a rapid development of data
assimilation techniques in the field of cardiovascular
modeling. Recent works have shown that, based on in-
vivo data provided by medical images, these techniques
can be used to estimate the in-vivo stress state of ar-
terial segments in the presence of preloads [23, 24, 25],
the unloaded configuration corresponding to those seg-
ments [8, 26, 27, 28, 29], or the material parameters
characterizing the mechanical behavior of the soft tissues

1Recoverable in the sense that the energy stored in the material
can be fully recovered when kinematic restrictions are released, for
example, through excision of the tissue.

[30, 31, 32, 33, 34, 35, 36]. Remarkably, the predicted val-
ues for those material parameters are heavily influenced by
the hypotheses considered to introduce the effect of resid-
ual stresses [37]. Despite these facts, the area of data as-
similation in cardiovascular modeling is still in early stages
of development and much work is yet to be done in order
to develop effective tools to make the in-vivo estimation of
RSs feasible.

In view of the gap highlighted in the previous paragraph,
the aim of this work is to present a conceptual frame-
work to aid the development of RS estimation tools. The
proposed formulation consists in the definition of a cost
functional which is able to measure the imbalance due to
incorrect values of RRDs at a given set of equilibrated con-
figurations of the arterial wall. Then, the characterization
of RSs becomes an optimization problem where the resid-
uals of the involved variational equations are minimized
by finding the appropriate RRD field.

Fundamental to our purposes is to have at hand, as
input data, the constitutive equation together with the
corresponding material parameters characterizing the tis-
sue behavior and at least two configurations of the arte-
rial wall structure with the full displacement field between
them. More generally, the proposed methodology is pre-
sented for an arbitrary number of known configurations.
Three examples are featured for the verification of the pro-
posed methodology. Furthermore, in these examples the
influence of increasing amount of input data (in the form
of known configurations) and the impact of errors in the
material parameters is analyzed.

The structure of this article is organized as follows. The
kinematic and mechanical setting for the RRD character-
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ization problem is presented in Section 2. The variational
formulation of the problem and the proposed cost func-
tional to be minimized are introduced in Section 3. A
brief reference to the optimization techniques to be con-
sidered for our minimization problem is given in Section
4. Next, three numerical examples are presented to assess
the capabilities of the proposed methodology in Section 5.
Final remarks are outlined in Section 6.

2. Mechanical setting

As mentioned in the Section 1, the proposed approach
relies in the fact that more than one arterial configura-
tion is known. We will consider that N + 1 configurations
are known, say configuration Ωa and configurations Ωjb,
j = 1, . . . , N , N ≥ 1. For each one of these known config-
urations we also consider that the arterial blood pressure,
which is the external load responsible for part of the to-
tal deformation occurring in these configurations, is given.
Furthermore, the displacement vector field, say wj , which
maps Ωa into Ωjb are also considered as known data for all
j = 1, . . . , N .

2.1. Continuum mechanics basis
Consider the representative scheme displayed in Figure

1. The virtual configuration Ωv (whose coordinates are de-
noted as xv) represents a state of unloaded and separated
material constituents of the arterial wall, serving as a ref-
erence for the constitutive equations describing the mate-
rial behavior. This virtual configuration has a zero stress
state and is free of RRDs as result of removing all kine-
matical constraints and loads. Then, this configuration
corresponds to a zero elastic strain energy configuration.

The material domain Ωm (with coordinates xm) denotes
a zero-load configuration. However, due to processes of
growth and remodeling the material features a deforma-
tion, characterized in each material point by the RRD
tensor Fr such that each infinitesimal fiber is related to
its virtual counterpart by

dxm = Frdxv. (1)

This RRD tensor is the recoverable part of the deforma-
tion of the tissue, and is responsible for storing energy in
the structure even in the case of the zero-load configura-
tion. The associated strain induces a self-equilibrated RS
state, called σr, that depends on the constitutive behavior
of the material. For hyperelastic materials we admit the
existence of a scalar strain energy function Ψ, from which
the (second) Piola-Kirchhoff (Sr) and Cauchy stress (σr)
tensors are obtained by

Sr =
∂Ψ
∂Cr

, σr =
1

det Fr
FrSr (Fr)T , (2)

where Fr, σr and Sr are defined in terms of xm, and with
Cr standing for the right Cauchy-Green deformation ten-
sor given by Cr = (Fr)T Fr.

The spatial domains Ωa and Ωjb (with j = 1, . . . , N and
coordinates respectively denoted as xa and xjb) are config-
urations at equilibrium with different levels of blood pres-
sure, say pa and pjb which are applied over the inner surface
of the vessel, Γa and Γjb, respectively. Coordinates in each
domain are related through the displacement fields v and
uj as follows 2

xa = xm + vm, (3)

xjb = xm + ujm. (4)

In addition, the relation between configurations Ωa and Ωjb
can be stated in terms of the N displacement fields wj , as
next

xjb = xa + wj
a. (5)

Hence, the deformation gradient tensors are obtained as
follows

Fuj = I +∇mujm,

Fv = I +∇mvm,

Fwj

= I +∇awj
a. (6)

where Fuj and Fv are defined in terms of xm, Fwj

in
terms of xa and Fvr, Fujr (see (8) below) and Fr in terms
of xm. Also, note that the deformation gradient tensors,
Fv and Fuj , are related through

Fuj = Fwj

m Fv, (7)

where subindex m indicates that Fwj

m is expressed in terms
of xm. The total deformation experienced by the mate-
rial at these configurations is obtained composing the pre-
sented deformation gradient tensors with Fr, obtaining

Fujr = FujFr = Fwj

m FvFr, Fvr = FvFr. (8)

Therefore, the corresponding right Cauchy-Green defor-
mation tensors are

Cvr = (Fvr)TFvr, Cujr = (Fujr)TFujr, (9)

which are naturally defined in Ωm.

2.2. Mechanical equilibrium

In this section the formulations corresponding to the
mechanical equilibrium of the tissue in configurations Ωm,
Ωa and Ωjb are introduced. Moreover, these equations will
be conveniently rewritten in configuration Ωa.

2Hereafter, indexes m,a, b denote a dependency with respect to
coordinates xm, xa and xjb, respectively
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Ωm

Ωa

Ω1
b

Ω2
b

ΩNB

b

v, Fv

u1, Fu1

w1,Fw1
w2,Fw2

wNB ,FwNB

Fr

Fvr

Fu1r

p = 0,σr (
Cr)

p = pa

p = p1
b

p = p2
b

p = p
NB
b

Ωv

Figure 1: Problem setting for residual deformation characterization. The virtual configuration Ωv represents a disaggregated state of material
particles composing the arterial wall in a zero-stress state and serves as reference configuration for constitutive equations (no elastic energy is
stored). The material domain Ωm is subjected to no external loads, however, due to the existence of RRDs (Fr) developed during the processes
of growth/remodeling, a self-equilibrated residual stress state (σr) arises in this configuration. Configuration Ωa and the N configurations

Ωjb (j = 1, . . . , N) represent equilibrium domains with their corresponding external loading system given by the arterial blood pressure (pa

and pjb, respectively). These N configurations are represented in the figure by Ω1
b ,Ω

2
b and ΩNb . Tensors Fv and Fuj (only Fu1

is shown for
the sake of clarity) denote the corresponding deformation gradient tensors due to the aforementioned displacement fields, and Fvr = FvFr ,

Fujr = FujFr (only Fu1r is shown for the sake of clarity) are the material expressions for the total deformation tensor with respect to the
constitutive reference configuration Ωv (virtual configuration). For the purposes of the present work, Ωv will never be practically used, Ωm
is unknown in the problem, while Ωa and Ωjb are known data, as well as displacement fields wj .
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2.2.1. Material configuration Ωm
The variational equation that defines the mechanical

equilibrium of the body in Ωm reads
∫

Ωm

σr · ∇smv̂ dΩm = 0 ∀v̂ ∈ Vm, (10)

where σr is a RS field, ∇sm denotes the symmetric gradi-
ent with respect to coordinates xm, and Vm is the linear
space of kinematically admissible variations in the mate-
rial configuration considering the Dirichlet boundary ΓDm,
which is given by

Vm =
{

u ∈ H1 (Ωm) ; u|ΓDm = 0
}
, (11)

where H1 (Ωm) denotes the Hilbert space of functions,
with square-integrable gradient, defined in Ωm. Since in
the characterization problem Ωm is unknown, it is worth-
while to express equation (10) in terms of xa, allowing to
perform the integration in the known configuration Ωa. A
change of variables leads to

∫

Ωa

σra · ((Fv
a)−T ∇av̂)s dΩa = 0 ∀v̂ ∈ Va, (12)

where Va is the counterpart of Vm in Ωa, and σra is related
to σr and Sr through the following expressions

σra =
1

det Fv
a

Fv
a (σr)a (Fv

a)T

=
1

det Fvr
a

Fvr
a (Sr)a (Fvr

a )T . (13)

2.2.2. Spatial configuration Ωa
For the sake of simplicity, let us consider that the arterial

wall is only subjected to a pressure load pa applied on the
inner surface of the vessel Γa (the extension to more gen-
eral load cases is straightforward). Then, the variational
equation that characterizes the mechanical equilibrium for
the spatial configuration Ωa reads

∫

Ωa

σvr · ∇sav̂ dΩa =
∫

Γa

pana · v̂ dΓa ∀v̂ ∈ Va, (14)

where Va is the space of kinematically admissible virtual
actions in Ωa, and σvr is

σvr =
1

det Fvr
a

Fvr
a (Svr)a (Fvr

a )T , (15)

with Svr the second Piola-Kirchhoff stress tensor related
to the deformation Fvr.

2.2.3. Spatial configurations Ωjb
Analogously to the previous case, for each configuration

Ωjb (j = 1, . . . , N) with a given pressure pjb applied over the

inner surface of the vessel wall Γjb, the variational equations
characterizing the mechanical equilibriums reads

∫

Ωjb

σujr · ∇sbv̂ dΩjb =
∫

Γjb

pjbnb · v̂ dΓjb ∀v̂ ∈ Vjb ,

j = 1, . . . , N, (16)

where Vjb is the space of kinematically admissible virtual
actions in Ωjb, and the constitutive stress tensors σujr are
obtained through

σujr =
1

det Fujr
b

Fujr
b (Sujr)b(Fujr

b )T , (17)

where Fujr and Sujr are the deformation and second
Piola-Kirchhoff stress tensors associated with the displace-
ments uj = wj + v. Furthermore, since wj is given data,
we can reduce the number of unknown variables. In fact,
uj can be eliminated considering the identities uj = v+wj

and Fujr
a = F(v+wj)r

a = Fwj

Fv
aFra.

Then, these variational equations expressed in terms of
xa coordinates read

∫

Ωa

σ(v+wj)r
a · ((Fwj

)T∇av̂)s dΩa =
∫

Γa

(pjb)a(Fwj

)−Tna · v̂ det Fwj

dΓa ∀v̂ ∈ Va,

j = 1, . . . , N. (18)

where σujr
a = σ

(v+wj)r
a is written as

σ(v+wj)r
a =

1
det Fvr

a

Fvr
a (S(v+wj)r)a (Fvr

a )T . (19)

3. Recoverable residual deformation characteriza-
tion problem

In this Section, the RRD identification problem is in-
troduced as the minimization of a cost functional measur-
ing the mechanical disequilibrium of the setting described
above caused by an inconsistent RRD field.

We consider that domains Ωa and Ωjb (j = 1, . . . , N),
each one in equilibrium with known pressure fields pa and
pjb, together with the displacements vectors fields wj are
given data. Hence, the objective is to find the RRD field
Fr (from which the RS field σr directly follows) and the
material configuration Ωm (and consequently the displace-
ment fields uj and v), such that the (N + 2) mechanical
problems stated by (12), (14) and (18) are satisfied.

Let now (Fr,v) be the solution of equations (12), (14)
and (18) (observe that if the pair is solution of (12) and
(14), then equations (18) are satisfied). In the follow-
ing, consider an arbitrary displacement ṽ 6= v, and an
arbitrary deformation tensor F̃r 6= Fr. ṽ is defined in
configuration Ωa. Also, note that ṽ ∈ Kina, where Kina
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stands for the linear manifold of kinematically admissible
displacements defined in Ωa and is given by

Kina =
{

u ∈ H1 (Ωa) ; u|ΓDa = v
}
. (20)

As the pair (F̃ra, ṽ) is not solution of the problem, for a
fixed pair, the following functionals can be defined in V ′a:

� Rm = Rm(F̃ra, ṽ) ∈ V ′a, associated with the mechani-
cal disequilibrium of the RS field σr in Ωm; i.e., with
the residual of equation (12), that is

〈Rm(F̃ra, ṽ), v̂〉 =∫

Ωa

σr̃a · ((Fṽ
a)−T∇av̂)s dΩa v̂ ∈ Va, (21)

where σr̃a is the residual stress related to F̃ra and the
notation 〈a, b〉 indicates an inner product between the
elementss a ∈ Va and an element b defined in its dual
space (b ∈ V ′a). Observe that this functional depends
explicitly and implicitly (through σr̃a) on F̃ra.

� The N functionals Rb,j = Rb,j(F̃ra, ṽ) ∈ V ′a, associ-
ated with the mechanical disequilibrium in the known
spatial domain Ωjb given by the residuals of equations
(18). They are defined by

〈Rb,j(F̃ra, ṽ), v̂〉 =∫

Ωa

σ(ṽ+wj)r̃
a · ((Fwj

)T∇av̂)s dΩa

−
∫

Γa

(pjb)a(Fwj

)−Tna · v̂ det Fwj

dΓa,

v̂ ∈ Va, i = 1, . . . , N, (22)

where σ
(ṽ+wj)r̃
a denotes the Cauchy stress associated

to the deformation F(ṽ+wj)r̃ expressed in terms of
xa. Again, note that this functional depends explic-
itly and implicitly (through σ

(ṽ+wj)r̃
a ) on F̃ra.

Furthermore, let Va = span {Φ1,Φ2, . . .}, where Φi de-
notes the i-th element of that basis. Then, the above func-
tionals are completely characterized through the defined
inner products with each element Φi of the proposed basis,
i.e., by the virtual power exerted between the generalized
residual forces Rm and Rb,j and each element of the basis.

Rim(F̃ra, ṽ) = 〈Rm(F̃ra, ṽ),Φi〉,
i = 1, 2, . . . (23)

Rib,j(F̃
r
a, ṽ) = 〈Rb,j(F̃ra, ṽ),Φi〉,

i = 1, 2, . . . j = 1, . . . , N (24)

Moreover, if (Fr,v) is the solution of equations (12), (14)
and the set of N equations defined by (18) then, such pair
makes Rim = Rib,j = 0 i = 1, , 2, . . . , j = 1, . . . , N . Then,
we introduce the following cost functional that character-
izes the mechanical imbalance as a function of the RRDs

J (F̃ra, ṽ) =
ηm
2

Rm(F̃ra, ṽ) ·Rm(F̃ra, ṽ)

+
N∑

j=1

ηjb
2

Rb,j(F̃ra, ṽ) ·Rb,j(F̃ra, ṽ), (25)

where Rm and Rb are vectors containing the components
defined in (23) and (24), respectively. Also, ηm and ηjb are
weighting factors corresponding to the mechanical imbal-
ances at Ωm and Ωjb, respectively.

Given a fixed F̃ra, consider now v̌ = v̌(F̃ra) the solution
of equation (14). Then, the RRD identification problem
can be written in the following variational form: given
Ωa, the N configurations Ωjb, the N displacements fields
wj , the corresponding inner pressure fields pa, p

j
b and the

material parameters characterizing the arterial wall con-
stitutive behavior, find Fra such that

Fra := arg min
D

{
J (F̃ra, v̌(F̃ra))

}
,

where v̌(F̃ra) stands for the relation given by∫

Ωa

σv̌r̃ · ∇sav̂ dΩa −
∫

Γa

pana · v̂ dΓa = 0 ∀v̂ ∈ Va.

(26)

In the problem described above, arg min{J } stands for the
argument that minimizes the functional J and D indicates
the space of all tensor fields F̃ra associated with RRDs
defined in Ωa with positive determinant (i.e. det F̃ra > 0)
for any xa ∈ Ωa. Additionally, we recall that σv̌r is defined
as

σv̌r =
1

det Fv̌r
a

Fv̌r
a

(
Sv̌r
)
a

(
Fv̌r
a

)T
. (27)

As J (F̃ra, v̌(F̃ra)) ≥ 0 ∀F̃ra ∈ D this problem is well de-
fined, and J (Fra, , v̌(F̃ra)) = 0 is obtained if (Fra, v̌(Fra)) ∈
D×Kina satisfies the mechanical equilibrium equations for
Ωm, Ωa and Ωjb -given by (12), (14) and (18), respectively.

Remark 1. For the problems under study in this work,
we do not have at hand an explicit form for cost func-
tional J as a function of the residual deformations F̃ra.
In fact, in the optimization problem to be applied we just
need to evaluate the cost functional J at a given point.
This evaluation is a two step process. First, given Ωa and
F̃ra, the mechanical equilibrium given by equation (14) is
evaluated, yielding v̌(F̃ra). Note that this nonlinear prob-
lem requires a linearization procedure. Here we employ a
Newton method as described in the supplementary mate-
rial. Next, given v̌(F̃ra) we compute J (F̃ra, v̌(F̃ra)) through
the evaluation of the residuals in the equilibrium equations
related to configurations Ωm and Ωjb. This amounts to
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compute the duality products given by equations (23) and
(24), respectively, which are explicitly given by expressions
(21) and (22) correspondingly.

4. Optimization methods

The RRD characterization problem is completely de-
fined by problem (26), hence leading to a minimization
of a nonlinear functional subjected to an also nonlinear
equality constraint. In order to perform this minimiza-
tion, two methods are explored in the numerical exam-
ples (see Section 5), for the first numerical example (see
Section 5.1) a simple gradient method is used and, for
the second and third examples (Sections 5.2 and 5.3) we
make use of an interior-point algorithm for constrained
optimization available in the MATLAB® Optimization
ToolboxTM [38], based on the works of Byrd reported in
[39, 40].

5. Numerical examples

In this section three numerical examples are presented
to assess the potentiality of the mechanical setting for the
characterization of RRDs in arterial tissues.

In all the examples, from a proposed material config-
uration and its corresponding residual deformation field,
a complete solution (including the equilibrium configu-
rations Ωa, Ωjb, their corresponding load states and dis-
placement fields wj) will be manufactured to verify the
proposed methodology. Numerical implementation for the
mechanical equilibrium problem (utilized in the manufac-
turing of the known setting) and the evaluation of the
residuals involved in the cost functional were developed
using MATLAB®[38].

5.1. Clamped bar

5.1.1. Problem description
In this example, a one-dimensional bar clamped at both

ends is considered where the material configuration, Ωm,
occupies the interval [0, 2L]. A load f , distributed in the
cross-sectional area of the bar, is applied at the material
point P located in the center of Ωm, i.e. at xm = L. A rep-
resentative scheme of the problem is presented in Figure 2.
The constitutive behavior of the material is characterized
by a linear relation between the second Piola-Kirchhoff
stress and the deformation tensor, i.e.

S = kb(F − 1), (28)

where kb represents an elastic parameter and F = F vF r is
the total deformation gradient resulting from the composi-
tion between a deformation field due to the displacement v
and the RRDs F r. In particular, a constant field F r is ad-
mitted for the material configuration Ωm. Consequently,
through (28), Sr is also a constant field.

xm

L L

Ωm, SrxP
m = L

Figure 2: Setting for the clamped bar 1D problem

When the concentrated load f is applied, the analyti-
cal solution for the equilibrium problem can be easily ob-
tained, resulting in a piecewise linear displacement field
vm, which presents null values at both ends and maximum
at the point xm = L, i.e.

vm (xm) =

{
f

2(kbF r+Sr)F r xm, xm ∈ [0, L],
f

2(kbF r+Sr)F r (2L− xm) , xm ∈ [L, 2L].
(29)

We introduce the notation vf = v(xm) to emphasize the
fact that this displacement field is associated to the load
f .

From the above displacement field, the equilibrium con-
figuration Ωf = [0, 2L] is defined. Observe that despite
the fact that Ωm and Ωf occupy the same region in the
Euclidean space, points in [0, 2L] correspond to different
material points depending which configuration is consid-
ered. Furthermore, the solution of the problem belongs
to the space spanned by linear finite elements shape func-
tions, provided a node is placed at the point xm = L.

5.1.2. Manufactured solution: data and target
The geometry and constitutive behavior are defined by

L = 1 m, kb = 1.0 · 103 Pa. The value characterizing
the constant RRD field is set as F r = 1.01, defining the
objective for the identification problem. Note that, from
(28), the constant RS field is given by Sr = 10 Pa.

Let us now consider that two equilibrium configura-
tions, Ωa and Ωb, are known (N = 1). Ωa = [0, 2L] is
at equilibrium with the concentrated load fa = 100 Pa.
Then, using (29), we obtain the load application point for
the force fa as xfaa = L + vfa = 1.0485 m. Similarly,
Ωb = [0, 2L] is at equilibrium with fb = 200 Pa, applied at
xfbb = L+ vfb = 1.0970 m.

Finally, the displacement field w, mapping points from
Ωa into Ωb is given by

w (xa) =

{
0.0485 m xa

1.0485 m , xa ∈ [0 m, 1.0485 m],
0.0485 m xa−2L

1.0485 m−2L , xa ∈ [1.0485 m, 2L].
(30)

Summarizing, the data for the identification problem is
given by: the constitutive equation (28), the constitutive
parameter kb, Ωa = [0, 2L], fa (with its application point
xfaa ), Ωb = [0, 2L], fb (with its application point xfbb ). Note
that, through xfaa and xfab the value of the displacement
field w at the load application point is also provided. Ad-
ditionally, the target RRD field for the identification prob-
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lem is the constant field F r = 1.01. As consequence, the
associated fields Sr, v = vfa and u = vfb are also defined
as targets.

5.1.3. Optimization problem
For the numerical approximation we employ linear finite

elements for the displacement field and for the Lagrange
multiplier (involved in computation of the functional sen-
sitivity, as can be observed in the supplementary mate-
rial). The spatial discretization is performed in the Ωa
configuration using only two finite elements, considering
three nodes: two located at both ends (constrained due to
the boundary conditions), and one at the load application
point P.

Additionally, a constant RRD field F̃ ra,e (e = 1, 2) within
each element is considered and the cost functional is min-
imized using a simple gradient descent method. At each
optimization iteration k, the current guess for the residual
deformation field F̃ ra,e is updated through

(F̃ ra,e)
k+1 = (F̃ ra,e)

k −∆F e, (31)

where superscript k indicates the k-th iteration of the min-
imization process and ∆F e is defined as

∆F e = γ

〈
∂J
∂F̃ ra

, δF̃ ra,e

〉∣∣∣∣
(F̃ ra )k

, (32)

if |γ
〈
∂J
∂F̃ ra

, δF̃ ra,e

〉∣∣∣
(F̃ ra )k

| < ∆M , or

∆F e = sign

(〈
∂J
∂F̃ ra

, δF̃ ra,e

〉∣∣∣∣
(F̃ ra )k

)
∆M (33)

otherwise. In these expressions, (F̃ ra )k indicates the set
of elemental values F̃ ra,e at iteration k. The process is
stopped when the convergence criterion J (F̃ ra ) < tolj is
met. The parameters controlling the optimization process
are defined as ∆M = 10−2, γ = 10−7 and tolj = 10−3.
Also, the weighting factors have been set to ηm = 1 and
ηb = 100. This choice is made considering that with the
proposed initial condition any material configuration will
be at equilibrium, and, as consequence, at such point the
algorithm should be mainly driven by the mechanical im-
balance occurring in Ωb configuration.

The initial guess is set as F̃ ra |Ωa = 1 and the functional
gradient

〈
∂J
∂F̃ ra

, δF̃ ra,e

〉∣∣∣
(F̃ ra )k

is computed through the sen-

sitivity analysis available in the supplementary material.

5.1.4. Results
Figure 3 summarizes the results. In Figure 3(a), the

behavior of the descending algorithm through the mini-
mization of the cost functional is shown. In Figure 3(b)
it is clearly observed that the material configuration is re-
covered when convergence is achieved. Finally, Figure 3(c)
displays the convergence of the RRD values for both finite
elements.

5.1.5. Discussion
In this first example, a verification of the variational

framework in a simple problem where the exact solution
is known is performed. Using a standard gradient descent
method the viability and potential of the proposed me-
chanical setting for the estimation of RRDs (and the cor-
responding RSs) along with the zero-load (material) con-
figuration have been shown.

5.2. Thick-walled cylinder
5.2.1. Problem description

In this example the identification of RRDs is performed
in an homogeneous thick-walled cylinder subjected to uni-
form internal pressure. Considering such conditions, the
problem possess rotational symmetry. As in the previous
example, a complete setting will be manufactured from a
known material configuration at equilibrium with a known
RS field (originated by predefined RRDs). Then, based on
the manufactured data set, the proposed method will be
utilized to identify the RRD field.

In this context, it is useful to introduce the kinematic
setting corresponding to this case with rotational symme-
try. Consider a cylindrical material configuration, with
points defined by

xm = (ρm, θm, zm) , (34)

where as usual, ρm denotes the radial coordinate, θm the
angular coordinate, and zm the axial coordinate. Con-
sidering the rotational symmetry, shear stresses and the
tangential component of the displacement field are null.
Moreover, we also consider a pipe of fixed length and con-
stant strains in the axial direction. Thence, the space of
kinematically admissible displacements Um and the space
of associated kinematically admissible variations Vm are
given by

Vm = Um = {u = (uρ, 0, 0) | uρ ∈ Uρm} , (35)

with

Uρm =
{
uρ ∈ H1(Ωm) | ∂u

ρ

∂θm

∣∣∣∣
Ωm

=
∂uρ

∂zm

∣∣∣∣
Ωm

= 0

}
. (36)

And, for an element u ∈ Um its gradient takes the following
form

∇mu =




∂uρ

∂ρm
0 0

0 uρ

ρm
0

0 0 0


 . (37)

For this example we define the material configuration
through the inner and external radii ri = 5.6 mm and re =
7 mm, respectively. An homogeneous compressible Neo-
Hookean material is considered, for which the strain energy
function is given by

Ψ = C1

(
I1 − 3

)
+ kvol (J − 1)2

, (38)
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Figure 3: Results summary for the RRD characterization problem: 1D clamped bar example.
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where I1 = J−2/3tr (C) , J = det F are invariants of
the deformation gradient tensor, and C1 and kvol rep-
resent shear and bulk material parameters, respectively.
In this example, the constitutive parameters are set to
C1 = 15 kPa (inspired by the values for the media layer
presented in [5]) and kvol = 365 kPa, (corresponding to a
Poisson coefficient ν = 0.46).

In this cylinder, the target RSs and RRDs are defined
based on a continuous RS field of the following form

σr (ρm) =



σrm,ρ (ρm) 0 0

0 σrm,θ (ρm) 0
0 0 σrm,z (ρm)


 , (39)

where a linear form for σrm,θ is considered and σrm,ρ is ob-
tained as solution of the equilibrium at Ωm. The RRD
field is defined such that the objective stresses are gener-
ated considering the proposed constitutive behavior. The
axial component of the stress field σrm,z is obtained from
the defined RRD field. Note that σrm,z exerts no inter-
nal virtual power. Figure 4 displays the objective RS and
RRD fields.

5.2.2. Manufactured solution
In order to construct the known setting for the identi-

fication problem we approximate the radial displacement
field using 1D linear finite elements. The discretization is
performed with 16 equally-sized elements. Piecewise con-
stant RRDs are considered within each element. The value
for each component of the RRD field is taken such that the
associated internal power is equivalent to the correspond-
ing for the continuous target field.

The mechanical equilibrium problem is solved for differ-
ent values of internal pressure, pa = 1 kPa, p1

b = 2 kPa and
p2
b = 3 kPa, to obtain the equilibrium configurations Ωa,

Ω1
b and Ω2

b , respectively. The action of the internal pres-
sure is introduced as a Neumann boundary condition in
the corresponding node. The linearization of this problem
is performed following the ideas presented in [8]. Observe
that since the gradient operators (see ∇m in (37)) depend
on ρ, associated quantities (e.g. stresses, deformation gra-
dient tensors) are not uniform within each element.

Figure 5(c) displays a representative scheme of the prob-
lem, highlighting geometrical landmarks (inner and exter-
nal radii) for the involved configurations. In this context,
Figure 5(a) shows the radial displacement fields w1

m and
w2
m mapping Ωa into Ω1

b and Ω2
b for an 8 finite elements dis-

cretization. Additionally, Figure 5(b) shows the displace-
ment fields obtained for a fixed internal pressure p = 1 kPa.
These figures illustrate the convergence of the finite ele-
ment method.

Next, assuming Ωa, Ω1
b , Ω2

b , w1 and w2 along with the
equilibrating internal pressures pa, p1

b and p2
b given as input

data, the RRD identification will be addressed.

5.2.3. Optimization problem
For this problem we make use of the implementation

of the interior-point algorithm available in the MATLAB

Optimization Toolbox through the function fmincon. For
the configuration options see AppendixA. As a constraint,
a functional depending on the determinant of the RRD at
each element is incorporated, assuming the form

C =
∑

e

(detFr,em − 1). (40)

Analogously to the numerical approximation employed
for manufacturing the solution, 1D linear finite elements
are used to approximate the radial displacement field and
piecewise constant RRDs are considered within each ele-
ment. Three different discretization levels are tested, using
2, 4 and 8 finite elements of equal size. For the setting of
the initial conditions we consider Fra = I for every case.

Three stages of optimization are used with a different
set of weighting factors (ηm, η1

b , η2
b ) each time; for the

second and third optimization stages initial conditions are
taken from the previous run. For the first optimization
stage, weights are set as η1

b , η
2
b = 100 and ηm = 0.1. For

the second stage weighting factors are η1
b , η

2
b = 1 and ηm =

0.1. Finally, η1
b = η2

b = ηm = 1 is considered for the last
stage. Evaluation of the cost functional is performed using
4 Gauss points.

Since we consider Fra = I as initial condition, the com-
ponent of the functional J associated to the imbalance of
the material configuration will be null and any perturba-
tion of the RRD field near this initial point would increase
such quantity. Taking this into account it is of paramount
importance to choose the weighting parameters in the first
stage such that the disequilibrium of the known configura-
tions Ω1

b and Ω2
b is taken into account. To depict this fact,

Figure 6(a) shows the variation of the functional J when
a single variable is perturbed from the initial conditions
if the weighting parameters η1

b = η2
b = ηm = 1 are con-

sidered (case with 2 finite elements). Additionally, Figure
6(b) shows the same variation when the parameters pre-
sented for the first stage are taken, showing that the initial
condition Fra = I no longer represents a local minimum.

It is also important to observe that, as the fields w1 :
Ωa → Ω1

b and w2 : Ωa → Ω2
b (see Figure 1) are considered

known only at the nodes (for each case) an error in the
input data is being introduced. The relative discrepancies
(measured in the L2 norm) between the fields w1 and w2

generated in the manufacturing process and the ones given
as input data for the optimization problem are 1.3 · 10−3,
3.02 · 10−4 and 6.05 · 10−5 for the cases with 2, 4 and 8
finite elements, respectively.

5.2.4. Results
Figure 7 shows the minimization of the cost functional F

along the three optimization stages for the three proposed
levels of spatial discretization. The shown functional val-
ues have been normalized considering η1

b = η2
b = ηm = 1.

In each case, the minimization algorithm stopped due to
changes in every optimization variable below the minimum
tolerance value of 10−10 (default value for the fmincon
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Figure 4: Thick-walled cylinder example: objective residual deformations and stresses

function provided in the MATLAB Optimization Toolbox
[38]).

Figure 8 presents the results of the obtained RSs for
each case, displaying a comparison between the results and
their corresponding objective values. Similarly, Figure 9
presents the identified RRD fields. In these figures it can
be observed that the proposed methodology is able to ad-
equately characterize the RRDs in the cylinder. Also, the
increasing number of elements in the spatial discretization
consistently leads to a better identification of the target
fields.

Table 1 summarizes the results for this problem, show-
ing the discrepancy between the obtained results and tar-
get solutions. Here, eσ indicates the relative discrepancy
in RSs and eFr the corresponding relative discrepancy in
RRDs measured in the L2 norm. Additionally, ev mea-
sures in the L2 norm the relative discrepancy between the
obtained radial displacement field v (mapping of Ωm onto
Ωa) and the corresponding field obtained in the manufac-
turing of the known setting considering the target RRD
field (and using a spatial discretization with 16 finite el-
ements). As observed in Figures 7 and 8, the quality of
agreement between the target data and the obtained re-
sults improves as more elements are incorporated. Finally,
the total number of iterations and the achieved values of
the cost functional are also shown. Furthermore, to pro-
vide a fair comparison between the obtained cost func-
tionals, the cost functional corresponding to the results
of the RRDs estimation achieved using the 2 and 4 finite
elements were also evaluated using the finite element ba-
sis corresponding to the case with 8 finite elements (i.e.
the test functions Φi in (23)-(23) are given by the linear
shape functions associated to the 9 nodes of the 8 finite el-
ement discretization). The cost functional values obtained
through this procedure are denoted by J 8.

5.2.5. Discussion
Good results were obtained in this example, delivering a

proper estimation of the morphology and magnitude of the
target fields. We highlight that the material configuration
is identified with great accuracy (through the radial dis-
placement field) as the discrepancy with the objective data
is of the same order of magnitude as the error given in the
input data through the fields w1 and w2. This is verified
for the three different discretization levels. Moreover, the
use of finer approximations for the displacement field (and
for the measure of the mechanical imbalance) consistently
improves the quality of the obtained estimations.

Observe that each case features the minimization of a
different cost functional as the definition of the functional
J differs for each discretization in the number of shape
functions used for the evaluation of the mechanical equi-
librium. The cost functional J 8 associated with the finer
discretization offers the best evaluation of the mechanical
imbalance of the obtained results. As it can be noted in
Table 1 the value of this cost functional presents a corre-
lation with the quality of the estimation.

An important issue regarding the choice of weighting
parameters ηm and ηjb can be appreciated in this exam-
ple. Figure 6 suggests the existence of possibly several
local minima and shows that the modification of weight-
ing parameters can provide a successful exit path for the
functional minimization. This motivated the use of the
three optimization stages, were weighting parameters are
modified in order to reshape the cost functional and avoid
the stagnation of the minimization process.

5.3. Three-layered arterial wall
5.3.1. Problem description

In this example, RRDs resembling the setting of an ab-
dominal aortic wall are characterized. For modeling pur-
poses, a simplified cylindrical arterial wall configuration
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Figure 5: Thick-walled cylinder example: results for the mechanical problem

Elements eσ eFr ev J J 8 Iterations

2 5.27·10−1 1.03·10−1 7.77·10−3 1.26·10−1 3.56·10+1 231

4 2.61·10−1 5.11·10−2 2.30·10−3 2.68·10−2 2.65·10+1 546

8 1.89·10−1 3.29·10−2 4.47·10−5 6.85·10−2 6.85·10−2 948

Table 1: Thick-walled cylinder example: identification error summary.

with uniform thickness is assumed. As a consequence, the
kinematic setting for this problem is the same is the same
as the one introduced in Section 5.2.1. In contrast to the
previous example, the wall consists of three layers of uni-
form thickness (see Table 2), each. Arterial tissue in each
layer features uniform properties and is assumed to behave
as a hyperelastic quasi-incompressible material character-
ized by the following strain energy function (see [1]):

Ψ =
c

2
(I1 − 3) +

k1

2k2

∑

i=4,6

δi

{
ek2(Ii−λ0

i )
2 − 1

}

+ kvol(J − 1)2. (41)

In this context, kvol is the bulk modulus, J = detFm and
Fm = FmJ−1/3 is the isochoric deformation tensor. Asso-
ciated to this deformation we have Cm = F

T

mFm and the

isochoric invariants

I1 = I ·Cm, Ii = Cm · (ai ⊗ ai), i = 4, 6, (42)

where ai, i = 4, 6 are the unit vectors indicating the orien-
tation of the collagen fibers. It is worthwhile to mention
that recruitment stretches λ0

i are defined in such a way
that in the material configuration collagen fibers store null
energy, i.e.

λ0
i = C

r

m · (ai ⊗ ai), C
r

m = F
r

m(F
r

m)T . (43)

This fact implies that the collagen load bearing starts
when the vessel is inflated beyond the null pressure level
and they have no influence in the RS state induced by
RRDs. This assumption is motivated by the remodeling
process experienced by the collagen [41] (through contin-
uous degradation and synthesis), enabling the adoption of

12



Fu
nc

ti
on

al
va

lu
e

λ1
ρ λ1

θ
λ1

z
λ2

ρ λ2
θ

λ2
z

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0

500

1000

1500

(a) Weighting parameters ηm = η1
b = η2

b = 1

Fu
nc

ti
on

al
va

lu
e

λ1
ρ λ1

θ
λ1

z
λ2

ρ λ2
θ

λ2
z

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

(b) Weighting parameters η1
b = η2

b = 100 and
ηm = 0.1

Figure 6: Thick-walled cylinder example: functional values resulting from the perturbation of a single optimization variable in the initial
conditions Fra = I, for the case with 2 finite elements. Supra-index indicates the number of the element to which the variable is related to
and the line colors identify the perturbed variable in each case.

Iterations

Fu
nc

ti
on

al
va

lu
e

F
Ωj

b
Component

Ωm Component

0 50 100 150 200 250
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

(a) 2 Finite elements

Iterations

Fu
nc

ti
on

al
va

lu
e

F
Ωj

b
Component

Ωm Component

0 100 200 300 400 500 60010−4

10−3

10−2

10−1

100

101

102

103

(b) 4 Finite elements

Iterations

Fu
nc

ti
on

al
va

lu
e

F
Ωj

b
Component

Ωm Component

0 100 200 300 400 500 600 700 800 900 100010−4

10−3

10−2

10−1

100

101

102

103

(c) 8 Finite elements

Figure 7: Thick-walled cylinder example: minimization process showing functional value for the three optimization stages. Functional values
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Figure 8: Thick-walled cylinder example: residual stresses for different discretization levels. Comparison between obtained results (colored
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Figure 9: Thick-walled cylinder example: principal stretches characterizing the RRDs for different discretization levels. Comparison between
obtained results (colored solid lines) and the target field (dashed).

different configurations of the fibers and avoiding the ex-
istence of RRDs in the material configuration.

These scenarios are proposed to evaluate the capabilities
of the identification problem to deliver the correct RRDs
as the amount of input data is increased.

Based on experimental measurements for each individ-
ual layer (data available in [7]), [5] proposed a method-
ology to define a field of RRDs (here denoted Fexpm ).
This RRD field is expressed in terms of the components
λζ , ζ ∈ (ρ, θ, z), adopting the following forms for each of
the corresponding layers

Fexp,(I)m =




λ
(I)
ρm 0 0
0 λ

(I)
θ 0

0 0 λ
(I)
z


 ,

Fexp,(M)
m =



−λ(M)

ρm 0 0
0 0 λ

(M)
θ

0 λ
(M)
z 0


 ,

Fexp,(A)
m =




λ
(A)
ρm 0 0
0 λ

(A)
θ 0

0 0 λ
(A)
z


 , (44)

where and superscripts (I), (M), (A) indicate that the field
corresponds to the intima, media or adventitia layer, re-
spectively. The dependence of the fields with respect to ρm
is not explicitly indicted for the sake of readability. Note
that these components are related to the principal values
for the associated Cauchy-Green deformation tensor, given
by

Cexp
m =



λ2
ρ 0 0

0 λ2
θ 0

0 0 λ2
z


 . (45)

The values for the components of the RRD field and the
associated RSs proposed in [5] (where the complete func-
tional form for each component and layer is reported) take
the form shown in Figure 10.

Material parameter Intima Media Adventitia

Thickness [mm] 0.30 0.81 0.32
c [kPa] 39.8 31.4 17.3

kvol [102 kPa] 4.84 3.82 2.10
k1[MPa] 10.1 0.81 0.98
k2 0.01 12.4 3.35
β [◦] 40.5 39.1 40.6

Table 2: Summary of material parameters for the three-layered wall
example

The material parameters characterizing the isotropic
term of the strain energy function are also taken from [5].
The bulk moduli are consistent with a Poisson modulus
ν = 0.46, considering that the volumetric stiffness is de-
termined by the isotropic contribution. Parameters char-
acterizing the behavior of the two collagen fiber families
are taken from [4]. Table 2 summarizes the material be-
havior parameters for this problem.

5.3.2. Manufactured solution
With the material configuration and RRDs already de-

fined, the mechanical problem is solved for different lev-
els of inner pressure (p = 6 kPa and pjb = 8, 10, 12, 14
kPa, with j = 1, 2, 3, 4 ) to construct the known setting
for the RRD identification problem. The obtained equi-
librium configurations are denoted as Ωa and Ωjb, respec-
tively. Analogously to the previous example, linear 1D fi-
nite elements are used to approximate the radial displace-
ment field and piecewise constant RRDs are considered
within each element. As before, the value for each com-
ponent of the RRD field is taken such that the associated
internal power is equivalent to the corresponding for the
continuous target field. The discretization considered for
the manufacturing process consists of 16 finite elements,
with 4 elements for the intima layer, 8 for the media and 4
for the adventitia. Elements are of equal size within each
layer.
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Figure 11(c) displays a representative scheme of the
problem, while Table 3 presents the geometrical landmarks
for the involved configurations in scenario (d). Figure
11(a) shows the radial displacement field obtained for an
inner pressure p = 6 kPa, while Figure 11(b) shows the
radial displacement fields wjm for each of the four addi-
tional known configurations proposed in scenario (d). The
numerical integration is performed using 4 Gauss points.

5.3.3. Optimization problem
As before, for the spatial discretization 1D linear fi-

nite elements are used to approximate the radial displace-
ment field and piecewise constant RRDs are considered
within each element. Two different discretization levels
are tested, using 3 and 8 finite elements. For the first case,
a unique finite element will represent each layer, while for
the second case we consider 2, 4 and 2 elements for the
intima, media and adventitia layers, respectively. Within
each layer, elements are of equal size.

In order to evaluate the influence of the amount of
known data, four scenarios are analyzed, where Ωa is con-
sidered to be the solution of the forward problem obtained
for an internal pressure pa = 6 kPa. In addition to this
known Ωa configuration, for each scenario a different num-
ber of additional known configurations is considered, ac-
cording to the following

(a) 1 additional configuration (at equilibrium with p = 8
kPa),

(b) 2 additional configurations (at equilibrium with p =
8/10 kPa),

(c) 3 additional configurations (at equilibrium with p =
8/10/12 kPa),

(d) 4 additional configurations (at equilibrium with p =
8/10/12/14 kPa).

As noted for the previous example, as the fields wj will
be considered known only at the corresponding nodes, an
error in this field is incorporated in the input data. In
this example, the discrepancies (measured in the L2 norm)
between the wj fields generated in the manufactured pro-
cess and the same fields given as input data ascends up to
2.2 · 10−3 and 1.24 · 10−4 for the 3 and 8 finite elements
discretizations, respectively.

As a constraint, a functional depending on the deter-
minant of the RRD for each element is considered. This
constraint is expressed as

C =
∑

e

(detFr,em − 1)2 < $, (46)

with $ = 0.01.
When tackling the problem with the 3 finite element dis-

cretization we consider Fra = I ·1.01 as initial condition for
each scenario. Three stages of optimization are used, using

a different set of weighting parameters each time (see be-
low). For the first optimization stage the aforementioned
initial condition is given, then for the second and third
optimization stages, the initial condition is given by the
result achieved at the previous stage.

Once the solution is achieved for each proposed scenario
using the coarse discretization, the problem is solved again
using the finer discretization. As before, three stages of
optimization are used. For each scenario, we consider as
initial condition the result obtained with the 3 finite ele-
ment discretization. This initial condition is given as input
for the first optimization stage. Next, for the second and
third optimization stages, the initial conditions are given
by the result achieved at the previous stage.

For both discretizations the following weights are used:
ηm = 0.1, ηb,j = 10

N for the first stage, ηm = 10, ηb,j = 1
N

for the second stage, and ηm = 1, ηb,j = 1
N for the third

stage. Note that j = 1, . . . , N , with N representing the
number of known configurations -additional to Ωa- (see list
of scenarios in Section 5.3.1) for the corresponding case.
Several combinations of weighting parameters were tested
for these optimization routines, the chosen values were de-
termined by selecting the combination that provides the
minimum average for the resulting cost functional values.

For all the optimization stages listed the options setting
for the MATLAB fmincon is presented in AppendixA. The
integration required for the numerical computation of the
preload problem and the evaluation of generalized residu-
als is performed using 4 Gauss points in each element.

5.3.4. Sensitivity with respect to material parameters
A sensitivity analysis is presented to study the impact

of imperfect input data in the characterization of the RRD
and RS fields. This is done by considering perturbations in
the material parameters. Particularly, the attention is fo-
cused in the parameter c (see 41), and the results obtained
for a group of 27 perturbed input data sets are analyzed.
These perturbed sets are constructed considering all pos-
sible combinations assuming that each layer could present
its correct value or a deviation (positive or negative) of 5%
of its actual value.

All the numerical tests regarding this analysis are done
using the coarser discretization consisting of one finite ele-
ment per layer. The same configuration presented for the
coarser discretization is used in each case.

5.3.5. Results
Results for the 3 finite elements discretization. An
overview of the results for the four proposed scenarios is
presented in Table 4, where the identification errors are
summarized. Here, the number of functional evaluations
for each scenario and the value achieved for the cost func-
tional J (normalized with ηb,j = 1

N , ηm = 1) are shown.
Additionally, J d stands for the functional value that is
achieved evaluating the corresponding solutions with the
functional form associated to scenario (d), i.e. considering
4 additional known configurations. Like in the previous
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Principal stretches presented in Holzapfel & Ogden (2010)
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(a) Components of the RRD field.

Stress field proposed in Holzapfel & Ogden (2010)
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(b) Residual stress field.

Figure 10: Components λζ , ζ ∈ (ρ, θ, z) shaping the RRD field and the associated residual stresses through the wall radius as introduced in
[5].

Three-layered aorta: geometrical landmarks of manufactured solution for scenario (d)

Configuration Pressure [kPa] Inner radius [mm] Intima thickness Media thickness Adv. thickness

Ωm 0 5.61 0.301 0.813 0.321
Ωa 6 6.05 0.280 0.781 0.306

Ω1
b 8 6.12 0.277 0.779 0.304

Ω2
b 10 6.18 0.274 0.778 0.303

Ω3
b 12 6.23 0.272 0.778 0.302

Ω4
b 14 6.28 0.259 0.778 0.301

Table 3: Three-layered aorta example: geometrical landmarks.
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(a) Displacement fields obtained as solution of the for-
ward problem for internal pressure p = 6 kPa obtained
in the manufacturing process.
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(c) Schematic setting for the problem.

Figure 11: Numerical solution of the forward mechanical problem.

example, error measures for the RRDs, RSs and displace-
ment fields are presented.

As can be seen in Table 4, if at least one additional known
configuration is given as input data a noticeable decrease
in the discrepancy between the results and target data is
obtained. Focusing on scenarios (a) and (d), it is shown
that the discrepancies with the objective data (measured
in the L2 norm) decrease from 3.70 ·10−1 to 2.38 ·10−1 for
the RS field, from 1.29 · 10−1 to 7.77 · 10−2 for the RRD
field and from 3.18·10−3 to 8.81·10−4 for the displacement
field v mapping Ωm into Ωa. From the reported values
for the cost functional J d, in this example it is observed
that smaller values do not necessarily indicate a better
agreement with the target data.

Figure 12 features a comparison between the obtained
values for the components of the RRD field, for the four
proposed scenarios and the objective fields reported in [5].
From this figure it can be noted that scenarios (b) to (d)
offer a good estimation of the mean value for all the com-
ponents of the deformation tensor in the intima and media
layers and for the circumferential component in the adven-

titia. All scenarios fail at presenting accurate estimations
for the radial and axial components in the adventitia, and
scenario (b) presents the best results regarding this tar-
get variable. Although results obtained in scenario (a) are
clearly poorer than the others, they still offer a good ap-
proximation for the circumferential component in the me-
dia and adventitia, and the axial deformation components
in the media.

Additionally, Figure 13 presents a similar comparison
for the obtained RS field. In this figure it is shown that
the better estimation in RRDs offered by scenarios (b)
to (d) is also reflected in the associated stress field. For
these scenarios, it is interesting to note the great accuracy
in the estimation (of the mean value) of the stresses in
the intima layer for all the components. Furthermore, the
circumferential and axial components for the media layer
are also identified with great accuracy. As before, larger
errors are observed in the characterization of the RS field
for the adventitia layer.

Results for the 8 finite elements discretization. As before,
an overview of the results for the four proposed scenarios
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Scenario eσ eFr ev J J d Iterations

(a) 3.70·10−1 1.29·10−1 3.18·10−3 1.93·10−1 4.29·10−1 115

(b) 2.28·10−1 6.84·10−2 3.71·10−4 1.45·10−1 2.55·10−1 198

(c) 2.66·10−1 8.78·10−2 8.07·10−4 4.91·10−2 5.90·10−2 163

(d) 2.38·10−1 7.77·10−2 8.81·10−4 1.21·10−1 1.21·10−1 271

Table 4: Three-layered aorta example: summary of results corresponding to the 3 finite element approximation. Values for the functional F
are normalized using ηb,j = 1

N
, ηm = 1 (j = 1, . . . , N).
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(a) Radial component.

St
re

tc
h

le
ve

l
Objective Field
Scenario (a)
Scenario (b)
Scenario (c)
Scenario (d)

Intima Media Adventitia
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) Circumferential component.
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(c) Axial component.

Figure 12: Three-layered wall example: results for the 3 finite element approximation. Residual deformations obtained as result of the
optimization process for the four proposed scenarios compared with the objective field.
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(b) Circumferential RS.
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(c) Axial RS.

Figure 13: Three-layered wall example: results for the 3 finite element approximation. Residual stresses arising from the residual deformation
field obtained as result of the optimization process for the four proposed scenarios, compared with the target field.

Scenario eσ eFr ev J J d Iterations

(a) 3.78·10−1 1.33·10−1 4.01·10−4 6.35·10−2 5.97·10−1 161

(b) 1.78·10−1 6.10·10−2 1.00·10−3 2.75·10−1 5.24·10−1 161

(c) 2.00·10−1 7.32·10−2 2.18·10−3 1.42·10−1 1.90·10−1 157

(d) 1.72·10−1 6.40·10−2 1.59·10−3 1.91·10−1 1.91·10−1 178

Table 5: Three-layered wall example: summary of results corresponding to the 8 finite element approximation. Values for the functional J
are normalized using ηb,j = 1

N
, ηm = 1 (j = 1, . . . , N).
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is presented in Table 5, where the identification errors are
summarized. Here, the number of functional evaluations
for each scenario and the value achieved for the functionals
J and J d (both normalized with ηb,j = 1

N , ηm = 1) are
also shown.
Similarly to the results obtained with the coarser dis-
cretization, Table 5 shows that the incorporation of at least
one additional known configuration contributes with the
identification of the RRD ans RS fields, halving the mag-
nitude of the discrepancies with respect to the target fields.
Despite this, Scenario (a) unexpectedly provides the better
estimation for the material configuration. From the pre-
sented discrepancy measures, it follows that the incorpora-
tion of additional data in the form of known configurations
in scenarios (c) and (d) do not significantly contribute to
improve the quality of the estimation. We remark that
the identification errors associated with the RS and RRD
fields improve with respect to the results achieved with the
3 finite element discretization. For example, for scenario
(d) it is observed a reduction of approximately 27% and
17% for the RSs and RRDs, respectively. Although the
relative errors associated to the radial displacement field
display an increase in their value, they still present small
magnitudes, in the order of 1 · 10−3.

Figure 14 features a comparison between the obtained
values for the components of the RRD field, for the four
proposed scenarios and the objective fields reported in [5].
It is observed that the more important contribution of this
finer discretization is the identification of the gradient of
the circumferential component of the deformation field,
particularly in the media and adventitia layers. The im-
pact of the refined discretization on the estimation of the
radial distribution of wall stresses is shown in Figure 15.
A better estimation of the shape of the RS field can be
noted not only in the circumferential components of the
media and adventitia, but also in the general morphology
on the radial components. Both figures highlight, again,
that the most relevant discrepancies are primarily found
in the adventitia layer.

Sensitivity with respect to material parameters. Table 6
summarizes the results for the 27 proposed cases for the as-
sessment of the sensitivity with respect to material param-
eters. As before, the relative discrepancies with the target
data measured in the L2 norm together with the achieved
functional values and the number of combined iterations
for the three optimization stages are shown. The mean
value of the discrepancies eσ, eFr and ev are 2.58 · 10−1,
8.27 · 10−2 and 5.51 · 10−3, respectively. In the worst case
scenario, discrepancies are up to 3.38 · 10−1, 1.40 · 10−1

and 1.03 ·10−2 for the relative errors associated to the RS,
RRD and displacement fields, respectively.

Additionally, Figure 16(a) summarizes the results for
the 27 proposed cases, displaying the average of the re-
ported values for the components shaping the RRD field
and the associated standard deviation. These results are
compared with the average deformation components in

each layer. Similarly, Figure 16(b) shows the comparison
between the resulting stresses in each layer and the mean
in each layer associated with the objective field.

5.3.6. Discussion
From a general point of view, valuable results were

achieved identifying the mean value of the components of
stresses and deformations in the arterial wall. Remark-
ably, these results can be achieved using a 3 finite element
model that discretized each layer with only one element.
Moreover, using the 8 finite element discretization it was
possible to obtain an approximation of the morphology of
the fields, as it is clearly observed for the radial and cir-
cumferential stresses in Figure 15. Identifiability of resid-
ual deformations is encouraging for the intima and media
layer, however, the characterization of the adventitia layer
is particularly challenging because of its high compliance.
As a consequence, the proposed cost functional features
a smaller sensitivity with respect to changes in the corre-
sponding optimization variables. Another interesting fact
is that the relatively small value of the radial component
of the stress field seems to be an obstacle for it to be iden-
tified.

Overall, if at least 3 configurations and the displace-
ments wj at four geometrical landmarks 3 are known, it is
possible to obtain a good estimation of the RRDs in the
more mechanically relevant layers (in this example, the in-
tima and media). In particular, the results show a good
estimation of the mean value of the circumferential and
axial components of the stresses in the intima and media
layers. It is remarkable that in each scenario the rela-
tive error in the identification of the displacement field is
smaller than that one introduced in the displacements wj

due to the use of interpolated input data.
In contrast, it is not promising the fact that, in this

example,smaller values of the cost functional (see J d in
Tables 4 and 5) are not consistently related to improved
quality of estimated variables. It is also shown that ad-
ditional information (knowledge of a 3rd or 4th deformed
configuration) can result in an increase of the relative error
of the estimated RRD, RS and displacement fields. These
points can be partially explained by the fact that the in-
corporation of known configurations associated to higher
pressure levels modifies the metric used to characterize
the mechanical imbalance which drives the optimization.
The internal virtual power associated to a configuration at
equilibrium with an elevated pressure level will be natu-
rally higher, and, as a result, the cost functional is, thus,
more sensitive to a disequilibrium in such configuration.
Furthermore, the convergence of the algorithm to local
minima could also be influencing the final results.

Finally, the sensitivity analysis with respect to given
material parameters shows that the discrepancies with the

3inner radius, internal elastic lamina, external elastic lamina and
external radius
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(a) Radial component.
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(b) Circumferential component.
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(c) Axial component.

Figure 14: Three-layered wall example: results for the 8 finite element discretization. Residual deformations obtained as result of the
optimization process for the four proposed scenarios compared with the objective field.
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(a) Radial stress
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(b) Circumferential stress.
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(c) Axial stress.

Figure 15: Three-layered wall example: results for the 8 finite element approximation. Residual stresses arising from the residual deformation
field obtained as result of the optimization process for the four proposed scenarios, compared with the target field.
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(a) Components of the RRD field for each layer.
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Figure 16: Results obtained for the material parameter sensitivity analysis. For each variable, blue circles indicate the mean value for the 27
analyzed cases while error bars indicate the associated standard deviation. Black dots point out target fields (mean value in each layer).
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Variation of mat. par. c (%) R esults
Intima Media Adventitia eσ eFr ev J Iterations

95 95 95 2.66·10−1 8.53·10−2 8.97·10−3 1.97·10−1 187

95 95 100 2.42·10−1 7.46·10−2 9.21·10−3 1.12·10−1 240

95 95 105 2.30·10−1 6.87·10−2 8.42·10−3 1.93·10−1 340

95 100 95 2.69·10−1 9.30·10−2 1.65·10−3 1.50·10−1 144

95 100 100 2.43·10−1 8.06·10−2 1.44·10−3 4.96·10−2 257

95 100 105 2.28·10−1 7.27·10−2 1.46·10−3 6.99·10−2 244

95 105 95 2.62·10−1 9.10·10−2 6.28·10−3 1.66·10−1 336

95 105 100 2.36·10−1 7.64·10−2 6.21·10−3 7.10·10−2 229

95 105 105 2.49·10−1 8.23·10−2 7.25·10−3 1.69·10−1 198

100 95 95 2.58·10−1 8.38·10−2 9.87·10−3 2.85·10−1 242

100 95 100 2.35·10−1 7.19·10−2 9.13·10−3 1.61·10−1 113

100 95 105 2.23·10−1 6.59·10−2 8.46·10−3 2.10·10−1 266

100 100 95 2.53·10−1 8.58·10−2 1.79·10−3 1.62·10−1 251

100 100 100 2.38·10−1 7.77·10−2 8.81·10−4 1.21·10−1 271

100 100 105 2.53·10−1 8.19·10−2 3.40·10−4 7.43·10−2 167

100 105 95 2.59·10−1 8.74·10−2 6.46·10−3 2.17·10−1 460

100 105 100 2.36·10−1 7.28·10−2 6.65·10−3 8.53·10−2 471

100 105 105 2.35·10−1 7.49·10−2 5.68·10−3 8.28·10−2 163

105 95 95 2.97·10−1 9.39·10−2 1.03·10−2 1.53·10−1 148

105 95 100 2.66·10−1 7.71·10−2 8.67·10−3 2.89·10−1 251

105 95 105 2.53·10−1 7.07·10−2 8.77·10−3 1.75·10−1 230

105 100 95 3.88·10−1 1.40·10−1 5.92·10−4 1.68·10−1 284

105 100 100 2.66·10−1 8.15·10−2 8.84·10−4 7.89·10−2 313

105 100 105 2.62·10−1 7.98·10−2 6.95·10−4 6.48·10−2 194

105 105 95 2.90·10−1 9.22·10−2 6.40·10−3 1.77·10−1 186

105 105 100 2.75·10−1 8.78·10−2 5.92·10−3 6.01·10−2 115

105 105 105 2.69·10−1 8.20·10−2 6.66·10−3 1.46·10−1 170

Table 6: Three-layered wall example: summary of results corresponding to the sensitivity analysis with respect to material parameters.
Discrepancy measures for each case. Perturbations of ±5% were performed in the material parameter c in the three layers.

objective data can increase up to 42% for the RRD field,
80% for the RSs and 1000% for the displacements (from
8.81 · 10−4 to 1.03 · 10−2). These results highlight the
importance of the simultaneous identification of RRDs and
material parameters and are in line with previous findings
[37]. Despite this, Figure 16 shows that it is possible to
adequately estimate the RRDs in the media and intima
layers when the material parameters are given with errors
up to 5% in the parameter characterizing the isotropic
response of the material (sensitivity with respect to other
material parameters is still to be evaluated). Moreover,
it is also noteworthy that in some cases, the introduced
errors in the constitutive parameter result in a decrease
of the relative discrepancies of the estimated RRDs, RSs
and/or displacement fields. This could be explained by the
fact that the optimization algorithm seems to be unable
to consistently find the global minimum of the functional.

6. Concluding remarks

A variational framework was proposed for the charac-
terization of RRDs in arterial walls. In this process, the
load-free configuration of that vessel is also obtained. The
proposed approach relies on a cost functional which mea-
sures the mechanical imbalance caused by an inconsistent
RRD field. Following the idea of the virtual fields method
[32], this cost functional is based in the variational for-
mulation of the equilibrium equations. In this case, the
mechanical setting is enriched taking into account the ac-
tion of RRDs and RSs, and the equilibrium equations

are presented for the mentioned load-free configuration to-
gether with a set of known loaded configurations. More-
over, the proposed cost functional is constructed regardless
the number of test functions to evaluate the equilibrium.
Then, the RRDs characterization problem is transformed
into the minimization problem of such functional.

The examples shown in this work highlight the suitabil-
ity of this approach, evidencing that the minimization of
the proposed functional successfully leads to the charac-
terization of RRDs, yielding encouraging results for the
three explored cases.

Observe that the proposed methodology could also be
applicable to the estimation of constitutive parameters.
While such questions have been increasingly addressed in
the literature [35, 42] in the last years (using, however,
completely different approaches), the lack of contributions
regarding the estimation of RRDs motivated the subject
of the present work. Inspired by the sensitivity analy-
sis presented here, and by recent findings reported in the
literature, a challenging continuation of this work would
be to formulate a strategy to simultaneously characterize
these parameters along with the residual deformations.

As a matter of fact, although the proof-of-concept exam-
ples discussed are problems with rotational symmetry, it
is important to remark that the presented framework has
been developed in 3D space with no additional kinematic
simplifications. Although the large amount of required
input data and the additional technical complexities cur-
rently constitute a limitation for its application in patient-
specific cases, the proposed strategy proved to be effective
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towards the formalization of the RRD identification prob-
lem. Moreover, if advances in medical image acquisition
systems and motion tracking techniques are able to accu-
rately provide the required data, methodologies based on
the ideas exposed in this work could be used to perform
the estimation of RRDs in in-vivo settings. For the po-
tential success in such scenarios it will be fundamental to
adopt strategies for the interpolation of the objective fields
in order to limit the number of unknown parameters. It
is also important to note that the proposed method has
also shown potential for its direct application in in-vitro
settings, offering an alternative for the identification of
RRDs via non-destructive experimentation.

Finally, the exploration of more sophisticated optimiza-
tion algorithms and criteria for the choice of weighting pa-
rameters are being matter of current research, as well as
the sensitivity of uncertainties in input data, such as equi-
librium configurations, pressure loads and displacement
fields.

Acknowledgments

This work was partially supported by the Brazilian
agencies CNPq and FAPERJ. The support of these agen-
cies is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of inter-
est.

AppendixA. Optimization configuration

For the optimization problems described in the exam-
ples detailed in Sections 5.2 and 5.3, we make use of the
function fmincon available from the MATLAB Optimiza-
tion Toolbox. For both problems, the following options
are set as

� AlwaysHonorConstraints set to none,

� GradObj set to off,

� Hessian set to bfgs,

� InitTrustRegionRadius set to 40,

� TolCon set to 10−12,

� TolFun set to 10−8,

� MaxFunEvals set to 106, and

� MaxIter set to 105,

while remaining parameters are taken by default.
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HIGHLIGHTS: Identification of residual stresses in multi-layered arterial wall tissues using a variational framework

A novel variational framework for the characterization of residual deformations (and stresses) in arterial walls is 
proposed.

A cost functional is presented to measure the mechanical imbalance, caused by inconsistent residual stresses, for a set of 
known equilibrium configurations.

The identification of residual stresses is achieved through the minimization of such cost functional.

Numerical experiments provide evidence of the viability of the proposed methodology.


