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Abstract

Free vibrations of clamped, thin elliptical plates carrying a concentrated mass at an arbitrary position are studied in

order to analyze the mass effect on the natural frequencies and mode shapes of the plate. A variational approach, the well-

known Ritz method, is used, where the displacement amplitude is approximated by polynomial expressions in the

Cartesian coordinates. The present proposal exhibits excellent agreement with particular cases of the problem available in

the literature and also with an independent solution obtained by means of the finite element method. Some new results are

presented for the natural frequencies and modes of clamped elliptical plates with a concentrated mass.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic circular and elliptical plates are very commonly encountered structural elements and are found in a
diverse set of engineered systems. They are extensively used in pressure vessels, ship and aircraft structures and
even for optical lens and printed circuit boards. In most of these technological applications the plate performs
its function in a dynamic fashion and the design engineer needs to know its natural transverse vibratory
behavior (natural frequencies and mode shapes). In many situations, these plates carry loads at eccentric
positions, for example when a centrifugal pump is attached to a cover plate of a water tank.

There is a great amount of published work in the case of vibrating solid and annular circular plates. For
isotropic plates of uniform thickness many basic dynamic problems can be solved using Bessel functions. A
survey of the literature on the subject and results for several cases are provided in the excellent monograph by
Leissa [1]. There are many papers which consider the effect of additional complexities on the dynamic
behavior of circular plates. Among them, one can mention the following works: Avalos et al. [2] obtained the
first six axisymmetric natural frequencies of vibration of a circular plate carrying an elastically mounted
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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centered mass. Nallim et al. [3] and also Laura et al. [4] studied a circular plate of rectangular orthotropy with
a central concentrated mass. Bambill et al. [5] obtained analytically, by means of the Ritz method, and
experimentally the fundamental frequency of vibration of solid and annular circular plates carrying a
concentrated mass at an arbitrary position. Ranjan and Ghosh [6] studied the same problem using the finite
element method.

In the case of elliptical plates, the amount of published work is significatively lesser. It is worthy of note the
contributions of Sato [7–10] who investigated the transverse vibrations of solid elliptical plates supported by
different boundary conditions. Rajalingham and Bhat [11] and Rajalingham et al. [12] studied the elliptical
plate vibration basing on its analogy with the circular plate vibration. Additional complexities are considered
by Irie and Yamada [13] who studied orthotropic elliptical annular plates by means of the Ritz method, Nallin
and Grossi [14] studied laminated elliptical plates, Narita [15] analyzed the free orthotropic elliptical plate.
Singh and Tyagi [16], Singh and Chakraverty [17] and Bayer et al. [18], Hassan and Makary [19] considered
variable thickness of the vibrating elliptical plate. Kaplunov et al. [20] studied moderately thick elliptic plates.
Hassan [21] analyzed elliptical plates with discontinuous boundary conditions.

The present study deals with the natural frequencies and mode shapes of transverse vibration of a clamped
elliptical plate carrying a concentrated mass at an arbitrary position. To the best of the authors’ knowledge, no
results on the matter have been previously published in the literature. The variational Ritz method with
polynomial approximation for the displacements is employed to perform the analysis. The proposed approach
exhibits an excellent accuracy for particular cases available in the literature, and in some cases an independent
solution is also obtained by the finite element method to show the agreement with the analytical predictions.
2. The Ritz method

Fig. 1 shows the elliptical plate in the x–y plane of the Cartesian coordinate system. In the case of normal
modes of vibration it is assumed that the plate executes a simple harmonic motion, which is characterized by
the deflection of the middle surface wðx; y; tÞ, represented in the form of a product

wðx; y; tÞ ¼W ðx; yÞeiot, (1)

where W is a given continuous function which represents the shape of the deflected middle surface of the
vibrating plate, t the time coordinate and o the natural circular frequency.

An approximate solution of the problem can be obtained by means of the Ritz method, using an
approximation for the transverse displacement amplitude W, any expression which satisfies at least the
essential boundary conditions at the plate edge. Here the expression for W will be defined as a summation with
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Fig. 1. Clamped elliptical plate with an attached mass.
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Fig. 2. Set of selected monomials.
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undetermined coefficients Ci

W ðx; yÞ ffiW aðx; yÞ ¼
XN

i¼1

Cif iðx; yÞ, (2)

where fi represents continuous functions:

f iðx; yÞ ¼
x

a

� �2
þ

y

b

� �2
� 1

� �2
fiðx; yÞ (3)

the expression ðx=aÞ2 þ ðy=bÞ2 � 1 is the curve in the x–y plane that defines the contour of the plate, a the semi-
major axis and b the semi-minor axis of the ellipse and fi

0s are adopted as monomials functions selected from
a set of monomials [22], Fig. 2, of the form

xq�pyp (4)

then, the approximate solution, Eq. (2), becomes the expression

W aðx; yÞ ¼
XN

i¼1

Cif iðx; yÞ ¼
x

a

� �2
þ

y

b

� �2
� 1

� �2Xs

q¼0

Xq

p¼0

Cix
q�pyp, (5)

where i ¼ 0.5q(q+1)+p+1 and N ¼ 0.5(s+1)(s+2) which, obviously, satisfies the boundary conditions at
the clamped edge.

The energy functional for the vibrating elliptical plate of Fig. 1, is given by the expression

JðW Þ ¼

Z Z
A

D

2

q2W
qx2
þ

q2W
qy2

� �2

� 2ð1� vÞ
q2w

qx2

q2w
qy2
�

q2w

qxqy

� �2
" #( )

dxdy

�
1

2
ro2h

Z Z
A

W 2 dxdy�
1

2
mo2½W ðxm; ymÞ�

2, (6)

where A is the plate domain, n the Poisson’s ratio and r the density of the plate material, h the uniform
thickness and m the concentrated mass attached to the plate at xm, ym location

D ¼
Eh3

12ð1� v2Þ
, (7)

where D is the flexural rigidity of the plate and E the Young’s modulus.
For generality and convenience, the coordinates are normalized by equations

x ¼
x

a
; Z ¼

y

b
and xm ¼

xm

a
; Zm ¼

ym

b
, (8)
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then

W aðx; ZÞ ¼
Xs

q¼0

Xq

p¼0

C̄i½x
2
þ Z2 � 1�2xq�pZp, (9)

where C̄i ¼ Cia
q�pbp. According to the Ritz method, after introducing the approximate expression Wa(x, Z),

Eq. (9), into the Eq. (6), the integration of J(Wa) will appear in the form of an homogeneous quadratic
function of coefficients C̄i. The minimum of this function will lead to a system of homogeneous equations of
the first order for the unknown displacement coefficients C̄i:

qJðW aÞ

qC̄i

¼ 0; i ¼ 1; 2; 3; . . . ;N. (10)

The obtained homogeneous set of equations can be written as

½K� O2L�C̄ ¼ 0, (11)

where O ¼ oab
ffiffiffiffiffiffiffiffi
rh=

p
D are the natural frequency parameters and K and L are symmetric matrices whose

elements are given by

kij ¼

Z Z
Ā

b

a

� �2

ji;xxjj;xx þ
a

b

� �2
ji;ZZjj;ZZ þ vðji;xxjj;ZZ þ jj;xxji;ZZÞ þ 2ð1� vÞji;xZjj;xZ

" #
dxdZ,

lij ¼

Z Z
Ā

jijj dxdZþMpjiðxm; ZmÞjjðxm; ZmÞ,

where Ā is the normalized domain, i, j are integers (1, 2,y,N), ji(x, Z) ¼ [x2+Z2�1]2xq�pZp and M ¼ m=mp

the mass ratio, which refers the concentrated mass m to the mass of the elliptical plate, mp ¼ rabhp.
The natural frequency parameters O are obtained by setting the determinant of Eq. (11) to be equal to zero.

The non-triviality condition yields to the transcendental equation in O. As it is known, the roots of this
equation constitute upper bounds on the frequency parameters.
Table 1

Comparison and convergence analysis of frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate a/b ¼ 3, n ¼ 0.3

Ref. [12] FEM k ¼ 10 k ¼ 11, pp7 k ¼ 12, pp7 k ¼ 13 k ¼ 15 k ¼ 20

18.934 19.022 18.933 18.933 18.933 18.933 18.933 18.933

23.865 24.033 23.863 23.863 23.863 23.863 23.863 23.863

30.083 30.276 30.077 30.077 30.077 30.077 30.077 30.077

37.670 37.817 37.654 37.650 37.650 37.650 37.650 37.650

46.699 46.792 46.666 46.666 46.653 46.653 46.653 46.653

50.031 50.226 50.030 50.030 50.030 50.030 50.030 50.030

57.248 57.310 57.714 57.182 57.182 57.143 57.142 57.142

58.146 58.499 58.142 58.142 58.141 58.141 58.141 58.141

67.420 67.887 67.428 67.397 67.397 67.395 67.395 67.395

69.393 69.329 70.304 70.304 69.260 69.260 69.163 69.159

77.917 78.405 77.937 77.937 77.850 77.850 77.844 77.844

83.137 83.001 91.252 84.859 84.859 82.967 82.744 82.730

89.695 89.977 94.169 89.755 89.755 89.554 89.539 89.538

96.057 96.398 96.056 96.058 96.057 96.056 96.056 96.056

98.625 98.216 105.52 105.52 101.59 101.59 98.382 97.873

102.80 103.06 107.42 107.36 102.97 102.97 102.56 102.52

107.37 107.96 115.17 115.17 107.36 107.36 107.36 107.36

116.50 114.97 119.99 120.00 119.79 117.69 115.61 114.60
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3. The finite element approach

A well-known finite element code, Algor [23], is used to obtain an independent solution. The Veubeke’s thin
plate elements have been used. The calculations have been performed for a clamped elliptical plate with aspect
ratio a=b ¼ 1:5; 2; 3, n ¼ 0.30 and different locations of the concentrated mass.
Table 2

Frequency coefficients Oi ¼ oia
2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped circular plate with a concentrated mass at different positions, n ¼ 0.3

(xm,Zm) M O1 O2 O3 O4 O5 O6

0 10.216 21.260 34.877 39.771 51.030 60.829

(10.216) (21.26) (34.88) (39.771) (51.04) (60.82)

(0,0) 0.05 9.0133 21.260 33.130 34.877 51.030 60.829

[9.01] {33.080}

0.1 8.1173 21.260 30.079 34.877 51.030 60.829

[8.11] {29.866}

0.2 6.8837 21.260 27.386 34.877 51.030 60.829

[6.87] {27.070}

0.5 5.0410 21.260 25.082 34.877 51.030 60.829

[5.02] {24.720}

1 3.7773 21.260 24.162 34.877 51.030 60.829

[3.76] {23.794}

N 21.260 23.160 34.877 51.030 60.829 63.969

(0.1,0) 0.05 9.0518 20.898 21.260 33.926 34.877 34.987

[9.07]

0.1 8.1689 20.622 21.260 31.290 34.877 34.919

[8.21]

0.2 6.9397 20.253 21.260 28.998 34.877 34.909

[7.01]

0.5 5.0880 19.775 21.260 27.183 34.877 34.905

[5.19]

1 3.8136 19.522 21.260 26.519 34.877 34.904

[3.91]

N 19.197 21.260 25.848 34.877 34.903 51.027

(0.2,0) 0.05 9.1658 20.112 21.260 34.150 34.877 36.935

[9.22]

0.1 8.3265 19.379 21.260 33.072 34.877 36.084

[8.45]

0.2 7.1156 18.573 21.260 31.701 34.877 35.734

[7.34]

0.5 5.2394 17.756 21.260 30.443 34.877 35.580

[5.56]

1 3.9318 17.398 21.260 29.948 34.877 35.538

[4.25]

N 16.992 21.260 29.421 34.877 35.499 48.483

(0.5,0) 0.05 9.8082 18.870 21.260 31.627 34.877 39.278

[9.84]

0.1 9.3694 17.160 21.260 30.176 34.877 39.136

[9.48]

0.2 8.4964 15.305 21.260 29.062 34.877 39.034

[8.82]

0.5 6.5858 13.701 21.260 28.255 34.877 38.960

[7.33]

1 5.0107 13.158 21.260 27.968 34.877 38.932

[5.88]

N 12.668 21.260 27.675 34.877 38.903 45.550

Values between round brackets are from Leissa [1], square brackets are from Bambill et al. [5] and curly brackets from Laura et al. [4].
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The mesh employed for the elliptical plate of a/b ¼ 1.5 has 20,432 quadrilateral elements with 20,537 nodes
and 60,987 degrees of freedom, the plate’s mesh of relation a/b ¼ 2 has 19,184 quadrilateral elements with
19,289 nodes and 57,243 degrees of freedom and the plate’s mesh of relation a/b ¼ 3 has 25,424 quadrilateral
elements with 25,529 nodes and 75,951 degrees of freedom.
Table 3

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.5 with a concentrated mass at different positions,

n ¼ 0.3

(xm,Zm) M O1 O2 O3 O4 O5 O6

0 11.420 18.981 27.658 29.593 38.023 43.221

(11.443) (19.042) (27.703) (29.702) (38.123) (43.384)

11.350a

11.469b 44.650b

11.420c 18.981c 27.658c 29.594c 38.023c 43.223c

(0,0) 0.05 10.022 18.981 27.495 27.658 38.023 43.221

0.1 8.9828 18.981 26.175 27.658 38.023 42.669

0.2 7.5667 18.981 24.790 27.658 38.023 40.788

0.5 5.4936 18.981 23.455 27.658 38.023 39.448d

(5.4727) (19.042) (23.282) (27.703) (38.123) (38.930)d

1 4.0982 18.981 22.889 27.658 38.023 38.974d

(4.0773) (19.042) (22.698) (27.703) (38.123) (38.463)d

N 18.981 22.256 27.658 38.023 38.491 43.221

(19.042) (22.050) (27.703) (37.993) (38.123) (43.384)

(0.1,0) 0.05 10.068 18.672 27.658 28.160 38.023 41.062

0.1 9.0389 18.476 27.203 27.658 38.023 39.379

0.2 7.6218 18.253 26.163 27.658 37.890 38.023

0.5 5.5348 18.007 25.151 27.658 36.763 38.023

(5.5178) (18.007) (25.096) (27.703) (36.397) (38.123)

1 4.1284 17.890 24.726 27.658 36.361 38.023

(4.1107) (17.882) (24.659) (27.703) (35.998) (38.123)

N 17.747 24.256 27.658 35.953 38.023 45.188

(17.704) (24.169) (27.703) (35.536) (38.123) (45.159)

(0.2,0) 0.05 10.204 18.011 27.658 29.378 38.023 39.591

0.1 9.2137 17.486 27.658 29.209 37.281 38.023

0.2 7.7994 16.976 27.658 28.974 35.257 38.023

0.5 5.6725 16.513 27.658 28.651 33.698 38.023

1 4.2309 16.323 27.658 28.473 33.147 38.023

N 16.115 27.658 28.238 32.606 38.023 46.751

(0.5,0) 0.05 10.985 16.998 26.887 27.658 38.023 41.593

0.1 10.445 15.622 25.792 27.658 38.023 40.940

0.2 9.2835 14.300 24.966 27.658 38.023 40.408

0.5 6.9127 13.398 24.371 27.658 38.023 39.980

(6.8728) (13.408) (24.397) (27.703) (38.123) (39.996)

1 5.1625 13.139 24.159 27.658 38.023 39.815

(5.1239) (13.153) (24.185) (27.703) (38.123) (39.819)

N 12.914 23.944 27.658 38.023 39.637 50.972

(12.932) (23.969) (27.703) (38.123) (39.629) (51.130)

aLeissa [1].
bRajalingham and Bhat [11].
cRajalingham et al. [12], results between round brackets were calculated with ALGOR [23].
dBiggest percentage deviation with ALGOR: 1.31%.
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4. Numerical results

Results are presented here for clamped circular and elliptical plates (a/b ¼ 1, 1.1, 1.2, 1.5, 2, 3) with and
without a concentrated mass attached. A convergence analysis is made for the elliptical plate of a/b ¼ 3 and a
comparison of the present results with existing results (Refs. [1,4,5,9,11,12]) is made when it is possible.

Table 1 depicts a comparison of the obtained results for the first 18 natural frequencies of vibration of a
clamped elliptical plate of aspect ratio a/b ¼ 3 (n ¼ 0.3) and no mass attached. The effect of increasing the
number of monomials (k ¼ 10, 11, 12, 13, 15 and 20) has more influence on the higher frequencies. For k ¼ 11
and 12 the corresponding numerical approximation are truncated after p ¼ 7. There is a good agreement with
values of Ref. [12] and those of the finite element approach. As it can be seen in Table 1, in view that the Ritz
method gives upper bound on the frequency, the column with k ¼ 20, has the best approximation to the exact
values.

Tables 2–5 show the first six natural frequency parameters obtained for the plate under study using the
proposed approach with k ¼ 15. For these calculations, the approximation, Eq. (5), was generated using a
complete set of monomials of 136 terms (N ¼ 136). The mass was considered attached at four different
Table 4

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 2 with a concentrated mass at different positions,

n ¼ 0.3

(xm,Zm) M O1 O2 O3 O4 O5 O6

0 13.689 19.749 27.988 34.929 38.498 44.024

13.689a

13.872b

13.689c 19.749c 27.989c 34.929c 38.505c 44.025c

13.687d

(0,0) 0.05 11.878 19.749 26.088 34.929 38.498 44.024

0.1 10.540 19.749 25.078 34.929 38.498 44.024

0.2 8.7636 19.749 24.116 34.929 38.498 43.210

0.5 6.2669 19.749 23.254 34.929 38.498 41.709

1 4.6415 19.749 22.903 34.929 38.498 41.146

N 19.749 22.518 34.929 38.498 40.553 44.024

(0.1,0) 0.05 11.938 19.405 26.731 34.929 37.150 44.024

0.1 10.606 19.218 26.032 34.929 36.419 44.024

0.2 8.8218 19.031 25.353 34.929 35.735 44.024

0.5 6.3057 18.850 24.742 34.929 35.141 44.024

1 4.6685 18.772 24.493 34.904 34.929 44.024

N 18.683 24.222 34.647 34.929 44.024 45.657

(0.2,0) 0.05 12.121 18.708 27.839 34.929 35.888 44.024

0.1 10.820 18.238 27.743 34.535 34.929 44.024

0.2 9.0169 17.843 27.629 33.315 34.929 44.024

0.5 6.4438 17.529 27.495 32.297 34.929 44.024

1 4.7681 17.411 27.429 31.905 34.929 44.024

N 17.286 27.344 31.492 34.929 44.024 48.611

(0.5,0) 0.05 13.197 17.713 25.455 34.929 37.041 44.024

0.1 12.431 16.362 24.557 34.929 36.549 44.024

0.2 10.698 15.369 23.950 34.929 36.177 44.024

0.5 7.6617 14.881 23.546 34.929 35.893 44.024

1 5.6452 14.756 23.409 34.929 35.786 44.024

N 14.661 23.316 34.929 35.757 44.024 51.258

aLeissa [1].
bRajalingham and Bhat [11].
cRajalingham et al. [12].
dSato [9].
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Table 5

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 3 with a concentrated mass at different positions,

n ¼ 0.3

(xm,Zm) M O1 O2 O3 O4 O5 O6

0 18.933 23.863 30.077 37.650 46.653 50.030

19.564a

18.934b 23.865b 30.083b 37.670b 46.699b 50.031b

18.930c

(0,0) 0.05 15.958 23.863 28.193 37.650 44.054 50.030

0.1 13.834 23.863 27.422 37.650 42.991 50.030

0.2 11.207 23.863 26.805 37.650 42.128 50.030

0.5 7.8100 23.863 26.325 37.650 41.441 50.030

1 5.7208 23.863 26.145 37.650 41.178 50.030

N 23.863 25.955 37.650 40.896 50.030 57.142

(0.1,0) 0.05 16.054 23.366 28.979 36.365 45.920 50.030

0.1 13.921 23.172 28.508 35.866 45.569 50.030

0.2 11.270 23.018 28.122 35.472 45.253 50.030

0.5 7.8454 22.896 27.818 35.166 44.979 50.030

1 5.7438 22.849 27.703 35.051 44.868 50.030

N 22.799 27.580 34.928 44.746 50.030 51.610

(0.2,0) 0.05 16.362 22.486 30.053 35.442 46.041 50.030

0.1 14.223 22.081 30.040 34.538 45.790 50.030

0.2 11.511 21.818 30.027 33.811 45.577 50.030

0.5 8.0038 21.644 30.013 33.240 45.399 50.030

1 5.8561 21.583 30.007 33.024 45.328 50.030

N 21.522 29.999 32.794 45.250 50.030 53.020

(0.5,0) 0.05 18.342 21.379 27.194 35.684 46.229 50.030

0.1 16.718 20.042 26.480 35.239 46.095 50.030

0.2 13.550 19.599 26.113 34.959 45.991 50.030

0.5 9.3143 19.448 25.907 34.772 45.910 50.030

1 6.7760 19.410 25.841 34.706 45.879 50.030

N 19.377 25.778 34.640 45.845 50.030 55.122

aLeissa [1].
bRajalingham et al. [12].
cSato [9].
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positions: (0, 0), (0.10, 0), (0.20, 0) and (0.50, 0) and its mass ratio’s M: 0; 0.05; 0.10; 0.20; 0.50; 1; and M-N.
The situation M-Nmodels a punctual support at the mass position. Table 2 presents results obtained for the
circular plate, a/b ¼ 1, by the proposed approach and those available in the open literature. It can be seen that
when a finite mass is located at the center of the plate the frequency parameters, corresponding to O2, O4, O5

and O6, remain constant1 and independent of the mass ratio. This phenomenon occurs because the mass is
attached at a nodal line.

A similar situation happens for other positions of the mass when its coordinates, xm, Zm, fit in with nodal
lines, and consequently, the concentrated mass does not move during these vibrations. As it is mentioned in
Ref. [24] the relation between pairs of spatially orthogonal vibration patterns that occurs at each of the
normal-mode frequencies and the phenomenon of doublet splitting is not always taken into account. It is
interesting to point out that when the mass is at the center of the plate more than one mode may exist with the
same frequency (For example O2 ¼ 21.260). When the mass is located out of the center a new second
frequency appears. According to Rayleigh’s principle [25], the vibration of the plate will always reorient such
that the point mass is situated on either a radial node or antinode. When the mass is situated on a radial node,
the addition of the mass causes no change in the physical situation and the plate resonates at the natural
1Obviously, the rotatory inertia of the mass is not taken into account.
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frequency of the unperturbed plate, O ¼ 21.260. When the mass is not located on a radial node a different
frequency is required to induce resonance. For example O ¼ 20.892 (M ¼ 0.05 at xm ¼ 0.10; Zm ¼ 0).

A tabulation of the first six natural frequencies for elliptical clamped plates of three different aspect ratios
and a concentrated mass are presented in Tables 3–5. The position of the mass changes from the center xm ¼ 0
to xm ¼ 0.10, 0.20 and 0.50 with Zm ¼ 0 and different values of the mass relation M. The situation M-N is
also considered. The results are compared in some cases with those obtained by the finite element method. The
agreement between finite element results and analytical predictions is excellent, from an engineering point of
view. The frequency coefficients decrease or remain constant as the mass ratio increases. It is obvious that for
modes where the point mass falls on a nodal line, it will not affect the plate vibration and the corresponding
natural frequency will be unperturbed. The influence of the presence of the mass is in general higher on the
fundamental frequency than on the other frequencies (see Tables 3–5).

The first 23 parameters for the clamped circular plate (a/b ¼ 1) having a concentrated mass m attached at
the coordinates xm ¼ 0.50; Zm ¼ 0 are listed in Table 6, with m/mp ¼ 0; 0.10; 0.20; 0.50; 1.00 and N. The first
two columns present the coefficients when there is no mass attached. The agreement between the present
results and those available in Ref. [12] is excellent. It may be noted that these results include all the 23 first
modes of vibration of the clamped plate with an eccentric mass. Figs. 3 and 4 present the mode shapes for the
first six natural frequencies for the circular clamped plate. Fig. 4 corresponds to the circular plate with a point
Table 6

Frequency coefficients Oi ¼ oia
2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped circular plate with a concentrated mass at xm ¼ 1/2, n ¼ 0.3

M ¼ 0 M

0.10 0.20 0.50 1.00 N

Ref. [12] Present study Present study

10.216 10.216 9.3695 8.4964 6.5858 5.0108

21.260 21.260 17.160 15.305 13.701 13.158 12.668

21.260 21.260 21.260 21.260 21.260

34.877 34.877 30.176 29.062 28.255 27.968 27.675

34.877 34.877 34.877 34.877 34.877

39.771 39.771 39.136 39.034 38.960 38.932 38.903

51.030 51.030 47.095 46.406 45.912 45.734 45.550

51.030 51.030 51.030 51.030 51.030

60.829 60.829 60.786 60.770 60.753 60.745 60.735

60.829 60.829 60.829 60.829 60.829

69.666 69.666 65.252 64.388 63.757 63.528 63.289

69.666 69.666 69.666 69.666 69.666

84.583 84.583 80.882 80.004 79.391 79.175 78.952

84.583 84.583 84.583 84.583 84.583

89.104 89.105 86.544 86.342 86.227 86.190 86.154

90.739 90.739 89.759 89.735 89.720 89.715 89.710

90.739 90.739 90.739 90.739 90.739

111.02 111.02 101.27 100.27 99.648 99.440 99.233

111.02 111.02 111.02 111.02 111.02

114.21 114.21 113.21 113.17 113.14 113.13 113.12

114.21 114.21 114.21 114.21 114.21

120.08 120.08 116.74 116.61 116.54 116.51 116.49

120.08 120.08 120.08 120.08 120.08
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Fig. 3. Vibrating modes of a clamped circular plate: (a) O1 ¼ 10.216, (b) O2 ¼ 21.260, (c) O3 ¼ 34.877, (d) O4 ¼ 39.771, (e) O5 ¼ 51.030

and (f) O6 ¼ 60.829.

Fig. 4. Vibrating modes of a clamped circular plate with an attached mass, M ¼ 0.5 at xm ¼ a/2; ym ¼ 0: (a) O1 ¼ 6.5858, (b) O2 ¼ 13.701,

(c) O3 ¼ 21.260, (d) O4 ¼ 28.255, (e) O5 ¼ 34.877 and (f) O6 ¼ 38.960.
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mass attached at a distance a/2 from the center and M ¼ 0.5. The difference in the number of frequency
parameters for M ¼ 0, also 13, and the other values of M (0.10; 0.20; 0.50; 1), obeys to the phenomenon of
doubled splitting mentioned previously (23 frequency parameters).

The lowest 20 natural frequency parameters for plates of aspect ratios a/b ¼ 1.1, 1.2 and 1.5 having a
concentrated mass attached at three different locations are given in Tables 7–15. For the case M-N

(punctual support) the fundamental frequency coefficient increases significatively because of the rigidization
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Table 7

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.1 with a concentrated mass at xm ¼ 1/2, Zm ¼ 0,

n ¼ 0.3

M ¼ 0 M

0.10 0.20 0.50 1.00 N

Ref. [12] Present study Present study

10.283 10.283 9.4314 8.5318 6.5729 4.9844 12.501

20.360 20.360 16.539 14.833 13.398 12.925 22.387

22.387 22.387 22.387 22.387 22.387 22.387 26.646

34.017 34.017 29.145 28.035 27.227 26.940 35.052

35.052 35.052 35.052 35.052 35.052 35.052 40.970

40.987 40.987 40.977 40.975 40.972 40.971 44.611

50.431 50.431 46.450 45.654 45.061 44.842 50.778

50.778 50.778 50.778 50.778 50.778 50.778 58.600

59.038 59.038 58.785 58.717 58.655 58.630 63.540

64.496 64.496 64.496 64.496 64.035 63.793 64.496

69.150 69.151 65.566 64.693 64.496 64.496 69.233

69.234 69.233 69.233 69.233 69.233 69.233 74.688

81.643 81.644 76.349 75.554 75.040 74.865 85.692

85.692 85.692 85.692 85.692 85.692 85.692 87.700

90.187 90.188 88.436 88.106 87.871 87.787 90.202

90.204 90.202 90.202 90.202 90.202 90.202 93.458

93.640 93.640 93.580 93.548 93.507 93.486 94.313

108.22 108.22 95.915 95.059 94.590 94.447 110.60

110.60 110.60 110.60 110.60 110.60 110.60 113.33

113.59 113.58 113.36 113.35 113.34 113.33 113.58

Table 8

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.1 with a concentrated mass at xm ¼ 0, Zm ¼ 1/2,

n ¼ 0.3

M

0.10 0.20 0.50 1.00 N

9.4269 8.5593 6.6596 5.0782 12.963

17.922 15.898 14.127 13.517 20.360

20.360 20.360 20.360 20.360 28.604

30.721 29.794 29.105 28.858 35.052

35.052 35.052 35.052 35.052 37.429

38.310 37.893 37.619 37.524 46.444

47.481 47.005 46.678 46.563 50.431

50.431 50.431 50.431 50.431 59.038

59.038 59.038 59.038 59.038 61.914

63.318 62.752 62.284 62.105 65.127

65.577 65.322 65.198 65.162 69.233

69.233 69.233 69.233 69.233 80.867

81.535 81.417 81.185 81.045 81.975

83.674 82.702 82.189 82.067 85.692

85.692 85.692 85.692 85.692 90.186

90.188 90.188 90.188 90.188 92.399

92.522 92.462 92.425 92.412 103.36

105.29 104.37 103.77 103.57 108.22

108.22 108.22 108.22 108.22 111.30

111.41 111.35 111.32 111.31 113.58
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Table 9

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.1 with a concentrated mass at xm ¼ 1/2, Zm ¼

1/2, n ¼ 0.3

M

0.10 0.20 0.50 1.00 N

10.131 9.9352 9.0494 7.3995 11.133

18.907 16.751 13.196 11.857 21.134

21.715 21.439 21.250 21.190 24.289

28.877 26.382 24.968 24.599 34.094

34.110 34.102 34.097 34.096 38.027

39.103 38.586 38.249 38.137 43.098

44.658 43.801 43.356 43.223 50.498

50.501 50.500 50.499 50.499 54.193

55.069 54.624 54.363 54.277 61.916

62.457 62.189 62.025 61.970 65.555

65.823 65.682 65.604 65.580 69.228

69.228 69.228 69.228 69.228 75.786

76.943 76.373 76.022 75.905 82.686

82.842 82.761 82.716 82.701 87.524

87.667 87.595 87.552 87.538 90.198

90.198 90.198 90.198 90.198 93.351

93.378 93.365 93.357 93.354 102.30

103.50 102.91 102.55 102.42 108.22

108.22 108.22 108.22 108.22 111.62

111.67 111.65 111.63 111.63 113.58

Table 10

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.2 with a concentrated mass at xm ¼ 1/2, Zm ¼ 0,

n ¼ 0.3

M ¼ 0 M

0.10 0.20 0.50 1.00 N

Ref. [12] Present study Present study

10.461 10.461 9.5918 8.6480 6.6122 4.9951 12.467

19.735 19.735 16.106 14.520 13.239 12.830 23.615

23.615 23.615 23.615 23.615 23.615 23.615 25.739

32.625 32.626 28.089 27.049 26.289 26.017 35.516

35.516 35.516 35.516 35.516 35.516 35.516 42.876

43.325 43.325 43.223 43.150 43.036 42.968 43.944

48.725 48.725 45.387 44.704 44.235 44.084 50.495

50.496 50.495 50.495 50.495 50.495 50.495 57.409

59.437 59.436 58.261 57.928 57.645 57.533 64.131

67.502 67.502 65.632 65.011 64.514 64.327 68.361

68.363 68.361 68.361 68.361 68.361 68.361 68.815

68.815 68.815 68.815 68.815 68.815 68.815 70.633

79.539 79.539 72.519 71.559 70.991 70.810 87.721

88.365 88.365 88.255 88.083 87.897 87.815 88.365

88.572 88.569 88.365 88.365 88.365 88.365 88.907

88.912 88.907 88.907 88.907 88.907 88.907 89.519

100.27 100.27 91.147 90.245 89.777 89.643 100.273

103.82 103.82 100.27 100.27 100.27 100.27 111.37

111.37 111.37 111.37 111.37 111.37 111.37 111.84

111.97 111.85 111.85 111.85 111.85 111.85 111.96
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Table 11

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.2 with a concentrated mass at xm ¼ 0, Zm ¼ 1/2,

n ¼ 0.3

M

0.10 0.20 0.50 1.00 N

9.5828 8.7029 6.7813 5.1760 13.340

18.728 16.532 14.611 13.947 19.735

19.735 19.735 19.735 19.735 29.183

30.576 29.985 29.528 29.359 35.516

35.516 35.516 35.516 35.516 36.773

38.611 37.737 37.162 36.967 47.408

47.973 47.705 47.530 47.469 48.725

48.725 48.725 48.725 48.725 59.436

59.436 59.436 59.436 59.436 61.664

63.276 62.560 62.046 61.859 68.361

68.361 68.361 68.361 68.361 68.651

68.664 68.658 68.654 68.652 77.537

78.335 78.011 77.748 77.647 82.565

83.867 83.233 82.833 82.699 88.365

88.365 88.365 88.365 88.365 88.569

88.569 88.569 88.569 88.569 96.675

97.557 97.153 96.876 96.777 103.82

103.82 103.82 103.82 103.82 105.58

106.71 106.16 105.81 105.69 111.39

111.39 111.39 111.39 111.39 111.96

Table 12

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.2 with a concentrated mass at xm ¼ 1/2, Zm ¼ 1/2,

n ¼ 0.3

M

0.10 0.20 0.50 1.00 N

10.308 10.107 9.1862 7.4815 11.291

18.510 16.636 13.252 11.975 20.917

22.633 21.858 21.244 21.069 25.073

28.891 26.694 25.571 25.298 32.966

33.164 33.047 32.995 32.980 39.014

40.739 39.877 39.347 39.178 44.556

45.399 44.916 44.685 44.618 48.774

48.786 48.780 48.776 48.775 53.973

54.929 54.441 54.156 54.064 62.875

63.567 63.219 63.011 62.943 68.127

68.141 68.135 68.130 68.129 68.665

68.672 68.668 68.666 68.665 73.479

74.472 73.979 73.679 73.579 82.719

83.186 82.949 82.810 82.764 88.446

88.447 88.446 88.446 88.446 88.870

88.870 88.870 88.870 88.870 98.814

99.363 99.126 98.948 98.882 101.28

101.74 101.50 101.37 101.32 104.83

105.11 104.96 104.88 104.86 111.60

111.60 111.60 111.60 111.60 111.86
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Table 13

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.5 with a concentrated mass at xm ¼ 1/2, Zm ¼ 0,

n ¼ 0.3

M ¼ 0 M

0.10 0.20 0.50 1.00 N

Ref. [12] Present study Present study

11.420 11.420 10.445 9.2835 6.9127 5.1625 12.914

18.981 18.981 15.622 14.300 13.398 13.139 23.944

27.658 27.658 25.792 24.966 24.371 24.159 27.658

29.594 29.593 27.658 27.658 27.658 27.658 38.023

38.023 38.023 38.023 38.023 38.023 38.023 39.637

43.223 43.222 40.940 40.408 39.980 39.815 50.972

50.974 50.972 50.972 50.972 50.972 50.972 51.135

51.570 51.570 51.345 51.272 51.202 51.171 57.524

59.793 59.789 59.663 59.286 58.379 57.969 59.917

65.332 65.331 61.410 60.279 59.982 59.943 66.546

66.553 66.546 66.546 66.546 66.546 66.546 68.905

79.192 79.176 70.941 69.859 69.265 69.081 79.675

81.694 81.688 79.723 79.698 79.684 79.680 82.883

82.883 82.883 82.883 82.883 82.883 82.883 84.738

84.764 84.738 84.738 84.738 84.738 84.738 89.107

100.03 100.03 90.410 89.757 89.366 89.236 100.03

100.82 100.80 100.03 100.03 100.03 100.03 101.12

101.25 101.22 101.12 101.12 101.12 101.12 105.51

105.55 105.51 105.51 105.51 105.51 105.51 114.81

119.69 119.68 115.76 115.30 115.01 114.91 119.68

Table 14

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.5 with a concentrated mass at xm ¼ 0, Zm ¼ 1/2,

n ¼ 0.3

M

0.10 0.20 0.50 1.00 N

10.420 9.4346 7.3214 5.5779 14.748

18.981 18.456 16.212 15.446 18.981

21.123 18.981 18.981 18.981 29.155

29.216 29.187 29.168 29.162 38.023

38.023 38.023 38.023 38.023 38.356

41.810 40.205 39.116 38.738 43.222

43.222 43.222 43.222 43.222 51.219

51.223 51.221 51.220 51.219 58.327

58.598 58.474 58.389 58.359 65.331

65.331 65.331 65.331 65.331 66.546

66.546 66.546 66.546 66.546 72.835

75.095 74.062 73.350 73.097 79.176

79.176 79.176 79.176 79.176 82.433

82.461 82.447 82.439 82.436 83.504

83.553 83.528 83.513 83.508 97.068

97.964 97.557 97.274 97.173 100.03

100.03 100.03 100.03 100.03 100.80

100.80 100.80 100.80 100.80 105.51

105.51 105.51 105.51 105.51 113.47

115.38 114.49 113.90 113.69 119.74
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Table 15

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 1.5 with a concentrated mass at xm ¼ 1/2, Zm ¼ 1/2,

n ¼ 0.3

M

0.10 0.20 0.50 1.00 N

11.258 11.034 9.9021 7.9071 12.147

17.954 16.505 13.650 12.658 20.680

25.546 23.196 21.456 21.021 28.187

28.601 28.369 28.252 28.218 31.058

33.256 31.970 31.363 31.201 41.312

42.803 42.148 41.637 41.471 43.376

44.012 43.520 43.415 43.393 51.487

51.491 51.489 51.487 51.487 56.073

57.364 56.726 56.332 56.202 60.405

60.709 60.535 60.452 60.428 66.025

66.049 66.037 66.030 66.027 71.671

72.813 72.237 71.895 71.783 79.835

79.882 79.858 79.844 79.840 82.822

82.825 82.824 82.823 82.822 84.738

84.738 84.738 84.738 84.738 90.820

92.031 91.434 91.067 90.943 100.21

100.22 100.22 100.21 100.21 101.12

101.12 101.12 101.12 101.12 104.36

104.45 104.41 104.38 104.37 113.88

114.66 114.28 114.05 113.96 121.54

Table 16

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 2 with a concentrated mass at xm ¼ 1/2, Zm ¼ 0,

n ¼ 0.3

M ¼ 0 M

0.1 0.2 0.5 1 N

Ref. [12] Ritz FEM Ritz FEM Ritz FEM Ritz FEM Ritz FEM Ritz FEM

13.689 13.689 13.688 12.431 12.365 10.698 10.589 7.6617 7.5522 5.6452 5.5560 14.648 14.666

19.749 19.749 19.752 16.362 16.334 15.369 15.369 14.881 14.895 14.756 14.772 23.271 23.323

27.989 27.988 27.999 24.557 24.600 23.950 23.997 23.546 23.596 23.409 23.456 34.929 34.932

34.929 34.929 34.932 34.929 34.932 34.929 34.932 34.929 34.932 34.929 34.932 35.672 35.764

38.505 38.498 38.521 36.549 36.660 36.177 36.283 35.893 35.992 35.786 35.882 44.024 44.037

44.025 44.024 44.037 44.024 44.037 44.024 44.037 44.024 44.037 44.024 44.037 51.240 51.358

51.338 51.323 51.365 51.288 51.363 51.274 51.362 51.258 51.361 51.250 51.360 54.969 54.297

54.979 54.969 55.002 54.969 55.002 54.969 55.002 54.969 55.002 54.969 54.939 56.440 55.002

66.179 66.178 66.196 60.953 59.493 59.077 57.245 57.591 55.556 57.031 55.002 66.198 66.218

66.516 66.476 66.544 66.199 66.219 66.199 66.219 66.198 66.218 66.198 66.218 67.857 67.923

67.879 67.857 67.923 67.857 67.923 67.857 67.923 67.857 67.923 67.857 67.923 70.748 70.512

78.517 78.513 78.568 72.601 72.130 71.640 71.273 71.092 70.802 70.917 70.654 79.530 79.595

82.813 82.754 82.874 79.761 79.812 79.638 79.969 79.572 79.663 79.551 79.614 82.754 82.874

84.031 83.952 84.052 82.754 82.874 82.754 82.874 82.754 82.874 82.754 82.874 88.269 88.007

92.644 92.625 92.718 88.782 88.509 88.528 88.257 88.373 88.106 88.321 88.056 98.414 98.381

99.846 99.710 99.908 99.151 99.147 98.787 98.766 98.564 98.535 98.489 98.458 99.710 99.908

103.92 103.74 103.88 99.710 99.908 99.710 99.908 99.710 99.908 99.710 99.908 105.23 105.06

107.30 107.30 107.33 105.37 105.18 105.30 105.12 105.26 105.09 105.25 105.07 107.30 107.33
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Table 17

Frequency coefficients Oi ¼ oiab
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a clamped elliptical plate of relation a/b ¼ 3 with a concentrated mass at xm ¼ 1/2, Zm ¼ 0,

n ¼ 0.3

M ¼ 0 M

0.1 0.2 0.5 1 N

Ref. [12] Ritz FEM Ritz FEM Ritz FEM Ritz FEM Ritz FEM Ritz FEM

18.934 18.933 19.022 16.718 16.665 13.550 13.416 9.3143 9.1703 6.7760 6.6562 19.377 19.472

23.865 23.863 24.033 20.042 20.122 19.599 19.690 19.448 19.543 19.410 19.505 25.778 25.934

30.083 30.077 30.276 26.480 26.627 26.113 26.264 25.907 26.061 25.841 25.996 34.640 34.733

37.670 37.650 37.817 35.239 35.342 34.959 35.057 34.772 34.687 34.706 34.801 45.845 45.835

46.699 46.653 46.792 46.095 46.140 45.991 46.014 45.910 45.915 45.879 45.876 50.030 50.226

50.031 50.030 50.226 50.030 50.226 50.030 50.226 50.030 50.226 50.030 50.226 55.122 55.038

57.248 57.142 57.310 56.044 56.179 55.699 55.762 55.391 55.377 55.264 55.216 58.141 58.498

58.146 58.141 58.499 58.141 58.499 58.141 58.499 58.141 58.498 58.141 58.498 61.664 60.881

67.420 67.395 67.888 63.727 63.168 62.782 62.075 62.127 61.359 61.898 61.119 67.395 67.888

69.393 69.163 69.329 67.395 67.888 67.395 67.888 67.395 67.888 67.395 67.888 77.657 76.786

77.917 77.844 78.405 77.844 78.091 77.844 77.482 77.844 77.072 77.782 76.930 77.844 78.411

83.137 82.744 83.001 78.751 78.431 78.248 78.415 77.904 78.412 77.844 78.411 89.539 89.970

89.695 89.539 89.977 89.539 89.927 89.539 89.972 89.539 89.971 89.539 89.971 95.854 94.588

96.057 96.056 96.398 95.958 95.920 95.923 95.436 95.888 94.970 95.873 94.786 97.51 96.579

98.625 98.382 98.216 97.92 96.851 97.77 96.677 97.63 96.611 97.58 96.594 102.11 100.83

102.80 102.56 103.06 102.56 102.87 102.56 101.78 102.56 101.18 102.39 101.00 102.56 103.07

107.37 107.36 107.96 104.49 103.10 103.42 103.07 102.65 103.07 102.56 103.07 108.64 108.81

116.50 115.61 114.97 109.42 109.20 108.98 108.98 108.76 108.87 108.70 108.84 116.92 115.89

Fig. 5. Vibrating modes of a clamped elliptical plate (a/b ¼ 2): (a) O1 ¼ 13.689, (b) O2 ¼ 19.749, (c) O3 ¼ 27.988, (d) O4 ¼ 34.929, (e)

O5 ¼ 38.498 and (f) O6 ¼ 44.024.
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effect, and differs slightly from the second frequency coefficient of the case M ¼ 1. Obviously the fundamental
mode shape of the clamped plate with a finite mass is not possible when a fixed point is imposed. It may be
seen from the table that the n frequency coefficient of the case M-N fits in or is rather similar to the (n+1)
frequency coefficient of the case M ¼ 1. The agreement increases with for higher frequencies.
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Fig. 6. Vibrating modes of a clamped elliptical plate (a/b ¼ 2) with an attached mass M ¼ 0.5 at xm ¼ a/2; ym ¼ 0: (a) O1 ¼ 7.6617,

(b) O2 ¼ 14.881, (c) O3 ¼ 23.546, (d) O4 ¼ 34.929, (e) O5 ¼ 35.893 and (f) O6 ¼ 44.024.
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Tables 16 and 17 present the results for plates of aspect ratios a/b ¼ 2 and 3 obtained by the Ritz method
with the proposed approach and by the finite element method. The agreement between both sets of results is
very good as it is shown in the tables. Figs. 5 and 6 show the mode shapes for the elliptical clamped plates of
a/b ¼ 2. In Fig. 6, the mass (M ¼ 0.5) is attached at xm ¼ 0.5a; ym ¼ 0. It can be seen that new lower
frequencies of the plate appear as a consequence of the presence of the mass.

5. Concluding remarks

It has been shown that the present approach is applicable to the vibration problem of elliptical plates with
concentrated masses attached at an arbitrary position. The numerical technique converges faster for small
aspect ratios and lower frequencies. The rate of convergence decreases with the increasing aspect ratio and
higher frequencies. The accuracy is feasible to be improved by increasing the numbers of terms taken in the
deflection approximation. The approach presented here may be adapted to include different boundary
conditions for the plate or certain additional complexities such as the existence of holes, more than one mass
attached, orthotropicity and others.
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