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Most of the time series in nature are a mixture of signals with deterministic and random dynamics.

Thus the distinction between these two characteristics becomes important. Distinguishing between

chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a

delta like autocorrelation function, and share other features as well. In general, signals are

presented as continuous records and require to be discretized for being analyzed. In this work, we

introduce different schemes for discretizing and for detecting dynamical changes in time series.

One of the main motivations is to detect transitions between the chaotic and random regime. The

tools here used here originate from the Information Theory. The schemes proposed are applied to

simulated and real life signals, showing in all cases a high proficiency for detecting changes in the

dynamics of the associated time series. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4999613]

Detecting different dynamics present in a single signal is

a topic of great importance from both theoretical and

practical point of view. Therefore, for a long time, it has

become a subject of relevance in many areas of science.

The detection of changes in the dynamics of a system is

not an easy task, especially between chaotic and random

dynamics, because they share many characteristics.

In this paper, we propose to address these issues by using

a tool derived from theInformation Theory, known as the

Divergence of Jensen Shannon. This quantity is a mea-

sure of dissimilarity between probability distributions. In

order to provide the pertinent probability distributions,

we propose a method for discretizing the original signal,

known as the alphabetic mapping.

The union of these two methods allows discretizing and

analyzing any continuous signal. From this, we can evalu-

ate the “distance” between two or more signals, or to

detect the point at which the signal changes its dynamics.

To test our schemes we have used artificially generated

signals taken from the bibliography (chaotic maps and

noises), as real (electrocardiogram, mechanics signals)

ones. The methods here introduced give a new way to dis-

tinguish different dynamical behavior, in an easy and fast

way.

I. INTRODUCTION

In many areas of science, the dynamics of processes

underlying the studied phenomena can be represented by

means of finite time series, interpreted in some cases as real-

izations of stochastic processes (SPs) and in other cases as

orbits of deterministic processes. Although these two types

of processes are very different in nature, it is possible to

show that under certain restrictions there is a relationship

between them.1 A theorem by H. Wold establishes that a sta-

tionary stochastic process can be decomposed as a determin-

istic part (DP), which can be described accurately by a linear

combination of its own past, and another part represented as

a moving average component of finite order.

A different situation occurs when we have a non station-

ary time series. In these situations it is not possible to separate

the series in a deterministic and a stochastic part. Moreover in

cases in which the DP is chaotic, it is possible to find a DP

which produces a time series that could be very difficult to

distinguish from a SP.2,3 For these reasons, the issue of distin-

guishing between time series produced by deterministic chaos

from those produced by a random dynamics has led to the

development of different approaches.

This problem has already been treated with various tech-

niques such as: complexity-entropy plane,4–6 Lyapunov

exponents2,7,8 or applying neural networks,9 among others.

Chaotic signals always produce time series with a strong

physical structure, unlike those originated in stochastic pro-

cesses which have a little structure depending on their corre-

lations factors.10

The basic idea behind our schemes is to use quantifiers

that measure how close or far two time series are. The quan-

tifier is the Jensen–Shannon Divergence (JSD), which was

introduced as a measure of similarity between two probabil-

ity distribution function (PDF).11 Quantifiers originated in

the Information Theory, such as the JSD require to associate

to a given time series in a probability distribution (PD). Thus

the determination of the most suitable PD is a fundamental

point, because PD and the sample space are inextricably

linked. Many methods to deal with this problem have been

proposed. Among others methods of mapping between thea)mateosdiego@gmail.com
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time series and the PD, we can mention the binary symbolic

dynamics,12 Fourier analysis,13 frequency counting,14 wave-

let transform15 or comparing the order of neighboring rela-

tive values.16 Here, we propose to explore a way of mapping

continuous -state sequences into discrete-state sequences via
the so called alphabetic mapping.17

In this work, we present two methods for analyzing time

series. The first one involves a relative distance between two

time series. It consists in evaluating the JSD to previously

discretized signals, by using the alphabetic mapping. The

quantity resulting from this evaluation will be called the

alphabetic Jensen Shannon divergence (aJSD). The second

method detects the changes in the dynamics of a time series

through a sliding window which runs over the previously dis-

cretized signal. This window is divided into two parts. We

can assign the corresponding PD to each part, which can be

compared by using the JSD. In both methods, the changes in

the underlying dynamics of the time series can be detected

by analyzing the changes in the values of the JSD at the

neighborhood of the time when the change occurs. Both pro-

cedures were tested by using well known chaotic and random

signals taken from the literature and from biophysical and

mechanical real records.

The structure of this manuscript is as follows: in Sec. II,

we give a brief introduction of the JSD, and we explain in

detail the alphabetic mapping. In Sec. III, we introduce the

aJSD. In Sec. IV, we give a characterization of the chaotic

maps and colored noises used in the implementation of the

methods proposed here. In Sec. V, we display the results

obtained by the application of those schemes. In Sec. VI, we

illustrate how the aJSD can be used with real data extracted

from physiological and mechanical records. Finally, we

draw up some conclusions.

II. JENSEN–SHANNON DIVERGENCE FOR
ALPHABETIC MAPPING

A. Jensen–Shannon divergence

The Jensen–Shannon divergence (JSD) is a measure of

distinguishability between probability distributions intro-

duced by Rao18 and Lin19 as a symmetrized version of the

Kullback–Leibler divergence. This quantity has been used to

analyse problems which arise in many areas of science.20–24

Grosse and co-workers presented a recursive algorithm for

the segmentation (i.e., the detection of non-stationarity) for

symbolic sequences based on the JSD.24 Our procedures are

extensions of that segmentation procedure.

Let X be a discrete-states variable xi, i ¼ 1; 2;…;N and

let P1 and P2 be two probability distributions for X, which

we denote as p
ð1Þ
i ¼ P1ðxiÞ and p

ð2Þ
i ¼ P2ðxiÞ, with 0 �

p
ðkÞ
i � 1 and

PN
i¼1 p

ðkÞ
i ¼ 1 for all i ¼ 1; 2;…; n and k¼ 1, 2.

If p1 and p2 denote the weights of P1 and P2 respectively,

with the restrictions p1 þ p2 ¼ 1 and p1; p2 � 0, the JSD is

defined by

DJSðP1;P2Þ¼Hðp1P1þp2P2Þ�ðp1HðP1Þþp2HðP2ÞÞ; (1)

where

HðPÞ ¼ �C
XN

i¼1

pi logðpiÞ (2)

is the Shannon entropy for the probability distribution P. We

take C ¼ 1= logð2Þ so that the entropy (and also the JSD) is

measured in bits.

It can be shown that the JSD is positively defined, sym-

metric and it is zero if and only when P1¼P2.11 Moreover

JSD is always well defined, and it is the square of a metric25

and it can be generalized to compare an arbitrary number of

distributions, in the following way: let P1ðxÞ;…;PMðxÞ be a

set of probability distributions and let p1;…; pM be a collec-

tion of non negative numbers such that
PM

j¼1 pj ¼ 1. Then

the JSD among the probability distributions PjðxÞ with j ¼
1; ::;M is defined by

DJSðP1;…;PMÞ ¼ H
XM

j¼1

pjPj

2
4

3
5�XM

j¼1

pjH Pj½ �: (3)

Finally it is worth mentioning that, although the JSD was

introduced as a measure of discernability between discrete

probability distributions, it is possible to extend its evalua-

tion to continous probability distributions (see for example

Ref. 26). In this work we only need to evaluate the JSD

between discrete PD.

B. Alphabetic mapping

In nature, symbolic sequences can be found, such as

DNA sequences or some symbolic sequences generated by

logical circuits. But most of “real life” signals are repre-

sented as continuous records. Thus, for certain kinds of proc-

essing, it is necessary to discretize them. This is the case

when JSD is applied (It is possible to calculate entropy for

continuous state signals but the estimation of a differential

entropy from the data is not an easy task.27). There exist sev-

eral ways to discretize the original signal. We use a scheme

introduced by Yang.17

For a given continuous series fxtg, we can map this real-

values series in a binary series easily, depending on the rela-

tive values between two neighboring points ½xt; xtþ1� in the

following way:

sn ¼
0; if xt � xtþ1

1; if xt > xtþ1:

�

So we obtain a binary sequence S ¼ fs1; s2;…; sN�1g, where

si¼ 0 or 1.

Consider two integers d> 2 and s � 1 and let us define

a trajectory in the d-dimensional space associated with fxtg:

Yt ! st�ðd�1Þs;…; st½ � t � ðd � 1Þs:

The vector Y
ðd;sÞ
t is called “alphabetic word,” where d is the

“embedding dimension” (the number of bit taken to create

the word) and s is called the “delay.” Taken’s theorem gives

conditions on d and s, such that Yd;s
t preserves the dynamical

properties of the full dynamical system (e.g.,, reconstruction

of strange attractors).28,29
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By shifting one data point at time, the algorithm produ-

ces a collection of bit-word fYd;sg over the whole series.

Therefore, it is plausible that the occurrence of this bit-word

reflects the underlying dynamics of the original time series.

Different types of dynamics produce different distributions

of these Yd;s series. We define wd;s
i , as the symbol corre-

sponding to the word Y
d;s
i . From these, we construct a new

series Wd;s ¼ fwd;sg which quantify the original series. The

number of the different symbols (alphabet length) depends

on the number of bits taken; in this case is 2d .

To give an example of the mapping, we can consider the

series f3:5; 4:8; 3:6; 2; 1; 4:1; 3:7; 8:5; 10:4; 8:9g, which has a

corresponding series S ¼ f1; 0; 0; 1; 0; 1; 1; 0g. For the evalua-

tion of the parameter d¼ 4 and s ¼ 1, the first word to appear

is Y
4;1
1 ¼ ð1; 0; 0; 1Þ, the second one is Y

4;1
2 ¼ ð0; 0; 1; 0Þ, and

the other three are Y
4;1
3 ¼ ð0; 1; 0; 1Þ; Y

4;1
4 ¼ ð1; 0; 1; 1Þ, and

Y
4;1
5 ¼ ð0; 1; 1; 0Þ.

It is necessary to frequently process signals of two or

more dimensions such as bi-dimensional chaotic maps, poly-

somnography, EEG, etc. The components of such signals are

mostly coupled, given that signal values depend not only on

the previous values but also on the values reached by the other

signals. Therefore by making a one-dimensional analysis, we

can lose some valuable information. Based on the ideas dis-

cussed above for one-dimensional signals (1D), we have

extended the same algorithm, with a slight modification to

analyze 2-dimensional (2D) signals without losing informa-

tion. For a given continuous 2D series Xt ¼ ðxðtÞ; yðtÞÞ, we

assign a 1D string, by the relative values between the two

component vector at each time t, ½xt; yt� in the following way:

St ¼
0 si xt � yt

1 si xt < yt

:

(

For the 1D case, we use a time delay method because we

consider x(t) and xðtþ 1Þ to binarize the signal. For the 2D

signal, the binarization is produced by a spatial assignation

as we compare the values of the two coordinate (xðtÞ; yðtÞ) at

the same time. However, when we define the embedding

vector for the binary sequence the procedure is equal in both

1D and 2D signals.

It should be emphasized that it is possible to extend the

procedure for N-dimencional signals. For example for N-

dimensional signals, we can use the permutation vector

approach, introduced by Bandt and Pompe16 (see for exam-

ple Ref. 30). In the N-dimensional case, the sequence S it is

no longer a binary one, but it depends on the size of the sig-

nal, having an alphabet length L ¼ N! and the number of

possible words W results in N!2.

III. JSD COMBINED WITH THE ALPHABETIC MAPPING

Once the signals are discretized, we can approximate the

PD by the frequency of occurrence of the symbols wd;s
i . From

this PD, we can develop the following analysis schemes:

• Distance between two signals: to define a distance

between two signals we use the following procedure –

given two different time series, for example, one

originated from a chaotic dynamics and the other from a

random dynamics, we map each one in a symbolic

sequence by using the methods explained in Sec. II B. In

this way, we get two sets of symbols Wðd;sÞ ¼ fwðd;sÞg and
~W
ðd;sÞ ¼ f~wðd;sÞg. Then we can calculate the frequency

of appearance of the symbols for both sequences PW

¼ PðWd;sÞ and P
~W ¼ Pð ~W

d;sÞ. Finally, we evaluate the

Jensen Shannon divergence between these two distribu-

tions DW; ~W
JS ¼ DJSðPW jP ~W Þ.

• Sliding Window: here we introduce a sliding window that

moves over the symbolic sequence corresponding to the

original signal. The window has a width D > 0 and posi-

tion k (referring to the position of the center of the window

over the sequence). For each position k, we can divide the

window in two sub windows, one to the left and the other

to the right of the position k. For each windows, we evalu-

ate the frequency of occurrence of symbolic patterns: to

the right window PðWd;s
r Þ ¼ PW

r and to the left window

PðWd;s
l Þ ¼ Pw

l . Finally we evaluate the associated JSD,

DJSðkÞ ¼ DJSðPW
r jPW

l Þ as a function of the window’s posi-

tion k. The position where the maximum value of the JSD

occurs, DJSmax
¼ max½DJSðkÞ�, it is interpreted as the place

where a significant change in the probability distribution

patterns Wðd;sÞ, has occurred. This change can be associ-

ated to a variation in the statistical properties of the origi-

nal signal. The only restriction in the election of window’s

width is that D must be greater than the number of possible

patterns generated by the alphabetic mapping ðD� 2dÞ.

Two sequences with the same statistical properties,

should lead to identical probability distributions and there-

fore, the divergence between them should take a very small

value, close to zero but non zero. This fact is due to the sta-

tistical fluctuations. The estimators for probability distribu-

tions corresponding to sequences must be constructed and

then the fluctuations of this construction will yield to JSD

values greater than zero. To address this problem, Grosse

et al.24 introduced a quantity called “significance” which

allows to see if the values reached by the JSD are greater

than the statistical fluctuations. This amount depends on the

sequence length and the size of the alphabet of symbols used

in the representation of the sequence. An expression for the

significance value has been presented in Ref. 24. A limitation

of that expression is that it is valid only for an alphabet with

no more than five symbols. Therefore, we must modify the

criteria introduced by Grosse et al., to identify values of the

JSD that are genuinely above statistical fluctuations. To do

that, we proposed to calculate the aJSD on a set of Ns ¼ 105

ensembles generated for each signal using the same parame-

ters but with different initial conditions. After quantifying

the signals, we have different Ns sequences ðWd;s
1 ;…:;Wd;s

Ns Þ.
The first step is to calculate the aJSD between all

sequences belonging to the same group of segments, that we

call “auto-aJSD”

DW
JS ¼ DJSðPWi jPWjÞ; i; j ¼ 1;…;Ns; for i 6¼ j:

Then we evaluate the average value lW ¼ hDW
JSi over all the

sets of sequences with its respective standard deviation
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(rW ¼ hðDJSðPWi jPWjÞ � lWÞ2i1=2
). The next step is the

same, but using the two group of signals to be compared. For

all the aJSD values resulting from all the signals, we take the

average lW; ~W ¼ hDJSðPWi jP ~Wi Þi, with its respective standard

deviation (rW; ~W ¼ hðDJSðPWi jP ~Wi Þ � lW; ~W Þ2i1=2
).

Finally, two sequences are different (in the statistical

sense) if the inequality:

lW; ~W � rW; ~W � max lW þ rW ; l
~W þ r

~W
h i

is satisfied. If the values of the aJSD do not pass this criteria

we say that the two signals are not statistically distinguish-

able one from each other.

IV. CHARACTERIZATION OF CHAOTIC MAPS AND
COLORED NOISES

To test our scheme based on the distance between two

signals, we use sequences extracted from the bibliography.

We use 18 chaotic maps and 5 colored noises in what follows

will be described briefly.

A. Chaotic maps

We consider 18 chaotic maps which were taken from

Ref. 31. They can be grouped as follows:

(1) 1D chaotic maps: also called non–inverted maps. They

are dynamical sequences for which the image has more

than one pre-image and in each interaction a loss of

information occurs, generating in this way a chaotic

system.31

• The lineal congruential generator.32

• The gaussian map.33

• The logistic map.34

• The Pinchers map.35

• The Ricker’s population model.36

• The sine circle.37

• The sine map.38

• The Spencer map.39

• The tent map.40

• The H�enon map.41

• The Lonzi map.
• The delayed logistic map.42

• The Tinkerbell map.43

• The dissipative standard map.44

• The Arnold’s cat map.45

• The chaotic web map.46

• The Chirikov standard map.47

• The Gingerbreadman map.48

• The H�enon area-preserving quadratic map.41

B. Colored noises

The noise power spectrum often varies with frequency

as 1=f a (some times called Hurst noise). White noise corre-

sponds to a ¼ 0. To generate all noises we used the algo-

rithm described in Refs. 4 and 49.

V. DISTINGUISHING BETWEEN CHAOTIC AND
RANDOM SEQUENCES

In this section, we present the results obtained from

evaluating the aJSD between chaotic maps and colored

noises. We apply the two methods described in Sec. II. First,

we create an aJSD distance matrix between chaotic and noise

signals and between chaotic maps. Next, we merge two dif-

ferent signals (i.e., one chaotic and one noisy) and through

the aJSD sliding window method we show that it is possible

to detect changes in the types of dynamics.

A. Distance matrix between sequences

For each type of process explained in Secs. IV A and

IV B we generate Ns ¼ 106 time series of Ls ¼ 106 data

points with identical parameters31 and a random initializa-

tion. We compute a distance matrix between chaotic and col-

ored noises, using the significance criterion for the aJSD

already explained. For the discretization of the signals, we

used the parameters s¼ 1 and 8 � d � 12. Figure 1 displays

the matrix for the corresponding parameters d¼ 8 and s¼ 1.

For different embedding dimensions, we obtained similar

results.

In the case of the aJSD distances matrix corresponding

to chaos-noise (Fig. 1), we observe that most of the chaotic

maps are distinguishable from the different types of colo-

rated noises. The numbers in the boxes represent the values

of the aJSD. The lower these values, more similar are the

sequences.

Only for the particular case of the lineal congruential gen-

erator map (LCG) and white noise (WN), the aJSD value does

not pass the significance criterion. This fact means that the

LCG map is an example of a random number generator pass-

ing the Miller–Rabin test.50 Therefore, the distribution of

words fWð8;1Þg corresponding to LCG and WN is very similar.

The same evaluation has been done between chaotic

maps. Figure 2 displays the corresponding distance matrix.

As it can be seen, all the aJSD values are above the signifi-

cance criterion, showing that our method is adequate to dis-

tinguish between different types of chaos. A more detailed

analysis shows a strong relationship between the values of

aJSD and the phase diagram of the chaotic maps. For exam-

ple, the logistic map and the tent map have similar phase dia-

grams (all phase diagrams belong to the chaotic time series

used in this work are shown in the Sprott book (Appendix31),

and the value of the corresponding distance is almost null.

The same behaviour can be found between the Pincher’s

map and the Spencer map.

The same analysis was performed for the 2D chaotic

series. In this case, we use the two-dimensional assignment

described in Sec. II B, where the parameters 8 � d � 12 and

s¼ 1 were chosen. Figure 3 shows the corresponding aJSD

distance matrix for the parameters d¼ 8 and s¼ 1. As

observed for one-dimensional chaotic maps, all distances

passed the significance criteria, with all maps being distin-

guishable one from each other.

There exists a strong correspondence between the values

of the aJSD and the similarity (or dissimilarity) of the topol-

ogy of the phase diagrams of the maps. The aJSD’s values
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decrease as the topology of the phase diagram tends to be

similar, as can be observed in the case of the H�enon map and

the Lonzi map. Conversely, when two maps have a different

topological structure in their phase space, such as the H�enon

map and the Chirikov map, the values of the aJSD increase.

Different embedding dimensions change the absolute value

of the aJSD but the relative value between the elements of

the distance matrix remains unaltered.

FIG. 1. aJSD distance matrix between

1D chaotic sequences and colored

noise signals. The values chosen for

the parameters d and tau are: d¼ 8 and

s¼ 1. It can be observed that there is a

good discrimination between chaotic

sequences and noise. aJSD values vary

according to the correlation noise and

the dynamics of the chaotic series. The

value 0.00 means that the aJSD has not

exceeded the significance criterion set-

tled out in Sec. III so that the two

sequences are indistinguishable from

each other. Similar results were found

for parameters 8 � d � 12 and s ¼ 1,

showing that the method is robust with

respect to the election parameter d.

FIG. 2. aJSD distance matrix between

1D chaotic sequences. The values cho-

sen for the parameters d and s are:

d¼ 8 and s¼ 1. A good discrimination

can be observed between the different

chaotic sequences. The absolute values

of aJSD vary according to the similar-

ity between the phase diagrams of the

chaotic sequences, giving information

of the similarity about the dynamics of

such sequences. Similar results were

found for parameters 8 � d � 12 and

s¼ 1.
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Let us recall that in our scheme the aJSD measures the

distance between the PDF associated with the set of words

fWðd;sÞg and f ~W
ðd;sÞg. As a consequence of the Taken’s the-

orem,29 these sets of words are in correspondence with cer-

tain aspects of the phase space of each original signal. Series

which have a similar dynamics, have similar phase space and

therefore PDF giving low values of the aJSD.

B. Detection changes in the time series

Here, we use the proposed sliding window scheme for

detecting changes in a signal. For this purpose, we use two

different signals x1 and x2 of equal length Lx1
¼ Lx2

¼
5� 104 symbols, which are merged in a single sequence,

where signal x1 is a chaotic one and x2 is a random one, or

two different chaotic sequences. Examples of two combined

normalized sequences are plotted in Figs. 4(a) and 4(b).

In both figures, we plot the results of applying the seg-

mentation procedure for different combinations of signals.

The aJSD achieves its maximum value exactly at the merg-

ing point of the two sequences, which is marked with a dot-

ted vertical line. Similar results were observed in the case of

sequences generated by chaotic processes. In these cases, the

aJSD value reaches several orders of magnitude higher than

those corresponding to a single stationary sequence.

It is of interest to see the robustness of the aJSD diver-

gence for the detection of dynamic changes, under different

noise contents of the signals. With this objective, we use two

chaotic maps (tent map and Pincher map) with different lev-

els of noise. NSR¼ 0%, 1%, 2%, 5%, and 10% noise level.

Figure 5 shows the behavior of the aJSD for different noise

contents in two chaotic maps. The parameters of the

discretization are d¼ 6 and s ¼ 1; the width of the windows

is L¼ 10000. From these results we can conclude that the

methods distinguish between the two dynamics independent

of the level noise, but when the noise level increases the

aJSD values decrease.

VI. APPLICATION OF THE AJSD TO REAL DATA

Now, we test our proposed schemes for a group of real

world signals. The first one is a set of electrocardiograms

(ECG) signals on which we calculated the distance matrix of

the aJSD between groups of patients with different cardiac

pathologies. In the second application, we use our methods

to detect the misalignment of the axis of an electric motor.

A. Distinction between groups of patients with heart
diseases

In this study case, the signals correspond to the beat to

beat intervals (BBI) registered from 15 patients. The patients

were grouped into 3 sets of 5 patients each. The first group

consists of healthy persons with a normal sinus rhythm

(NSR); the second set contains patients suffering from con-

gestive heart failure (CHF), and the third one is composed of

patients suffering from atrial fibrillation (AF) data available

in Ref. 51. An example of each ECG signal is shown in

Fig. 6(a).

Each series represents a record of 24 hours (approxi-

mately 100,000 intervals). The analysed records do not have

any previous filter. Figure 6 plots the distance matrix for the

aJSD among the three sets, for the parameters (d¼ 8 and

s¼ 1). The aJSD can discriminate between the members of

FIG. 3. aJSD distance matrix between

2D chaotic sequences. The values cho-

sen for the parameters d and s are:

d¼ 8 and s¼ 1. The matrix shows a

good discrimination between the dif-

ferent chaotic sequences and aJSD val-

ues. As in the case of 1D chaotic maps,

which are more similar for the phase

space, the value of aJSD is lower.

Similar results were found for parame-

ters 8 � d � 12 and s¼ 1.
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the control group and the pathological groups, with the dis-

tance between the members of the pathological groups and

the members of the control group being greater. The fre-

quency time between heartbeats for the patients belonging to

the control group, remains virtually unchanged, while for

patients with pathologies the interbeat time is altered. The

difference between heartbeats is captured through alphabeti-

cal mapping, giving different pattern distributions of Wd;s for

each group.

This example shows that our scheme could be of interest

from a clinical point of view. It could be an adequate tool for

controlling the evolution of patients under some kind of

medical treatment.

B. Misalignment detection of an electric motor

The second example corresponds to a record taken from

the axis movement of an electric motor. The first signal cor-

responds to the vibration measure using a capacitive acceler-

ometer, mounted along the axis on the motor bearing [Fig.

7(a)]. The second one is a signal taken from an optical incre-

mental rotary encoder drum, with about 145 pulses per revo-

lution, as shown in Fig. 7(b). The third is a signal generated

by a piezoelectric accelerometer mounted in the same place

FIG. 4. (a) Example of a combined chaos-noise signal (Rikers maps—Blue noise). The signals were merged at the meddle position (point¼ 200). (b) idem A

but using a chaos-chaos combined signals (Sine Circle–Linear congruential Map). (c) aJSD calculation using the running window method, applied to four com-

posed chaotic and random sequences. The values chosen for the parameters d, s, and D are: d¼ 8, s¼ 1, and D¼ 40 000. (d) Idem C applied to four composed

different chaotic signals. In both plots, the maximum aJSD value is reached at the point where the two different sequences were merged (dotted vertical line).

FIG. 5. The aJSD running windows method applied to the combination of

two chaotic maps (Tent map and Riker’s map) with different noise levels:

NSR : 0%; 1%; 2%; 5%; 10%. As the noise level increases, the aDJS values

decrease. However the merging point of two signals is clearly detectable for

all noise levels. The parameters used are: windows length L¼ 10 000, d¼ 6,

and s¼ 1.
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like the capacitive signal, which is plotted in Fig. 7(c). The

last signal is the rate of the engine load and is depicted in

Fig. 7(d) (It is related to the frequency of rotation of the shaft

by means of a “Keyphaser.”). The data were obtained with a

sampling frequency of 25� 103 Hz without any preprocess-

ing. For more technical details on the recording setup, see

Ref. 52.

Each signal has a length of N ¼ Na þ Nm ¼ 14� 104, in

which the first Na ¼ 7�104 measurement values correspond

to the axis in the aligned position and Nm ¼ 7� 104 in the

misaligned position. For all the signals we used the following

parameters: d ¼ 8, s¼ 1, and D ¼ 4� 104. The results are

shown in Fig. 7. It should be noted that for all signals, the

aJSD maximum value is reached exactly when the shaft align-

ment state changes. That point is identified by the dotted verti-

cal line. In the case of the signals from the vibration

measurement by the piezoelectric accelerometers, the value of

the maximum aJSD is smaller and more volatile than the other

two methods. This fact can be associated with the efficacy of

the measurement method. In all cases, the different signals are

clearly detectable by the methods proposed here.

VII. DISCUSSION

In this paper, we have introduced the alphabetic JSD as

a measure of distance between time series. Using this mea-

sure we have developed two methods to distinguish between

different types of signals. Our schemes can be applied in two

dimensional signals.

Using this measure, we have developed two methods to

distinguish between different types of signals. Particularly,

we used them to distinguish random from chaotic signals,

and to compare different types of chaotic signals between

them. Through the aJSD distance matrix, we were able to

show that chaotic signals are clearly distinguishable from

random signals with a diverse power spectrum. It is impor-

tant to note that chaotic signals with different phase space

structures are distinguishable from one another.

The results were presented in two ways. The first one by

evaluating the distance matrix corresponding to different pairs

of signals, i.e., chaotic-noisy and chaotic-chaotic signals; and

the second one by plotting the values of the aJSD in terms of

the position of a moving window along the signal.

We also developed a procedure to detect dynamical

changes in a signal by using a sliding window that moves on

the resulting symbolic sequence after mapping the original

series by an alphabetical assignment, being the centre of the

original window moved one place per step. Then the aJSD is

evaluated for the two corresponding sub-sequences belong-

ing to each half of the window. The maximum value of the

divergence corresponds to the point where a change occurs

in the probability distribution of the discretized signal. We

tested the method using two different signals merged

together. The aJSD allows detecting the point where the two

different signals were coupled in order to constitute signals

with chaos-noise and chaos-chaos parts. Finally, we use this

scheme to evaluate the alignment condition of the axis of an

electric motor.

FIG. 6. (a) ECG signals belonging to

the different study groups: the normal

sinus rhythm (NSR), the congestive

heart failure (CHF), and the atrial

fibrillation (AF). (b) aJSD distance

matrix for patients belonging to each

group. The aJSD can discriminate

between these three groups. The

parameters used in this matrix are

d¼ 8 and s¼ 1. The same results were

obtained for higher embedding dimen-

sions (8 � d � 12).
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The methods were tested in real world signals, showing

to be robust, and suitable for the detection of different

regimes, both in electrophysiological records and in the

alignment of the axis of an electric motor. These two appli-

cations show that the proposed schemes could be useful in

the context of clinical treatment and other practical situa-

tions. Concerning the inner noise present in real signals, we

deal with this problem using the significance criterion

explained in Sec. III. This criterion is capable of discerning

between differences of probabilities of each dynamics and

differences that are produced by the noise or statistical fluc-

tuations. Finally, it is worth mentioning that our schemes

could be implemented for a real time analysis of the signal

under study.

Is important to note that one of the weak points of the

proposed methods is that they do not allow detecting changes

in the signal amplitude. This occurs due to the discretization

procedures required for the evaluation of the JSD along the

signals. For example, the signal X1 ¼ f12321312g and the

signal X2 ¼ f1020102010201020g lead to the same binariza-

tion S1 ¼ S2 � 1100101. So the methods are not suitable to

study changes in the amplitude of the signals. On the other

hand, if the signals are very similar, a huge embedding size

and therefore very long signals are required, in order that the

proposed methods are suitable for detecting dynamical

changes in the signals. However, one of the main advantages

of our schemes is the relatively low computational cost they

have. In that sense we think that they might be adequate to

the development of real time schemes of analysis.

ACKNOWLEDGMENTS

The authors thank Dr. Pierre Granjon from the GIPSA-

lab, Grenoble, France, for providing the recording electric

motor data. We thank the CONICET and the Secyt-UNC for

the financial assistance.

1H. Wold, A Study in the Analysis of Stationary Time Series (Almqvist &

Wiksell, 1938).
2M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, “Chaos or

noise: Difficulties of a distinction,” Phys. Rev. E 62(1), 427 (2000).
3H. Sakai and H. Tokumaru, “Autocorrelations of a certain chaos,” IEEE

Trans. Acoust. Speech Signal Process. 28(5), 588–590 (1980).
4O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino, and M. A.

Fuentes, “Distinguishing noise from chaos,” Phys. Rev. Lett. 99(15),

154102 (2007).

FIG. 7. aJSD analysis using a sliding windows, corresponding to the four different signals taken on the axis of an electric motor. (a) Signal of a capacitive

accelerometer mounted on the z axis of the motor bearing. (b) An optical signal incremental rotary encoder drum with 145 pulses per revolution. (c) Signal

generated by a piezoelectric accelerometer mounted on the same place as A. (d) Signal engine load rate. All signals were analysed choosing the parameters

d¼ 8, s¼ 1, D¼ 40 000.

083118-9 Mateos, Riveaud, and Lamberti Chaos 27, 083118 (2017)

http://dx.doi.org/10.1103/PhysRevE.62.427
http://dx.doi.org/10.1109/TASSP.1980.1163449
http://dx.doi.org/10.1109/TASSP.1980.1163449
http://dx.doi.org/10.1103/PhysRevLett.99.154102


5L. Zunino, M. C. Soriano, and O. A. Rosso, “Distinguishing chaotic and

stochastic dynamics from time series by using a multiscale symbolic

approach,” Phys. Rev. E 86(4), 046210 (2012).
6F. Olivares, A. Plastino, and O. A. Rosso, “Contrasting chaos with noise

via local versus global information quantifiers,” Phys. Lett. A 376(19),

1577–1583 (2012).
7W. A. Brock, “Distinguishing random and deterministic systems:

Abridged version,” J. Econ. Theory 40(1), 168–195 (1986).
8J. B. Gao, J. Hu, W. W. Tung, and Y. H. Cao, “Distinguishing chaos from

noise by scale-dependent Lyapunov exponent,” Phys. Rev. E 74(6),

066204 (2006).
9J. B. Elsner, “Predicting time series using a neural network as a method of

distinguishing chaos from noise,” J. Phys. A: Math. General 25(4), 843

(1992).
10Z. Wu and N. E. Huang, “A study of the characteristics of white noise

using the empirical mode decomposition method,” Proc. R. Soc. London

A: Math. Phys. Eng. Sci. 460, 1597–1611 (2004).
11T. M. Cover and J. A. Thomas, Elements of Information Theory (John

Wiley & Sons, 2012).
12K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, “Construction of

symbolic dynamics from experimental time series,” Phys. Rev. Lett. 82(6),

1144 (1999).
13G. E. Powell and I. C. Percival, “A spectral entropy method for distin-

guishing regular and irregular motion of Hamiltonian systems,” J. Phys. A

12(11), 2053 (1979).
14O. A. Rosso, H. Craig, and P. Moscato, “Shakespeare and other english

renaissance authors as characterized by information theory complexity

quantifiers,” Phys. A: Stat. Mech. Appl. 388(6), 916–926 (2009).
15O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M.
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