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We examine the evaluation of entanglement measures in weakly correlated Gaussian states. It is shown that
they can be expressed in terms of the singular values of a particular block of the generalized contraction matrix.
This result enables us to obtain in a simple way asymptotic expressions and related area laws for the entanglement
entropy of bipartitions in pure states, as well as for the logarithmic negativity associated with bipartitions and also
with pairs of arbitrary subsystems. As illustration, we consider different types of contiguous and noncontiguous
blocks in two-dimensional lattices. Exact asymptotic expressions are provided for both first-neighbor and full-
range couplings, which lead in the first case to area laws depending on the orientation and separation of the blocks.
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I. INTRODUCTION

Entanglement is a valuable resource that plays a key role
in quantum information processing and transmission based on
qubits [1–4] or on continuous-variable systems [5]. It has also
provided new insights into the role of quantum correlations in
the critical behavior of many-body quantum systems [6–10].
Nonetheless, the evaluation of genuine quantum correlations
for a given state of a many-body system is in general a difficult
task. On the one hand, rigorous computable entanglement
measures exist just for pure states, where the entanglement
entropy, i.e., the entropy of the reduced state of a subsystem,
provides the basic measure of bipartite entanglement [11]. In
the case of mixed states, rigorous measures like the entangle-
ment of formation [12], which is the convex-roof extension
of the previous measure [13], involve a minimization over a
very high-dimensional space of parameters and are therefore
not directly computable. This has turned attention to the nega-
tivity [14], or equivalently the logarithmic negativity [14,15],
which quantifies the violation of the positive-partial-transpose
separability criterion by entangled states and is a bipartite
entanglement monotone [14], computable in principle for any
bipartition in any pure or mixed state. Nevertheless, the accu-
rate evaluation of these quantities demands a deep knowledge
of the many-body state, which requires in general an amount of
information that increases exponentially with the system size.
This fact limits the possibility of closed evaluations to states
characterized by a manageable number of parameters [9].

Prime examples of such states are the Gaussian states,
i.e., ground or thermal states of stable gapped Hamiltonians
quadratic in boson operators, or equivalently generalized
coordinates and momenta [5,16,17]. For such states, of crucial
importance for continuous-variable quantum information [5],
the entanglement entropy of bipartitions of pure states and
the negativity between arbitrary subsystems in pure or mixed
states can be evaluated in terms of the elements of the
covariance matrix [18–22], i.e., of the generalized contraction
matrix of pairs of boson operators [23,24]. However, even
in this scenario, the extraction of analytical expressions for
these quantities for arbitrary subsystems is in general not
straightforward [18,19,25].

The aim of this work is to discuss the evaluation of the
previous measures in weakly correlated Gaussian states, such
as typical ground states of gapped Hamiltonians, which can be

characterized by excitations over a product state. Gaussian
states are usually described in terms of the phase-space
formalism [5], which allows their entanglement properties
to be connected with correlations in phase space. Here
we will consider a different approach, based on the Fock
representation, which provides an equivalent yet in many
cases clearer way to evaluate and represent entanglement
measures [24]. We will show that the entanglement entropy
and negativity can be expressed in terms of the singular values
of sub-blocks of basic contraction matrices, which can be
evaluated analytically in the perturbative limit for some typical
couplings. The formalism also allows the straightforward
derivation of area laws [10,19,26–28] for these quantities.
The emergent area laws for the entanglement entropy and
negativity are different, i.e., they depend on distinct measures
of the boundary size, and are affected by the orientation and
separation of the subsystems. Let us also remark that the
ground state of weakly interacting spin systems can also be
described by Gaussian states through different approximate
bosonization techniques [23,24,29], entailing that the scope of
the present scheme is quite general.

The formalism is described in Sec. II, while Sec. III
considers its application to specific systems, essentially ground
states of two-dimensional lattices with short-range couplings,
although the full-range case is also considered. The present
scheme allows us to easily obtain exact analytical asymptotic
expressions for the entanglement entropy and logarithmic
negativity of different types of bipartitions and block pairs,
both contiguous and separated, which will be compared with
exact numerical results. They clearly show the emergence of
precise area laws. Conclusions are finally drawn in Sec. IV.
We also include appendixes containing the details of the
perturbative expansion for the symplectic eigenvalue problem
and the evaluation of singular values.

II. FORMALISM

A. Entanglement entropy and negativity in Gaussian states

The class of Gaussian states in a bosonic system can be
defined as those states of the form

ρ = 1

Tr exp(−βH )
T (α) exp(−βH )T †(α), (1)
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where H is a positive definite quadratic form on the boson
operators bi and b

†
i ([bi,b

†
j ] = δij , [bi,bj ] = 0),

H =
∑
i,j

(λiδij −�+
ij )

(
b
†
i bj + 1

2
δij

)
−1

2
(�−

ij bibj + �̄−
ij b

†
j b

†
i )

= 1

2
Z†HZ ,

H =
(

� − �+ −�−
−�̄− � − �̄+

)
, (2)

with Z = (b
b†

), and T (α) = ∏
i exp(ᾱibi − αib

†
i ) is a dis-

placement operator [T (α)biT
†(α) = bi + αi]. In (2), � is

the diagonal matrix of local bare energies λi and �±
ij are

the coupling strengths between pairs of different bosons
(�+

ij = �̄+
ji , �−

ij = �−
ji). In the pure-state limit β → ∞ and

ρ → T (α)|0〉〈0|T †(α), with |0〉 the ground state of H . The
displacements αi can be taken into account by local shifts
bi → bi − αi , so that in what follows we will set αi = 0, such
that 〈bi〉ρ ≡ Trρbi = 0, ∀i.

The key property of these states is that by means of Wick’s
theorem [23] the expectation value of any bosonic operator
(and hence ρ) is fully determined by the displacements αi and
the generalized contraction matrix [23,24]

D = 〈ZZ†〉 − M =
(

F+ F−
F̄− 1 + F̄+

)
,

(3)
F+

ij = 〈b†j bi〉ρ, F−
ij = 〈bibj 〉ρ,

where M = ZZ† − [(Z†)tZ t ]t = (1 0
0 −1) is the symplectic

metric and F+
ij = F̄+

ji , F−
ij = F−

ji .
We may diagonalize D or H by means of a symplectic

transformation W satisfying W†MW = M, corresponding
to a Bogoliubov transformation Z = WZ ′ to boson operators
Z ′ = (b

′
b′† ), such that D = WD′W†, with D′ diagonal (F ′+

αα′ =
fαδαα′ , F ′− = 0). This leads to the standard diagonalization
of the matrix DM (as WDMW−1 = D′M). The matrix W
can be written in block form as

W =
(

U V

V̄ Ū

)
, (4)

where U and V should satisfy

U †U − V t V̄ = 1 = UU † − V V †, (5a)

U †V − V tŪ = 0 = UV t − V Ut . (5b)

The blocks F± of the contraction matrix acquire then a
simple form in terms of U , V , and the diagonal block F ′+:

F− = V Ut + V F ′+Ut + UF ′+V t , (6a)

F+ = V V † + V F ′+V † + UF ′+U †. (6b)

For a pure state, F ′+ = 0 and Eqs. (6) lead to F− = V Ut

and F+ = V V †, implying

F−F̄− = F+ + F+2
. (7)

For such states, the entanglement between any subsystem
A and its complement Ā can be measured through the von
Neumann entropy of any of the reduced states:

EA,A = S(ρA) = S(ρA), (8)

where S(ρ) = −Trρ log2 ρ. In a Gaussian state, the validity of
Wick’s theorem [23] implies that the state of any subsystem
A is also Gaussian and hence fully characterized by the
corresponding contraction matrix DA, which is just the sub-
block of D with indices belonging to A:

DA =
(

F+
A F−

A
F̄−
A 1 + F̄+

A

)
. (9)

The von Neumann entropy (8) can then be expressed in terms
of the symplectic eigenvalues f A

α of DA as

S(ρA) =
∑

α

h
(
f A

α

)
, h(x) = −x log2 x + (1 + x) log(1 + x).

(10)

In the case of a mixed state or for pairs of noncomple-
mentary subsystems B,C, the subsystem entropy is no longer
a measure of quantum correlations. Instead, a well-known
computable entanglement monotone for such systems is the
negativity NB,C [14], which is just the sum of the negative
eigenvalues of the partial transpose ρ

tB
BC . An associated

quantity is the logarithmic negativity

EN
B,C = log2(1 + 2NB,C) = log2

∣∣∣∣ρtB
BC

∣∣∣∣
1, (11)

where ||A||1 = tr
√

A†A denotes the trace norm. For a Gaussian
state, ||ρ tB

BC ||1 can be expressed in terms of the negative
symplectic eigenvaluesf̃ B,C

α of the contraction matrix D̃BC
determined by ρ

tB
BC , with blocks

F̃±
BC =

(
F̄±
B F̄∓

B,C
F∓
C,B F±

C

)
, (12)

where F±
B,C denotes the matrix of elements F±

ij with i ∈ B and
j ∈ C, and F±

B ≡ F±
B,B. Equation (11) then becomes

EN
B,C =

∑
f̃
B,C
α <0

g
(
f̃ B,C

α

)
, g(x) = − log2(1 + 2x). (13)

We notice that f̃ B,C
α � −1/2 [24]. In the case where B = A

and C = Ā, Eq. (13) can be expressed in terms of the
symplectic eigenvalues f A

α of DA as [24]

EN
A,Ā = 2

∑
α

log2

(√
f A

α +
√

1 + f A
α

)
, (14)

which, like Eq. (8), is again a concave function of the f A
α .

B. Weakly correlated pure Gaussian states

We consider now the case of weakly correlated pure
Gaussian states, i.e., states in which the local symplectic
eigenvalues (those corresponding to a single mode A = i)

fi =
√(

1

2
+ F+

ii

)2

− |F−
ii |2 − 1

2
(15)

satisfy fi � 1, ∀ i, such that each mode is weakly entangled
with the rest of the system. In the local basis where F−

ii =
0 (this implies replacing bi → uibi − eiφvib

†
i , with ui,vi =√

F+
ii +1/2±(fi+1/2)

2fi+1 and φ the phase of F−
ii ), fi = F+

ii and weak

coupling implies, together with the positivity of D and F+,
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that |F+
ij | �

√
fifj � 1, |F−

ij |2 � Min[fi,fj ] + fifj � 1, ∀
i,j . In this limit, Eqs. (6) and (7) then lead, neglecting terms
proportional to (F−F̄−)2, to

F+ ≈ F−F̄−, (16)

which for a subsystem A implies

F+
A ≈ F−

A F̄−
A + F−

A,ĀF̄−
Ā,A. (17)

Using Eq. (17) and the results of Appendix A, the symplectic
eigenvalues of DA will then agree at this order with the
standard eigenvalues of the matrix

F+
A − F−

A F̄−
A ≈ F−

A,ĀF̄−
Ā,A, (18)

which are just the squares of the singular values σA,Ā
α of F−

A,Ā
(see Appendix B). We then obtain, at this order,

f A
α ≈ (

σA,Ā
α

)2
. (19)

Entanglement depends at this level just on the F− contractions
between A and Ā. For instance, in the case of a single site i,
Eq. (19) implies fi ≈ σ 2

i,ī
= ∑

j �=i |F−
ij |2. In this regime we

may just set h(x) ≈ −x log2(x/e) in Eq. (10), such that the
entanglement entropy becomes

EA,Ā ≈ −
∑

α

(
σA,Ā

α

)2
log2

[(
σA,Ā

α

)2/
e
]
. (20)

Considering now the negativity, in the present regime the
symplectic eigenvalues of D̃BC will be given at leading order
by the eigenvalues of (see Appendix A)

F̃+
BC − F̃−

BC
¯̃F−
BC ≈

(
ḠB F̄−

B,C
F−
C,B GC

)
, (21)

where, for S = B or C,

GS = F+
S − F−

S F̄−
S . (22)

For pure global states, Eq. (18) leads to GS ≈ F−
S,S̄ F̄−

S̄,S ,
indicating that GS takes into account the correlations with the
environment of S. Up to first order in F−

B,C , we may neglect its
second-order effect in GB̄ and GC in Eq. (21), such that

GB ≈ F−
B,BCF̄

−
BC,B, GC ≈ F−

C,BCF̄
−
BC,C (23)

depend just on the correlation with the environment of BC. If
the sites ofB and C correlated with each other have correlations
of the same order (or lower) with BC (i.e., ||F−

B,BC ||∞ and

||F−
C,BC ||∞ of the same order as ||F−

B,C ||∞, at least for the subsets
of B and C mutually correlated) we can directly neglect GB
and GC in Eq. (21) at order ||F−

B,C ||∞. The negative symplectic
eigenvalues of D̃B,C will then be given by minus the singular
values σB,C

α of F−
B,C (see Appendix B):

f̃ B,C
α ≈ −σB,C

α , (24)

which depend again just on the F− contractions between B
and C. For instance, this is the case of contiguous blocks in a
scenario of short-range couplings, and also that where C is the
complement of B (C = B̄).

In the general case, however, the whole matrix (21) should
be diagonalized. First-order corrections lead to

f̃ B,C
α ≈ −σB,C

α + [(ḠB)αα + (GC)αα]/2, (25)

where (ḠB)αα = U †
αḠBUα and (GC)αα = V †

αGBVα are the
diagonal elements in the local basis of B and C where
(F−

B,C)αα′ = σB,C
α δαα′ (see Appendix B). As GB and GC

are positive matrices in the approximations (22) and (23),
negative eigenvalues can arise only if (GB)αα and (GC)αα are
not much larger than σB,C

α . A sufficient condition ensuring a
negative eigenvalue f̃ B,C

α of Eq. (21) is

σB,C
α >

√
(ḠB)αα(GC)αα. (26)

In the present regime, the logarithmic negativity can be
obtained by setting g(x) ≈ −2 log2(e)x in Eq. (13), such that

EN
B,C ≈ −2 log2(e)

∑
f̃
B,C
α <0

f̃ B,C
α , (27)

i.e., EN
B,C ∝ ||F−

B,C ||1 in the approximation (24). For comple-
mentary subsystems (C = B̄ = Ā), it is verified that identity
between Eqs. (14) and (27) holds at leading order in the
approximation (19) [log2(σ + √

1 + σ 2) ≈ log2(e)σ ].

C. Ground-state correlation matrix in the weakly
interacting case

A particular case of the previous results arises when we
deal with the ground state of a Hamiltonian of the form (2).
For weak couplings �± � �, the diagonalizing symplectic
transformation W such that W†HW = � ⊕ �, with �αα′ =
δαα′ωα , can be evaluated perturbatively. At leading order (see
Appendix A) the block U in Eq. (4) is a unitary matrix that
diagonalizes � − �+, while

Viβ ≈
∑

α

Uiα

(U †�−U )αβ

ωα + ωβ

. (28)

Note that, in contrast with the conventional perturbation theory,
a possible degeneracy in the local energies λk will not spoil this
result if the system is stable (ωα > 0, ∀ α). Notice, however,
that U can depart considerably from the identity if the λk are
degenerate.

If all local bare energies are nearly equal (|λk − λj | �
λk + λj ≈ 2λ), and if energy corrections arising from �+ are
neglected (ωα ≈ λ), Eq. (28) reduces to V ≈ 1

2λ
�−Ū . In such

a case, Eq. (6) leads to

F− ≈ �−

2λ
, (29)

with F+ given by Eq. (16). In this regime, correlations are
hence proportional to the pairing couplings �−, decreasing
as λ−1 for increasing local energies. It is noteworthy that the
strength of the hopping interaction �+ does not affect the
ground-state correlations at this order. When nondegenerate,
it just affects F± dressing the bare pairing interactions.

In the same way, for a common local bare energy λ,
inclusion of second-order terms in the couplings leads to

F− ≈ �−

2λ
+ �+�− + �−�̄+

4λ2
. (30)

This expression is useful in the present scheme when the first-
order term vanishes (modes i,j are unconnected by �−). As
the counterterms GB and GC in Eq. (25) will be of second
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order in F− [Eq. (23)], subsystems unconnected by �− but
connected at second order through Eq. (30) may exhibit an
O(�/λ)2 nonzero negativity if Eq. (26) holds.

D. Area laws

The formulation of the area law for systems with local
interactions starts with the definition of a suitable measure for
the size of the boundary ∂A of the subsystemA [10,19,25]. An
example of such a measure is given by the number of pairs of
first-neighbor modes, with one mode belonging to A and the
other to Ā. If we define the matrix M with entries Mij = 1 if
modes i and j are first neighbors and 0 otherwise, that measure
can be written as

|∂A|2 =
∑
i∈A

nĀ
i = Tr[MA,ĀMĀ,A] = ||MA,Ā||22, (31)

where nĀ
i = (MA,ĀMĀ,A)ii is the number of first neighbors

of mode i in Ā. For the ground state of a gapped bosonic
system with constant and isotropic first-neighbor interactions
�±

ij = �±
2 Mij , Eq. (29) implies F−

ĀA ≈ �−
4λ

MĀA and Eqs. (19)
and (20) lead then to

EA,Ā ∝ |∂A|2, (32)

at leading order in �−/λ, which coincides exactly with the
result in Ref. [19] for noncritical harmonic systems.

The logarithmic negativity presents, however, a slightly
different behavior: for contiguous subsystems, the same
procedure and Eqs. (24)–(27) lead to

EN
A,Ā ∝ |∂A|1, (33)

where the boundary measure is now

|∂A|1 = Tr
√

MA,ĀMĀ,A = ||MA,Ā||1 =
∑

α

σ̃A,Ā
α , (34)

with σ̃A,Ā
α the singular values of the matrix MA,Ā [in

comparison, ||MA,Ā||22 = ∑
α(σ̃A,Ā

α )2]. If each site in Ā has
at most one neighbor in A (the opposite may not hold), the
rows of MA,Ā will be orthogonal and the singular values will

be σ̃
A,Ā
i =

√
nĀ

i , leading to

|∂A|1 =
∑
i∈A

√
(MA,Ā MĀ,A)ii =

∑
i∈A

√
nĀ

i , (35)

which will differ from Eq. (31) if nĀ
i > 1. In general, Eq. (35)

may provide a rough approximation to the area (34). Interest-
ingly, in an isotropic hypercubic lattice in d dimensions, the
approximation (35) is just proportional to the Euclidean area
for large planar surfaces, both parallel and tilted (with an angle
of π/4 with respect to the principal axes of the lattice), which
is not true in the tilted case for neither |∂A|2 nor |∂A|1 (see
the next section).

In general, for two contiguous subsystems B and C, the
previous expressions generalize to

EN
B,C ∝ |∂B ∩ ∂C|1, (36)

at leading order in λ, where

|∂B ∩ ∂C|1 = ||MB,C ||1 =
∑

α

σ̃B,C
α (37)

is a measure of the contacting area between B and C. Again,
if each mode in C is linked with at most one mode in B,

σ̃
B,C
i =

√
nC

i , where nC
i = (MB,CMC,B)ii is the number of first

neighbors of i in C.
Previous geometriclike expressions can of course be also

applied to a general constant coupling �−
ij = 1

2�−Mij , where
Mij = 1 if pairs i,j are linked by the coupling and 0 otherwise,
leading to effective areas |∂A|1 = ||MA,Ā||1 and |∂A|2 =
||MA,Ā||22. On the other hand, they cannot be directly applied
to higher-order effects, like those depending on Eq. (30), as
discussed in the next section.

III. EXAMPLES AND ASYMPTOTIC EXPRESSIONS

We will now use the present formalism to obtain analytic
asymptotic expressions for EA,Ā and EN

B,C̄ for typical sub-
systems A, B, and C of a two-dimensional lattice, which
will be compared with the exact numerical results and the
estimations (32)–(36). We first consider the ground state
of a bosonic square lattice with attractive first-neighbor
couplings

�±
i j = 1

2

∑
μ=x,y

�±
μ

(
δi, j+uμ

+ δi, j−uμ

)
where uμ denotes the unit vector along the μ axis. We have
considered in Figs. 1–6 the isotropic case �±

x = �±
y = �±,

with �−/�+ = 2/3, and a uniform single-mode energy λi =
λ. Away from the critical point λ = λc (where, for fixed �±,
the lowest energy ωα vanishes), the system is gapped and a
finite correlation length ξ < ∞ is expected. Approximately,
λc ≈ 2(�+ + |�−|) (an exact result for the cyclic case [24]).

A. Entanglement between complementary subsystems

We first consider the four global (A,Ā) bipartitions depicted
in Fig. 1. Equations (19), (24), and (29) lead to analytic

(a) (b)

(c) (d)

FIG. 1. (Color online) The complementary partitions considered
in Eqs. (42). (a) Single site, (b) square block parallel to the principal
lattice axes, (c) tilted square block, and (d) checkerboard.
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asymptotic expressions for the corresponding singular values
σA,Ā

α . At lowest order, their number is just the number of sites
at the border. Defining the basic single-link singular values

σμ = |�−
μ |/(4λ), μ = x,y,

in the case of a single site [Fig. 1(a)] we obtain

σi,ī ≈
√

2
(
σ 2

x + σ 2
y

)
. (38)

In the rectangular nx × ny block of Fig. 1(b) (parallel to
the principal axes), there are three different singular values,
corresponding to the horizontal and vertical sides and the four
corners, given below with their multiplicities:

(
σAĀ

α

)2 ≈

⎧⎪⎨
⎪⎩

σy, 2(nx − 2),
σx, 2(ny − 2),√

σ 2
x + σ 2

y , 4.

(39)

In the n × n square block of Fig. 1(c) tilted at 45o with
respect to the principal axes, we obtain, by means of
a discrete Fourier transform and neglecting corner effects
[see Eq. (C3)],

σ
A,Ā
k ≈

√
σ 2

x + σ 2
y + 2σxσy cos

2πk

m
, (40)

where k = 1, . . . ,m and m = 4n − 4 is the number of sites at
the border. Corner effects will affect essentially just four of
these eigenvalues with O(1) corrections.

Finally, in the checkerboard partition of Fig. 1(d), an exact
analytic expression for the nxny/2 singular values is available
in the cyclic case, again by means of a discrete Fourier
transform [see Eq. (41) in Ref. [29]]:

σ
A,Ā
k ≈ 2

∣∣∣∣∣
∑

μ=x,y

σμ cos
2πkμ

nμ

∣∣∣∣∣ , (41)

where k = (kx,ky) with kx = 1, . . . ,nx , ky = 1, . . . ,ny/2.
These expressions, together with Eqs. (19), (20), (24),

and (27), allow the asymptotic values of the entanglement
entropy and negativity of the present bipartitions for large
λ and n to be easily obtained. For instance, in the isotropic
case �±

μ = �± considered in the figures, setting σ = σμ and
neglecting corner and border effects (which just add terms of
relative order n−1), we obtain

Ea
i,ī

≈ −4σ 2 log2
4σ 2

e
, (42a)

Eb
A,Ā ≈ −4nσ 2 log2

σ 2

e
, (42b)

Ec
A,Ā ≈ −8nσ 2 log2 σ 2 = −(4n)2σ 2 log2

(
e

2

2σ 2

e

)
,

(42c)

Ed
A,Ā ≈ −2n2 log2(σ 2e) = −

(
n2

2

)
4σ 2 log2

(
e2

4

4σ 2

e

)
(42d)

for the entanglement entropy of the single mode, the parallel
and tilted n × n square blocks, and the n × n checkerboard of
Fig. 1. We have replaced sums over k in Eqs. (42c) and (42d)
by integrals [

∑n
k=1 f ( 2πk

n
) ≈ n

2π

∫ 2π

0 f (u)du]. Note that in the

checkerboard case the entanglement entropy scales with the
“volume” n2 of A rather than the “area” n, since all links are
broken by the partition (maximally entangled bipartition [29]).

The corresponding values of the scaled logarithmic nega-
tivity ẼN

A,Ā = EN
A,Ā/[2 log2(e)] are

ẼN a
i,ī

≈ 2σ =
√

4σ, (43a)

ẼN b
A,Ā ≈ 4nσ, (43b)

ẼN c
A,Ā ≈ 16

π
nσ = (4n)

√
2

2
√

2

π
σ, (43c)

ẼN d
A,Ā ≈ 8n2

π2
σ =

(
n2

2

) √
4

(
2
√

2

π

)2

σ . (43d)

The last expressions in Eqs. (42) and (43) indicate the way to
read them. They are of the form

EA,Ā ≈ −Lm σ 2 log2

(
αj mσ 2

e

)
, (44)

ẼN
A,Ā ≈ L

√
m βjσ , (45)

where L is the number of modes at the border of A (L =
1,4n,4n,n2/2), m is the number of connections with the
environment Ā per mode at the border (m = 4,1,2,4), i.e.,
the number of links per mode broken by the partition, and
αj ,βj , with α = e/2 ≈ 1.36, β = 2

√
2/π ≈ 0.9, are geomet-

ric correction factors for the tilted (j = 1) and checkerboard
(j = 2) cases (j = 0 for the single mode and parallel square).
We can easily identify from Eqs. (44) and (45) the boundary
measures of Eqs. (32) and (33):

|∂A|2 = Lm, |∂A|1 = L
√

mβj . (46)

Comparison with the exact numerical results (Fig. 2)
indicate that all these asymptotic expressions are actually quite
accurate already for λ � 4λc. The scaling of EN

A,Ā with the
area |∂A|1 rather than |∂A|2 is clearly verified. Moreover,
this scaling is more accurate than that of the entanglement
entropy EA,Ā with |∂A|2, since the latter contains in Figs. 1(c)
and 1(d) an additional geometric correction Lm log2(αjm)σ 2

[Eq. (44)], not comprised in Eq. (32). Note also that in the case
of the tilted block, |∂A|2 = 2L and |∂A|1 = L

√
2β = (4/π )L

are, respectively, larger and smaller (90%) than the geometric
perimeter

√
2L.

We may also rapidly determine with Eqs. (39), (44),
and (45) the corner effects in the case of Fig. 1(b). The actual
asymptotic expressions for the finite n × n parallel block are

Eb
A,Ā ≈ −4(n − 1)σ 2 log2

σ 2

e
− 4σ 2 log2

4σ 2

e
, (47)

ẼN b
A,Ā ≈ 4(n − 1)σ + 4(

√
2 − 1)σ, (48)

where the first term is proportional to the number of sites at
the border, 4(n − 1), and the second represents the positive
correction arising from the four corners, reflecting their
increased coupling with the environment Ā.

B. Noncomplementary subsystems

Let us now consider the noncomplementary subsystems of
Fig. 3. For contiguous parallel blocks contacting at n sites,
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0.10
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λ/λc

EA,Ā
|A|2

EN
A,Ā
|A|2

EN
A,Ā
|A|1

FIG. 2. (Color online) Exact and asymptotic [Eqs. (42) and (43)]
results for the scaled entanglement entropy EA,Ā (top) and logarithmic
negativity EN

A,Ā (center and bottom) of the four bipartitions (a), (b),
(c), and (d) of Fig. 1, as functions of the ratio λ/λc. In the top and
central panels results were scaled with the boundary measure |∂A|2
[4,4n,8n,2n2 in (a),(b),(c),(d), according to Eqs. (31)–(46)], which is
seen to provide an adequate scaling for EA,Ā but not EN

A,Ā. The latter
scales accurately with the measure |∂A|1 [2,4n,(16/π )n,8n2/π 2

according to Eqs. (34)–(46)], as verified in the bottom panel. Results
correspond to a 30 × 30 lattice with �−/�+ = 2/3 and 10 × 10
blocks in (b) and (c).

F−
B,C has n identical singular values

σB,C
α = σx. (49)

In the case of contiguous blocks with contacting surfaces
tilted at 45o with respect to the principal axes, we obtain,
neglecting edge effects, the same expression (40) for the
σ
B,C
k , with m replaced by the number of contacting sites n

and k = 1, . . . ,n. In the isotropic case we then obtain, using
Eqs. (24)–(27),

ẼNa
B,C̄ ≈ nσ, (50)

ẼNb
B,C̄ ≈ 4

π
nσ = n

√
2

2
√

2

π
σ, (51)

for the logarithmic negativity of parallel and tilted contigu-
ous blocks, which are clearly of the form (45) or (33):

(a) (b)

(c) (d)

FIG. 3. (Color online) Noncomplementary subsystems: Contigu-
ous (top) and one-site-separated (bottom) blocks, with contacting
sides parallel (left) and tilted (right) with respect to the principal
axes. The negativity and its size dependence are determined by both
the separation and slope of the contacting boundary.

|∂B ∩ ∂C|1 = n and 4n/π , respectively. Tilted boundary sur-
faces exhibit a larger entanglement per contacting site due to
the increased connectivity.

In the case of blocks separated by one site, we should use
instead the full Eq. (25) with the second-order expression (30).
For parallel blocks with n sites at separation s = 1, the n

negative eigenvalues of the matrix (21) become, neglecting
edge effects and setting σ+

μ = |�+
μ |/(4λ),

f̃ B,C
α ≈ −(

2σ+
x σx − σ 2

x

)
. (52)

For blocks separated by one site through a 45o tilted surface of
n modes, a discrete Fourier transform leads, neglecting edge
effects, to [see Eq. (C3)]

f̃
B,C
k ≈ −

{
2

[
α2

xy + α2
x + α2

y + 2αxy(αx + αy) cos
2πk

n

+ 2αxαy cos
4πk

n

]1/2

− σ 2
k

}
, (53)

where αμ = σ+
μ σμ, αx,y = σ+

x σy + σ+
y σx , and σk denotes the

expression (40) for m = n. In the isotropic case, Eq. (53)
becomes just 4σ (2σ+ − σ ) cos2 πk

n
. For the parallel and tilted

subsystems of Figs. 3(c) and 3(d) we then obtain, replacing
sums by integrals and assuming σ � 2σ+,

ẼN c
B,C̄ ≈ nσ (2σ+ − σ ), (54a)

ẼNd
B,C̄ ≈ 2nσ (2σ+ − σ ). (54b)

Hence, the logarithmic negativity of the tilted case is, remark-
ably, twice that of parallel blocks when separated by one site,
instead of 4/π ≈ 1.27 as in the contiguous case (Fig. 4). Since
they are a second-order effect, Eqs. (54) are not of the form (45)
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0
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c)
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asymp. b)
asymp. c)
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0

1
4/π

2

1 2 3 4 5 6 7 8 9
λ/λc

s=0
s=1

EN
B,C

EN
tilted

EN
parallel

FIG. 4. (Color online) Top: Exact and asymptotic logarithmic
negativities [Eqs. (50) and (51)] for subsystems of the type of Fig. 3
(for 10 × 10 blocks) as functions of λ/λc. Tilted blocks exhibit a
larger negativity per contacting site. Bottom: The ratio of tilted to
parallel logarithmic negativities for separations s = 0 (a),(b) and 1
(c),(d). It is asymptotically 4/π in the contiguous case and 2 for
one-site separation.

but rather

ẼN
B,C̄ ≈ Lmσ (2σ+ − σ ), (55)

if m is again the number of connections with the environment
per mode. They scale, therefore, with the measure |∂A|2
(Fig. 5). For larger separations s the negativity vanishes at
second order in �/λ, as F−

B,C will be of higher order while the
counterterms GB and GC remain of second order for sites at
the surface. Consequently, the negativity becomes vanishingly
small for s � 2.

We finally remark that previous expressions are indepen-
dent (at leading order) of the width d of the blocks (assumed
finite), provided d � 2. In the case of two lines (d = 1,
Fig. 6), the extra interaction with the environment at the other
side of the line leads to an additional negative second-order
contribution in Eq. (26). Hence, while it can be neglected in
the case of contiguous lines, it will double the negative term
in Eqs. (54) in the case of lines separated by one site, leading
to the lower values

ẼN e
B,C̄ ≈ nσ (2σ+ − 2σ ), (56a)

ẼNf

B,C̄ ≈ 2nσ (2σ+ − 2σ ), (56b)

which are now valid for σ � σ+. In this case the negativity
will vanish at second order if σ > σ+. Edge effects in
Eqs. (54)–(56) are also of second order and lead, using Eq. (25),
to a negative correction −2σ 2.

All present expressions can be directly extended to three
dimensions if the present subsystems are extended parallelwise
along the z axis, replacing n by nnz.

0.00

0.05

0.10

0.15

asymp. tilted
asymp. parallel

tilted n=14
         10
          4

parallel n=14
           10
            4

0.0

0.1

2 4 6 8
λ/λc

0.00

0.01

1 2 3 4 5 6 7 8
λ/λc

asymp. tilted
asymp. parallel

tilted  n=14
          10
           4

parallel n=14
           10
            4

0.00

0.01

2 4 6 8
λ/λc

EN
B,C

|A|1
EN
B,C

|A|2

EN
B,C

|A|1
EN
B,C

|A|2

FIG. 5. (Color online) Top: Asymptotic and exact values of the
logarithmic negativity of two contiguous n × n blocks with parallel
and tilted boundary surfaces, scaled with |∂A|1 in the main panel and
|∂A|2 in the inset, with ∂A = ∂B ∩ ∂C. Bottom: Same details for two
blocks separated by one site. The appropriate scaling is verified to be
|∂A|1 in the top panel and |∂A|2 in the bottom panel.

C. The fully connected case

The evaluation of singular values is also straightforward in
the opposite case of a fully and uniformly connected system
of n modes [24,30–32] (Lipkin-Meshkov-Glick (LMG)-type
model [23]), where

�±
i j = (1 − δi j )

�±

n − 1
. (57)

Here we can also compare with the full exact results, since it is
exactly and analytically solvable [24,31]. The present system
can be used to describe entanglement between systems whose
separation is small in comparison with the correlation length.

In the present case, the matrices F±
ij are obviously constant

for i �= j , i.e.,

F±
i j = F±

0 δi j + F±
1 , (58)

and the entanglement between disjoint subsystems B and C
will just depend on the number of sites in B and in C, being
independent of their separation or shape. The matrix F−

B,C will
then have just a single nonzero singular value, for all disjoint
B,C, namely (see Appendix C),

σB,C = √
nBnC |F−

1 |. (59)
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FIG. 6. (Color online) Top: Parallel and tilted lines separated
by one site. Due to the extra interaction with the environment,
the associated negativity [Eqs. (56)] is lower than that of the
corresponding blocks of Figs. 3(c) and 3(d) [Eqs. (54)], as can be
seen in the bottom panels for the parallel case.

In the approximation (19) we then obtain a single nonzero
symplectic eigenvalue for any global bipartition A,Ā,

f A ≈ nAnĀ(F−
1 )2, (60)

where nĀ = n − nA, leading to

EA,Ā ≈ −nAnĀ|F−
1 |2 log2[nAnĀ(F−

1 )2/e],

which corresponds to an area |∂A|2 = nAnĀ in Eq. (32) (here
Mij = 1 for i �= j ).

Similarly, we obtain a single negative symplectic eigenvalue
for any pair of subsystems B,C, given by Eq. (59) or, in the
complete approximation (21)–(25), by

f̃ B,C ≈ −√
nBnC |F−

1 | + 1
2 |F−

1 |2(nBnB̄ + nCnC̄), (61)

with EN
B,C = −f̃B,C . The second term in Eq. (61) becomes

important for small subsystems in a large environment
(nB,nC � n). Otherwise it can be neglected, in which case (61)
corresponds to |∂A|1 = √

nBnC in Eqs. (33)–(36). For the
scaling (57), F−

1 is proportional to n−1, so that Eqs. (59)–(61)
remain finite for large n. The scaling is then again as in
Eqs. (44) and (45) with L = 1, j = 0, and m = nAnĀ for
global partitions or m = nBnC for a pair of subsystems.

The previous picture is, remarkably, also that of the
exact treatment, where there is a single nonzero symplectic
eigenvalue f A for any subsystem A, given by

f A =
√

1

4
+ F+

1 nAnĀ/n − 1

2
, (62)

(see Ref. [24] and Appendix C). Here we have used the local
basis where F±

0 = 0 in Eq. (57), in which case Eq. (7) leads to

F+
1

2 + F+
1 /n = (F−

1 )2.

A first-order expansion of Eq. (62) in F+
1 leads then to f A ≈

F+
1 nAnĀ/n, which coincides with Eq. (60) since for weak

coupling F+
1 /n ≈ (F−

1 )2.
In the same way, the exact partial transpose of DBC has a

single negative symplectic eigenvalue [24]

f̃ B,C =
√

1

4
+ γB,CF

+
1 −

√
F+

1

(
βB,C + γ 2

B,CF
+
1

) − 1

2
,

(63)

where βB,C = nBnC/n and γB,C = 1
2 (nB + nC)(n − nB −

nC)/n + 2βB,C (see Appendix C). Expansion of Eq. (63) up to
first order in F+

1 leads then exactly to Eq. (61), setting F+
1 ≈

n(F−
1 )2. The present approximate scheme then allows one to

immediately determine the weak-coupling expressions (60)
and (61) and to rapidly identify their behavior with sizes
nA,nB,nC . The exact value of F±

1 [to be inserted in Eqs. (62)
and (63)] is given in Appendix C [Eq. (C4)]. Up to first order
in �− we obtain F−

1 ≈ �−
2(n−1)λ .

IV. CONCLUSIONS

We have shown how entanglement properties of weakly
correlated Gaussian states can be recast in terms of the singular
values of a sub-block of the generalized contraction matrix
associated with the state. This allows us to obtain in a quite
simple way analytic expressions for both the entanglement en-
tropy between complementary subsystems and the logarithmic
negativity for noncomplementary subsystems, which imply
distinct area laws for these two quantities in the case of short-
range or constant couplings. Several illustrative examples
were considered, which show the dependence of these laws
on the geometry, connectivity, and separation between the
subsystems. A final comment is that through application of the
bosonic random-phase approximation formalism [24,29,33]
or other bosonization treatments [23,31], the present scheme
can be applied to weakly interacting spin systems. Moreover,
it can in principle also be implemented in phases exhibiting
symmetry breaking at the mean-field level (i.e., fields below
the critical field in attractive XY or XYZ chains) away from
the critical field, provided the proper multiplicity corrections
accounting for the different degenerate mean fields [24] are
taken into account. Such an application is currently being
investigated.
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APPENDIX A: PERTURBATIVE EXPANSIONS FOR THE
SYMPLECTIC EIGENVALUE PROBLEM

In this work we have used perturbative results which are
not necessarily trivial and which can be obtained following
techniques similar to those employed in the perturbative
diagonalization of the Dirac equation. We start with the
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symplectic diagonalization of the contraction matrix DA of
a subsystem A, which leads to the system

F+
A Uf − F−

A Vf = f Uf , (A1)

F̄−
A Uf − (1 + F̄+

A )V̄f = f V̄f , (A2)

where (
Uf

V̄f
) is the symplectic eigenvector associated with the

eigenvalue f . Equation (A2) allows us to write Vf as

V̄f = [1(1 + f ) + F̄+
A ]−1F̄−

A Uf . (A3)

Replacing (A3) in Eq. (A1) leads to the equivalent nonlinear
reduced diagonalization problem

{F+
A − F−

A [1(1 + f ) + F̄+
A ]−1F̄−

A }Uf = f Uf .

For small F±, in agreement with the hypothesis that the state
is weakly correlated, the symplectic eigenvalues f are small.
Hence, at leading order V̄f ≈ F̄−

A Uf and we obtain the reduced
standard eigenvalue equation

(F+
A − F−

A F̄−
A )Uf = f Uf , (A4)

which leads to Eq. (18) and implies Eq. (21). If A is the whole
system and the latter is assumed to be in the ground state of
H , all f vanish and the relation F+ ≈ F−F̄− [Eq. (16)] is
obtained.

Let us now consider the Hamiltonian (2). The symplectic
diagonalization of H entails the standard diagonalization of
MH and leads to the system

(� − �+)Uω − �−V̄ω = ωUω, (A5)

�̄−Uω − (� − �̄+)V̄ω = ωV̄ω. (A6)

In this case, ‖�−‖∞ is considered small. For a positive
eigenvalue, the zero-order approximation is obtained by
neglecting all terms proportional to �− and V̄ω, which are
assumed small in comparison with Uω, ω, and � − �+. It
leads to (� − �+)Uω = ω Uω, which is a standard Hermitian
eigenvalue equation for Uω. We then obtain

V̄ω = (� − �̄+ + ω1)−1�̄−Uω (A7)

≈ U ∗(� + ω1)−1Ut�̄−Uω (A8)

[Eq. (28)], where we have written � − �+ ≈ U�U †, with
� = diag(ωα) the diagonal matrix of eigenvalues. It should be
noticed that if � is degenerate, �+ will affect U considerably
even if small. Ground-state entanglement will remain small,
however, since it depends on V . It can also be easily seen
that expansion of Eq. (A7) up to second order in �± leads to
Eq. (30).

APPENDIX B: SINGULAR VALUES

The singular values σα of an arbitrary m × n matrix A

are the square roots of the nonzero eigenvalues of AA† or
equivalently A†A, which are both positive matrices with the
same nonzero eigenvalues. The singular value decomposition
implies the existence of unitary matrices U ,V such that
A = UDV †, with D a diagonal matrix with diagonal elements
σα or 0, and U ,V unitary eigenvector matrices of AA†

and A†A: AA†U = UDD†, A†AV = V D†D, i.e., AA†Uα =
σ 2

αUα , A†AVα = σ 2
αVα for the nonzero eigenvalues σα , with

Vα = A†Uα/σα . For a Hermitian A, σα = |λα|, with λα the
(nonzero) eigenvalues of A.

The singular values determine the matrix m norm of A used
in this work, defined as

||A||m = [Tr(A†A)m/2]1/m =
(∑

α

σm
α

)1/m

. (B1)

||A||1 is the trace norm, ||A||2 the standard Hilbert-Schmidt
norm, and ||A||∞ the spectral norm, which is just the largest
singular value.

The singular values σα of A also determine the nonzero
eigenvalues of the Hermitian (m + n) × (m + n) matrix

B =
(

0 A

A† 0

)
, (B2)

which are ±σα , since B2 = (AA† 0
0 A†A

) has eigenvalues σ 2
α .

The eigenvalues ±σα correspond to normalized eigenvectors
( Uα

±Vα
)/

√
2, with AA†Uα = σ 2

αUα , Vα = A†Uα/σα and U †
αUβ =

δαβ , V †
αVβ = δαβ .

These results first imply that the nonzero eigenvalues of the
matrix (18) are the squares of the singular values σA,Ā

α of F−
A,Ā,

as F̄−
Ā,A = (F−

A,Ā)†, implying σA,Ā
α = σ Ā,A

α . They also entail
that the negative eigenvalues of the matrix (21) are minus the
singular values σB,C

α = σ C,B
α of F−

B,C , when ḠB and GC are
neglected.

APPENDIX C: EVALUATION OF SINGULAR VALUES

In the first-order approximation (29), the matrix F−
B,C for

first-neighbor couplings and disjoint contiguous blocks B and
C with n contacting sites has elements of the form

(F−
B,C)ij = f (j − i) (C1)

if the sites are adequately ordered, where f (l) = δl0σμ⊥ for
parallel and f (l) = σxδl0 + σyδl1 for tilted blocks.

For blocks separated by one site, we should use the second-
order approximation (30), which leads again to a matrix of
the form (C1), with f (l) = 2δl0σ

+σ for parallel blocks and
f (l) = 2[σ+

x σxδl0 + (σ+
x σy + σ+

y σx)δl1 + σ+
y σyδl2] for tilted

blocks. In all previous cases, F−
B,CF̄

−
C,B is a Hermitian matrix

with elements of the form

(F−
B,CF̄

−
C,B)ij =

∑
k

f (k − i)f̄ (k − j ) = g(i − j ), (C2)

if edge effects are neglected, where g(l) = ∑
k f (k)f̄ (k +

l) = ḡ(−l). Such a matrix can then be exactly diagonalized
(neglecting edge effects) by a discrete Fourier transform
[32], leading to eigenvalues σ 2

k = ∑
l g(l)ei2πkl/n, where k =

0, . . . ,n − 1 and n is its dimension [this result is exact if
g(−l) = g(n − l)]. For real g(l), as in the previous cases, we
then obtain

σ 2
k = g(0) + 2

∑
l>0

g(l) cos
2πk

n
, (C3)

which leads to Eqs. (40)–(53) [in the case of C = Ā with A
the tilted block, the final matrix F−

A,ĀF̄−
Ā,A is again of the

form (C2)].
In the fully connected case, the exact singular values (59)

arise immediately as the matrix F−
B,C is just a rank-1 constant
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matrix, i.e., F−
B,C = c, ∀ i,j , which therefore has a unique

nonzero singular value σ = √
nBnC |c|: F−

B,CF̄
−
C,B is an nB × nB

rank-1 matrix with constant elements nC |c|2, whose unique
nonzero eigenvalue is nBnC |c|2 due to trace conservation.

The full exact symplectic diagonalization can also
be performed (see the Appendix in Ref. [24] for de-
tails). We quote here the exact symplectic eigenvalues
of the reduced state of L sites for the couplings (57):

σ1 =
√

(F+
0 + LF+

1 + 1
2 )2 − (F−

0 + LF−
1 )2 − 1

2 and σ0 =√
(F+

0 + 1
2 )2 − (F−

0 )2 − 1
2 [(L − 1)-fold degenerate]. For a

pure global state, σ0 = 0. In the local basis where F−
0 = 0,

this implies F+
0 = 0, which leads to Eq. (62). In the same

way, we obtain Eq. (63). The exact value of the present F+
1

was also evaluated in Ref. [24] in terms of a parameter �

[F+
1 = �/(2n)]:

F+
1 = n(λ2 − ω̄2)

4(n − 1)ω0ω1
, (C4)

where ω̄ = ω0+(n−1)ω1
n

, ω0 = √
(λ − �x)(λ − �y), and ω1 =√

(λ + �x

n−1 )(λ + �y

n−1 ), with �± = (�x ± �y)/2.
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