
PHYSICAL REVIEW C 86, 024602 (2012)

Analyticity of the time dependence of resonance poles: Solving the Friedrichs model with a
time-dependent interaction
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We extend the standard Friedrichs model with an extra term that includes time-dependent interactions. The
time dependence of the poles of the reduced resolvent of the model is explicitly calculated. It is found that these
poles behave as analytical functions of the added time-dependent interaction. The present results are compared
with the ones reported by Kälbermann, concerning the assisted tunnelling of α particles.
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I. INTRODUCTION

The study of the physical and mathematical aspects of
resonance poles has been the subject of continuous effort since
the physical consequences of their existence were dramatically
stressed by Gamow in the earlier days of quantum mechanics
[1]. In the modern literature, the role of resonance poles in
scattering of particles by nuclei and in the decay of nuclei
has been analyzed intensively [2–4]. The connection between
mathematical [5] and physical formulations of the problem
was investigated in Ref. [6] and further explored in a series of
papers by several authors [7–11]. Relevant applications of the
concept of resonance poles in nuclear structure and nuclear
reactions can be found in Refs. [3,12,13].

Generally speaking, the concept of resonance poles is tied
up to the S-matrix formalism [5,14,15]. The Hamiltonian
formulation is, perhaps, better presented in the model of
Friedrichs [16]. For a detailed discussion of this model and
its solutions the reader is kindly referred to a recent review
article [17].

Further generalizations of the Friedrichs model, with
applications to nuclear physics, have been introduced in
Refs. [18,19].

In this work we shall address, from a mathematical oriented
view, the question of the enhancement (or hindrance) of the
resonant structure of a state, as suggested by Kälbermann
[20,21]. In these papers, Kälbermann has discussed, based on
numerical analysis, the assisted tunneling of a wave packet
between square barriers, and concluded that the tunneling
probability is enhanced by the perturbation [20,21].

In order to verify this finding, we shall frame the questions
raised in Refs. [20,21] in the language of the Friedrichs
model. We shall add, to the standard Friedrichs model, a
time-dependent interaction, and feature the solutions in terms
of the parameters of such an interaction. The aim of the
paper is, therefore, to probe the conditions under which a
resonance can be modified by the interaction with external
potentials (or fields), without depending much on the detail of
the interactions.

The present paper is organized as follows. In Sec. II we
review, for the benefit of the readers, the elements entering
the standard Friedrichs model. Section III is devoted to
the mathematical formulation of a one-dimensional model,

corresponding to a finite square well to which we have added
a delta-force-type interaction. Although this is a particular and
very specific model, it shows that the enhancement or reduction
of the lifetime depends solely on certain parameters of the
added interaction. Section IV describes the extension of the
Friedrichs model, which we have developed to accommodate a
time-dependent interaction. Finally, our conclusions are drawn
in Sec. V.

II. FORMALISM

The basic Friedrichs model is the simplest nontrivial exactly
solvable test model for resonances [16]. It admits rather simple
generalizations that may be used as excellent tools to test
a resonance behavior with a wide sort of interactions. For
instance, we have used it in the past in order to study couplings
of fermions with bosons and boson fields [6,19]. A presentation
of some of the most relevant generalizations of this model is
given in Ref. [17].

A brief description of the Friedrichs model is presented
here for the sake of completeness. This description is given
in the energy representation, so that dimensional problems
are avoided. As in any process producing resonances one has
two Hamiltonians: a free or unperturbed Hamiltonian H0 and
a total or perturbed Hamiltonian H = H0 + λV , where V is
the potential describing the interaction and λ is a coupling
constant, which is usually chosen positive. H0 has a simple
continuous spectrum given by R+ = [0,∞) and a bound
state with energy ω0 > 0. The potential V intertwines the
discrete and continuous spectrum of H0. This interaction can
be regarded as an interaction between a discrete boson and a
boson field. Thus, in the energy representation, we can write

H0 = ω0|1〉〈1| +
∫ ∞

0
ω|ω〉〈ω| dω,

(1)

V =
∫ ∞

0
f (ω)[|ω〉〈1| + |1〉〈ω|] dω.

Here, H0|1〉 = ω0|1〉, H0|ω〉 = ω|ω〉, with ω ∈ [0,∞), and
f (ω) is a given function, hereafter referred to as the “form
factor” of the interaction V .
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Note that the eigenvalue of H0 is embedded in its continuous
spectrum. As a consequence of the interaction, the bound state
is dissolved in the continuum and a resonance is produced.
In order to obtain the resonances, we consider the restricted
resolvent

1

η(z)
= 〈1| 1

H − z
|1〉, η(z) = z − ω0 − λ2

∫ ∞

0

|f (ω)|2
z − ω

dω.

(2)

The function η(z) is analytic and it admits a branch cut
coinciding with the positive semiaxis [0,∞) and can be
analytically continued through the cut, both from above to
below and from below to above. Resonances are precisely
the zeros of these analytic continuations, which appear in
complex conjugate pairs. Each pair determines one and only
one resonance. In the basic Friedrichs model that we are
describing here, there is only one pair of resonant zeros usually
of simple multiplicity. The boundary values on the positive
semiaxis are respectively given by

η±(x) = x − ω0 − λ2
∫ ∞

0

|f (ω)|2
x − ω ± i0

dω. (3)

The interacting Hamiltonian H = H0 + λV possesses a
simple continuous spectrum coinciding with the positive
semiaxis R+ = [0,∞). Corresponding to the “in” and “out”
states of scattering theory, there is a pair of complete sets of
eigenvectors of H , usually denoted as |ω−〉 and |ω+〉, so that

H =
∫ ∞

0
ω|ω±〉〈ω±| dω, (4)

where H |ω±〉 = ω|ω±〉. Vectors |ω±〉 are called the in and
the out eigenkets of H . They can be written in terms of the
eigenvectors |1〉 and |ω〉 of the unperturbed Hamiltonian H0

as [7]

|ω±〉 = |ω〉 + λf (ω)

η±(ω)

(
|1〉 +

∫ ∞

0
dω′ λf (ω′)

ω − ω′ ± i0
|ω′〉

)
.

(5)

The Friedrichs model admits a well defined S matrix [22],
and the poles of the analytic continuation of the S matrix
through the positive semiaxis coincide with the zeros of
the continuation of η(z). Thus, poles of the S matrix and
poles of the reduced resolvent coincide for the Friedrichs
model. Both types of poles are taken as usual definitions for
resonance poles. They are located at the conjugate complex
numbers zR = ED − i�/2 and z∗

R = ED + i�/2, where ED

is the resonant energy and � the width. The Gamow vectors
ψD and ψG are the eigenvectors (in a generalized sense, see
Ref. [6]) of H with eigenvalues zR and z∗

R , i.e., HψD = zRψD

and HψG = z∗
RψG, respectively. The explicit form for these

vectors in the Friedrichs model is given by the expressions

ψD = |1〉 +
∫ ∞

0

λf (ω) dω

zR − ω + i0
|ω〉 dω, (6)

ψG = |1〉 +
∫ ∞

0

λf (ω) dω

z∗
R − ω − i0

|ω〉 dω. (7)

Both ψD and ψG are usually taken as the vector state for the
resonance. Note that neither ψD nor ψG can be normalized in
the usual sense. The meaning of the ±i0 factor which appears
in the denominators of Eqs. (6) and (7) is standard in the theory
of distributions.

III. A FINITE SQUARE-WELL POTENTIAL PLUS
A DIRAC DELTA

Let us consider a finite one-dimensional square well with
a hard core at the origin plus a Dirac delta located beyond the
well. The Hamiltonian of the system has the following form:

H = − h̄2

2m

d2

dx2
+ V (x) + γ δ(x − c), (8)

with

V (x) =

⎧⎪⎨
⎪⎩

0 if 0 < x < a,

U0 > 0 if a � x � b,

0 if b > 0,

(9)

and c > b.
Our goal is to compare the width of the lowest energy

resonance without the presence of the perturbation in (8), in
this case represented by the delta interaction, to the same
results when we have included the delta interaction. Note
that, in principle, the contribution of the delta could be either
repulsive γ > 0 or attractive γ < 0. In the latter case, it appears
another resonance due to the delta that we are not going to
consider. The situation without the delta has been studied for
instance in [23]. Here, we made a similar analysis including
the last term in (8).

Then, the positive semiaxis can be divided into four
intervals [0, a], [a, b], [b, c] and [c,∞], that we denote as
I, II, III, and IV intervals, respectively, for which the wave
function has the following form:

ψI (x) = Ã sin(kx), 0 < x < a,

ψII (x) = B̃e−Qx + C̃eQx, a < x < b,
(10)

ψIII (x) = D̃eikc + Ẽe−ikc, b < x < c,

ψIV (x) = F̃ eikx, x > c.

Here,

k =
√

2m

h̄2 E, Q =
√

2m

h̄2 (U0 − E), E = ED − i
�

2
,

(11)

where ED represents the resonant energy and � is the width.
For the determination of the resonances, we applied the

so called purely outgoing boundary conditions according to
which for the values of k for which we find a resonance there
is no incoming wave.

At the points a and b we apply the standard matching
conditions, i.e., continuity of the wave function and its
derivative. At the point c we impose the continuity of the
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wave function and

ψ ′
IV (c) − ψ ′

III (c)

= γψIV (c) ⇐⇒ ikF̃ eikc − ikD̃eikc + ikẼe−ikc

= γ F̃ eikc. (12)

Then, we write Ẽ and D̃ in terms of Ã and F̃ . After some
cumbersome although straightforward calculation, this gives
two expressions of F̃ in terms of Ã:

F̃ = − e−ikb

2ik − γ

1

2Q
{e−Q(b−a) (Q − ik)[Q sin(ka)

− k cos(ka)] − eQ(b−a)(Q + ik)[Q sin ka

+ k cos(ka)]}Ã, (13)

F̃ = eikbe−2ikc

γ

1

2Q
{e−Q(b−a) (Q + ik)[Q sin(ka)

− k cos(ka)] − eQ(b−a) (Q − ik)[Q sin(ka)

+ k cos(ka)]}Ã. (14)

Both expressions must be identical, which after some manip-
ulations gives[

Q

k
tan(ka) + 1

][
e−2ikbe−2ikcγ

γ − 2ik

Q + ik

Q − ik
− 1

]

= e−2Q(b−a)

[
Q

k
tan(ka) − 1

][
e−2ikbe−2ikcγ

γ − 2ik
− Q + ik

Q − ik

]
.

(15)

A similar analysis was made in Refs. [23] and [24]. In
both references the authors have considered the Hamiltonian
given in Eq. (8) with; that is, without the inclusion of a Dirac-
delta term. Then, the resulting consistency equation is written
[23,24][

Q

k
tan(ka) + 1

]
= e−2Q(b−a)

[
Q

k
tan(ka) − 1

][
Q + ik

Q − ik

]
.

(16)

which is precisely the value of Eq. (15) in the limit γ = 0.
Then, we define

k0 :=
√

2m

h̄2 ED, Q0 :=
√

2m

h̄2 (U0 − ED) (17)

and write the following expressions in the first order of �:

e−2ik(b+c) = 1 − 2i(b + c)

(
k0 − im�

2h̄2k0

)
, (18)

1

γ − 2ik
= 1

γ

[
1

1 − 2ik
γ

]
= 1

γ

[
1 + 2i

γ

(
k0 − im�

2h̄2k0

)]
,

(19)

and

Q + ik

Q − ik
= (Q + ik)2

Q2 + k2

 (Q0 + ik0)2

Q2
0 + k2

0

. (20)

In order to make our analysis computationally simpler we
make the following approximations, which are reasonable due
to the specific form of the potential well: i) U0 � ED , so that

the resonant energy is much smaller than the barrier height,
this directly implies that Q0 � k0 and that Q2

0 + k2
0 
 Q2

0, and
ii) we assume that the barrier width is large, so that Q0(b −
a) � 0. As a consequence of the latter assumption the system
can be considered as quasi stationary [23,24]. From (15), this
shows that 1 + (Q0/k0) tan(k0a) 
 0. Carrying out all these
approximations into (15), we obtain the following expression:(

Q0a

k0 cos2(k0a)
− Q0 tan(k0a)

k2
0

)(−m�

2h̄2k0

)

= e−2Q0(b−a)

[
Q0

k0
tan(k0a) − 1

][
2Q0k0

Q2
0 + k2

0

+ γB0

]
, (21)

with

2k0Q0B0 = 2Q0k0 cos[2k0(b + c)] − Q0 sin[2k0(b + c)]

+Q2
0 cos[2k0(b + c)] + 4Q2

0k
2
0 sin[2k0(b + c)].

(22)

Equation (21) differs from the similar result obtained in
Refs. [23] and [24] in the term in γB0. We observe that this
term is oscillating and that it depends on b and c, i.e., the end
of the barrier and the point supporting the delta interaction.

Equation (21) gives the following approximation for the
width of the resonances fulfilling the considered conditions:

� 
 4k2
0h̄

2

(Q0a + 1)m
e−2Q0(b−a)

[
2k0

Q0
+ γB0

]
. (23)

Note that the quasistationarity gives k0 
 (πn)/a, which
implies that Q0a 
 (Q0nπ )/k0 � 1, since n �= 0. Then,
Eq. (23) takes its final form as

� 
 4k2
0h̄

2

mQ0a
e−2Q0(b−a)

[
2k0

Q0
+ γB0

]
. (24)

It is straightforward to compare this expression with the
expression obtained in Ref. [23] for the same model without
the delta-force interaction, which is

� 
 4k2
0h̄

2

mQ0a
e−2Q0(b−a)

[
2k0

Q0

]
. (25)

As we can see from Eqs. (22), (24), and (25), the addition
of a Dirac delta changes, at the same level of accuracy, the
value of the resonance width by a term which solely depends
on the location of the values b (end of the barrier) and c

(support of the delta) and, of course, the delta amplitude γ .
The additional term could be either positive (width becomes
larger) or negative (width becomes smaller). When γ = 0 (no
Dirac-delta time-dependent interaction is present in the model
Hamiltonian), the results of the standard theory of resonances
are recovered [23,24].

IV. A RESONANCE (GAMOW STATE) INTERACTING
WITH THE CONTINUUM

Let us go back to the Friedrichs model introduced earlier.
The Friedrichs model gave us vector states for the resonance
state. Now, assume that this resonance interacts with the
continuum corresponding to the total Hamiltonian H in
the same manner that the bound state of the unperturbed
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Hamiltonian H0 interacts with its continuous spectrum. The
procedure used there gives us the idea on how to proceed
further. In fact, we can define a new interaction given by the
following potential:

V1(t) :=
∫ ∞

0
g(ω, t)[|ω±〉〈ψG| + |ψD〉〈ω±|] dω. (26)

Here, we have chosen a time-dependent form factor g(ω, t)
due to the necessary comparison to the results in Ref. [20].
Now, the Hamiltonian becomes time dependent and it is given
by W (t) := H0 + λV + γV1(t), where γ is a positive coupling
constant.

The coupling constants λ and γ should be smaller than
ω0 because we want to obtain reasonably good results at the
first order of approximation in these couplings. In addition,
in the standard Friedrichs model the resonance is an analytic
function of λ given some conditions on the form factor [22].
This, in particular, means for that small λ we have a resonant
energy ED near to ω0 and a small width �, which implies a
longer lifetime.

Our goal is to evaluate the resonances for the Hamiltonian
pair {H,W (t)}. With this objective in mind, we write the
following eigenvalue equation:

{H0 + λV + γV1(t) − z}ψ(z) = 0, (27)

where the vector state ψ(z) should have a span in terms of the
eigenvectors of H0:

ψ(z) = β(z)|1〉 +
∫ ∞

0
φ(ω, z)|ω〉 dω. (28)

Then, the searched resonances should be the poles of the
function β(z).

In order to calculate the functions β(z) and φ(ω, z), we
proceed as follows. First of all we ignore the term V1(t). Then,
the remaining terms correspond to the standard Friedrichs
model, so that

{H0 + λV − z}ψ(z)

=
{

(ω0 − z)β(z) + λ

∫ ∞

0
f (ω)φ(ω, z) dω

}
|1〉

+
∫ ∞

0
{(ω − z)φ(ω, z) + λf (ω)β(z)}|ω〉 dω. (29)

Next, we compute V1(t)ψ(z). To proceed with this calcula-
tion, we should take into account that in the standard Friedrichs
model the eigenvector |1〉 is taken to be normalized and that the
spaces corresponding to the discrete and continuous spectrum
of H0 must be mutually orthogonal as H0 is self adjoint, and
also that the continuous spectrum of H0 is simple so that

〈1|1〉 = 1, 〈ω|1〉 = 0, 〈ω|ω′〉 = δ(ω − ω′), (30)

for all ω,ω′ ∈ [0,∞) and δ(x) is the Dirac delta.

Furthermore, we are using a first-order approximation so
that we shall get rid of all terms of second and higher orders
in the couplings.

Lets us apply V1(t) to |1〉 first. Using Eq. (3), we have

〈ω±|1〉 = 〈ω|1〉 + λf (ω)

η∓(ω)

×
{
〈1|1〉 +

∫ ∞

0
dω′ λf (ω′)

ω − ω′ ∓ i0
〈ω′|1〉

}

= λf (ω)

η∓(ω)
, (31)

where obviously from Eq. (3), η∓(ω) = η±∗(ω). Then, we use
Eq. (5):

〈ψG|1〉 = 〈1|1〉 +
∫ ∞

0

λf (ω) dω

zR − ω + i0
〈ω|1〉 = 1, (32)

so that

V1(t)|1〉 =
∫ ∞

0
g(ω, t)

[
|ω±〉 + λf (ω)

η∓(ω)
|ψD〉

]
dω. (33)

Next for all α ∈ [0,∞), we compute

〈ω±|α〉 = δ(ω − α) + λ2 f (ω)

η∓(ω)

f (α)

ω − α ∓ i0

 δ(ω − α).

(34)

Note that we get rid of the terms with order λ2, γ 2, or λγ ,
which justifies the approximation in Eq. (34). Also,

〈ψG|α〉 = λf (α)

zR − α + i0
, (35)

so that

V1(t)
∫ ∞

0
φ(ω, z)|ω〉 dω = λf (α)

zR − α + i0

∫ ∞

0
g(ω, t)|ω±〉 dω

+
[ ∫ ∞

0
g(ω, t) dω

]
|ψD〉. (36)

The next step is to use the span (5) of |ω±〉 and the span (6) of
|ψD〉 and then deleting all second-order terms in the coupling
constants. Then, we carry all this into Eq. (27) and use Eq. (29).
We obtain an expression of the form A|1〉 + ∫ ∞

0 B|ω〉 dω = 0.
Equating A = 0 and B = 0, we have the following pair of
equations:

(ω0 − z)β(z) +
∫ ∞

0
dωφ(ω, z)[γg(ω, t) + λf (ω)] = 0 (37)

(ω − z)φ(ω, z) + β(z)[λf (ω) + γg(ω, t)] = 0. (38)

From Eq. (38), we obtain

φ(ω, z) = β(z)[λf (ω) + γg(ω, t)]
1

z − ω ± i0
+ cδ(ω − z),

(39)
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where c is an arbitrary constant that can be settled equal to 1
(c = 1). Then, using Eq. (39) in (37), we obtain

(ω0 − z)β(z) + β(z)
∫ ∞

0

[λf (ω) + γg(ω, t)]2

z − ω ± i0
dω

+ γg(z, t) + λf (z) = 0, (40)

so that

β(z) = − λf (z) + γg(z, t)

ω0 − z + ∫ ∞
0

[λf (ω)+γg(ω,t)]2

z−ω±i0 dω
. (41)

Up to the first order in the coupling constants, the
resonances of the compound system can be calculated as the
poles of β(z), i.e., by the zeros of the following function of z:

ξ±(z) := ω0 − z +
∫ ∞

0

[λf (ω) + γg(ω, t)]2

z − ω ± i0
dω. (42)

Observe that if γ = 0, we have the exact expression giving
the resonances of the system without the interaction γV1(t).
This expression is formally identical to the one obtained for
the case of the standard Friedrichs model given in Eq. (10)
and should therefore have the same properties, which are
discussed in Ref. [22]. Zeros of Eq. (42) are the resonances of
the combined system. Note that these zeros are functions of
the coupling constants λ and γ as well as of the time.

Under certain conditions on Eq. (10), such as the analyticity
of the square of the form factor f (ω) on an open set including
the positive semiaxis [0,∞) and the existence of the Cauchy
principal value in Eq. (10), one shows [22] the existence of
a analytic continuation of η+(x) in Eq. (10) to the lower
half-plane with a single zero. This zero is the resonance pole for
the standard Friedrichs model and varies analytically with the
coupling constant λ. In addition, the decay rate, which is twice
the absolute value of the imaginary part of the resonance pole,
is given in terms of the coupling constant by the expression
�(λ) = 2πλ2|f (ω0)|2 + o(λ3). This result has been obtained
by making use of the analyticity of η(z) and the implicit
function theorem [22].

Therefore, if we assume that f (ω) and g(ω, t) are analytic
functions with respect to ω in a domain including the positive
semiaxis and the Cauchy principal value in Eq. (42) exists,
then the same proof will show the following:

(i) There exists a resonance pole given by a zero of ξ+(z),
which is an analytic function of the real form factors λ and
γ . If these form factors go to zero, then the resonance pole
goes to the bound state of energy ω0.

(ii) The decay rate in terms of the form factors is given by the
following expression:

�(λ, γ, t) = 2π |λf (ω0) + γg(ω0, t)|2, (43)

where the terms proportional to the third power and higher
in the coupling constants have been neglected.

While the nonvanishing value of the coupling λ suffices
for the appearance of resonances, the inclusion of a time-
dependent interaction (represented by a nonvanishing value of

the coupling constant γ ) can eventually suppress a resonant
behavior. Naturally, we have assumed that both couplings are
comparable magnitudes and that their absolute value is such
that the obtained width � is indeed much smaller than the real
part of the energy of the state.

Equation (43) is a sort of generalization of the Fermi golden
rule.

Note that both the localization of resonance poles and,
consequently, the decay rate depend on the form of the
potential. This means that the presence of an extra term
may either enhance or diminish the tunneling probability. We
have used a (general) time-dependent perturbation in order
to compare our results with those obtained by Kälbermann
[20,21]. In our first example in Sec. III, we show that the
addition of a Dirac delta interaction to a finite square well
with hard core at the origin enhances or diminishes the decay
rate of the well resonances depending on the parameters
of the added interaction. In our second example, using an
interaction over the ordinary Friedrichs model, we observe
that the variation of the decay rate depends solely on the
shape of the interaction. In conclusion, the results obtained
by Kälbermann are a consequence of the specific models used
and they cannot be considered a general property of resonances
under the action of interactions.

V. CONCLUSIONS

In this paper we have studied the coupling between
resonances and the continuum. We have started by determining
the resonant spectra of Friedrichs model and adding to it
a coupling with the continuum, which was modeled by an
extra time-dependent interaction. The modifications of the
decay properties of the resonance were then shown to be a
natural consequence of the added interaction. The solution
was shown to be analytical in the coupling constants for a
large class of interactions, which may enhance or reduce the
decay rate. We have also studied the consequences, upon the
resonancés decay properties, of adding a Diracdelta potential
to a one-dimensional finite square well, and obtained similar
results.

In our calculations, we have confronted the main con-
clusions of the work of Kälbermann, without restricting the
analysis to a specific type of interactions.

In summary, it may be possible to change the decay rate
of a resonance by exposure to external fields, as claimed by
Kälbermann. However, the results are strongly dependent on
the model used.

The problem now, from the physical point of view, is the
realization of initially isolated resonances which should live
long enough to feel the action of external fields.
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