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Effects of time-delayed feedback on the properties of self-sustained oscillators
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Most self-sustained oscillations in biological systems and in technical applications are based on a feedback
loop, and it is usually important to know how they will react when an external oscillatory force is applied.
Here we investigate the effects that the introduction of a time delay in the feedback can have in the entrainment
properties of self-sustained oscillators. To do this, we derive analytic expressions for the periodic trajectories and
their asymptotic stability, for a generic external oscillatory force. This allows us to show that, for large quality
factors, the resonance frequency does not depend on the feedback delay. When the external force is harmonic, it
is shown that the largest entrainment range does not correspond to the time delay that gives the maximal response
of the unforced oscillator. In fact, that delay gives the shortest entrainment range.
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I. INTRODUCTION

Systems that display self-sustained oscillations are common
in a wide range of domains. In electronics, oscillators are an
essential part of many telecommunication devices [1]. Most of
the designs include a resonator and a nonlinear feedback loop
(see, e.g., [1–3]), and it has been shown that the introduction
of a time delay in the signal that is reinjected to the resonator
can have some interesting effects [4,5]. In biology, it is now
well known that daily, or circadian, rhythms of the body are
generated by the population oscillation of specific proteins
inside cells [6]. Even though these cellular oscillations can
be autonomous, they are also entrained by light and other
environmental cues [7]. The basic mechanism of these cellular
clocks is a negative feedback loop where a protein inhibits its
own transcription. However, a time delay is necessary in these
systems to achieve an oscillation lasting a whole day, because
the cellular processes involved are much faster.

Given the complexity inherent to physical systems (be
they micromechanical oscillators or clock neurons), it is
always useful to have simple models that display the more
important features of more complex systems. Unfortunately,
the combination of nonlinearity and feedback makes it rather
difficult to obtain analytical results for most simple systems.
One is therefore forced to use approximation techniques [8],
which in general implies restricting the analysis to some
special cases (such as, for example, harmonic solutions,
or small values of the forcing, or frequencies close to the
natural frequency of the system, etc.). In this context, exactly
solvable systems, although very simple, can be useful to get
a more complete picture of the performance of self-sustained
oscillators in various settings.

The system that we analyze here is a simplification, and a
limit case, of the schematic design shown in Fig. 1. It consists
of a resonator whose output signal is modified (through
differentiation and time shifting) and then fed into an amplifier,
after which it is reinjected to the resonator. This accounts
for the possibility of a time-shifted feedback given by the
signal (when the differentiator element is not present) or its
derivative. We assume that the amplifier has a finite saturation
level and an arbitrarily large gain. In this limit, the signal
reinjected to the resonator takes only two values, given by
the saturation of the amplifier. This type of feedback is well

known in engineering, where it is called relay feedback [9], and
many analytical results are available for such systems. Here
we extend those results to the case of an oscillator driven by
an arbitrary periodic signal and with a feedback with a given
time delay.

In the next section, we present the model and study in some
detail the case of delayed feedback without a driving force. In
Sec. IV we add an external force and determine the conditions
that the parameters must satisfy for the system to be entrainable
(in frequency) by this force. To achieve this, we calculate the
asymptotic stability of those periodic trajectories of the system
with the same period as the driving. Afterward, we add a delay
to the feedback and show how this changes the parameter
region where the system can be effectively entrained. All this
is applied to the analysis of a particular example, a harmonic
external force. Results are discussed and summarized in the
final section.

II. MODEL OF A DELAYED FEEDBACK OSCILLATOR

The oscillator model we consider is an underdamped
harmonic oscillator of one degree of freedom [x(t)] with a
delayed nonlinear feedback, driven by a periodic signal. Its
evolution is given by the equation

mẍ + γ ẋ + kx = F sgn[y(t − τ )] + F1f (t), (1)

where sgn[ ] is the sign function, and f (t) is an arbitrary
periodic function with period T1 = 2π/ω1. The functional
form of y(t) defines the type of feedback. We consider here
two possibilities: y(t) = x(t) or y(t) = ẋ(t). In the rest of the
paper, these two different feedback mechanisms will be called
position and velocity feedback, respectively. Performing the
rescalings kx → x, t

√
k/m → t , Eq. (1) can be rewritten as

ẍ + Q−1ẋ + x = F sgn[y(t − τ )] + F1f (t), (2)

where Q > 1/2 is the quality factor of the oscillator, defined
as Q = √

km/γ . F could be absorbed into F1, but we leave
it undisturbed because it is necessary to differentiate between
positive and negative feedbacks. Equation (2), in turn, can be
more compactly rewritten as

ẋ = Ax + b(t,τ ), (3)
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FIG. 1. Schematic diagram of a feedback oscillator. The trian-
gular box represents an amplifier, and the square boxes to its right
represent a differentiator and a time shifter. The resonator is also fed
with a periodic signal (the driving).

with

A =
[−Q−1 −1

1 0

]
,

(4)
b(t,τ ) = (F sgn[y(t − τ )] + F1f (t),0)T ,

x = (ẋ(t),x(t))T , y(t) = c · x(t), and c = (1,0) for velocity
feedback, or c = (0,1) for position feedback.

Given an initial time ti , we define the switching times
t1 < t2 < · · · < tn (with ti < tk < t for k = 1,2, . . . ) as the
times when y(t) changes sign. Between tk + τ and tk+1 + τ ,
the system is subject to the dynamics of an underdamped
forced oscillator, with a constant term that can be either F or
−F . The full solution can thus be obtained by simply pasting
together solutions of the underdamped forced oscillator at
tk + τ (k = 1,2, . . . ). If τ � 0, in order to specify an initial
condition it is enough to give x(ti) and a set of times t−n′ <

· · · < t0 (with ti − τ < t−k � ti for k = 0,1,2, . . . ) at which
y(t) vanishes. Using this, the solution to Eq. (3) can be written,
formally, as

x(t) = eA(t−ti )x(ti) +
∫ t

ti

eA(t−u)b(u,τ )du

= eA(t−ti )x(ti) + F1

∫ t

ti

eA(t−u)cT f (u)du

+ 2Fs eA(t−τ )
nt∑

k=−n′+1

(−1)ke−Atk A−1cT

+Fs [(−1)nt+1e−A(t−ti ) + (−1)n
′
I]A−1cT , (5)

where I is the 2 × 2 identity matrix. s is the sign of y(t+i ), thus
if ti is not a switching time, we have s = sgn[yi(ti)], whereas
if ti is a switching time, we have s = − sgn[(0,1) · xi(ti)]
for velocity feedback or s = sgn[(1,0) · xi(ti)] for position
feedback. n is the largest integer such that tn + τ < t , and
it can even be negative if t < ti + τ .

Equation (5), the solution to Eq. (3), is only formal because
one needs to know the switching times t1, . . . ,tn in advance.
To obtain them, Eq. (5) must be used recursively. We use first
the switching times of the initial condition and Eq. (5) to find
all the times in the interval (ti ,ti + τ ] at which y(t) changes
sign. Next we add these times to the list of switching times,
and we calculate all the times in the interval (ti + τ,ti + 2τ ] at
which y(t) changes sign, which are then added to the list. By
applying this procedure iteratively, one finds all the switching
times that are necessary for a complete solution of Eq. (3). If

τ = 0, at each step we simply find the smallest time tk+1 > tk
(where tk is the switching time found in the previous step) at
which y(t) changes sign and update the list.

III. OSCILLATIONS WITHOUT EXTERNAL FORCING

When F1 = 0, these systems fall into the category of relay
feedback systems [9,10], which can be shown to have limit
cycles. As mentioned above, in the intervals (tk + τ,tk+1 + τ )
(k = 1,2, . . . ) the system behaves as an underdamped os-
cillator whose solution is a sinusoidal function of angular
frequency ω =

√
1 − (2Q)−2, with an amplitude that decays

exponentially. Thus, consecutive zeros of x(t) are always
separated by a distance of T/2 = π/ω, and the same happens
with the zeros of ẋ(t). This implies that, when τ = 0, if the
oscillator described by Eq. (2) has a limit cycle, its period
must necessarily be T (as happens with other oscillators whose
switching dynamics also depends on the zeros of the velocity
or the position [11]). But, if τ �= 0 this is no longer the case,
because at the moment when the dynamics changes, neither
the value of x(t) nor the value of ẋ(t) vanishes. Figure 2 shows
some examples of the solution of Eq. (2) and the corresponding
limit cycles for different values of the feedback delay.

We will concentrate here on antiperiodic limit cycles of
period Tτ , defined as those that satisfy x∗(t + Tτ /2) = −x∗(t),
and which have only two switching times per cycle (the case
with more switching times is more difficult to analyze and
seems to appear much less frequently in the simulations). This
condition implies that Tτ /2 � T/2 + τ . We first consider the
case of τ small enough so that any time interval of length τ

contains at most one switching time. This implies both that
τ < T/2 and τ < Tτ/2. Let the initial time ti be a switch-
ing time, and let s = 1. Using Eq. (5) and enforcing the
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FIG. 2. Examples of time series (left panels) and phase portraits
(right panels) of an oscillator with velocity feedback, Q = 2, F = 1,
and F1 = 0, for some values of the delay τ . Dashed lines in the left
panels represent the switching function sgn[y(t − τ )]. Thick black
lines in the right panels represent limit cycles. (a) and (b) τ = 0.2,
(c) and (d) τ = 3.0, (e) and (f) τ = 3.4.
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antiperiodicity condition, we obtain the value of x∗
0 ≡ x∗(ti)

[10],

x∗
0 = F [I − 2(e−ATτ /2 + I)−1e−Aτ ]A−1cT . (6)

x∗
0 does not depend explicitly on ti because the system is

autonomous. To find the period of the limit cycle, we use
now that ti is a switching time and must thus satisfy

c · x∗
0 = 0 (7)

and solve this equation for Tτ . Note that the condition that the
limit cycle has only two switches per cycle is not necessarily
satisfied by all the solutions of Eq. (7), and it must be separately
enforced. Once Tτ and x∗

0 have been found, plugging them into
Eq. (5) gives the exact equation for the limit cycle for all t .
In particular, it is generally useful to calculate the amplitude
of the limit cycle, defined as the largest value of the position
coordinate.

For the family of models considered here, the case of
velocity feedback leads to particularly simple equations. In the
following, emphasis will be put on the properties of systems
with this type of feedback, but analogous results for position
feedback will also be mentioned. For τ < T/2, the equation
for Tτ becomes

h0(Tτ ) = 0 (8)

with

h0(Tτ ) = sin[ωτ ] + eTτ /4Q sin[ω(τ − Tτ/2)]. (9)

As mentioned above, the fact that between switchings the
system is subject only to the dynamics of an underdamped
harmonic oscillator implies that τ � Tτ/2 � T/2 + τ . In this
range, Eq. (8) has only two solutions, one corresponding to the
case with F > 0 (negative feedback) and the other to F < 0
(positive feedback).

This can be generalized to larger values of the delay. When
nT/2 � τ � (n + 1)T/2 (n = 1,2, . . . ), any time interval of
length τ can contain only n or n + 1 switching times. To
find the period of the limit cycle, we assume again that in
the interval (ti − τ,ti − τ + Tτ /2) there is only one switching
time, t−n = ti − nTτ /2. We get then the same equations as in
the last paragraph, but replacing τ by τ − nTτ /2. In particular,
the equation for Tτ is now

sin[ω(τ − nTτ /2)] + eTτ /4Q sin{ω[τ − (n + 1)Tτ /2]} = 0.

(10)

The condition that there are only two switching times per
period implies now that Tτ must satisfy τ − nTτ /2 � Tτ /2 �
T/2 + τ − nTτ /2. Within this range, Eq. (10) has only two
solutions, which are shown in Fig. 3 for some values of Q.
The corresponding amplitudes are shown in Fig. 4. Note that
both the period and the amplitude change abruptly when the
delay is a multiple of T/2. This reflects an abrupt change in
the shape of the limit cycle (compare the two lower panels of
Fig. 2).

When the feedback is delayed, the amplitude of the signal
can never be larger than Amax, the amplitude for the system
with no delay, given by

Amax = F
exp(T/4Q) + 1

exp(T/4Q) − 1
. (11)
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FIG. 3. Period of the limit cycle for systems with velocity
feedback, as a function of the delay for two different values of the
quality factor. The dotted lines show T̃τ , the approximation for large
Q values [Eq. (13)].

This is approximately proportional to Q in the limit of
large Q.

In the following, we will focus on delays that satisfy
τ < T/2. In this range, the minimal value of the amplitude is

Amin = F
[exp(T/4Q) + 1]2

exp(T/2Q) + 1
. (12)

Note that this value depends only very weakly on Q: it is
always between F and 2F .

In the case of systems with position feedback, if F > 0,
Eq. (1) has a fixed point at x(t) = F . However, F < 0 does
lead to oscillations for all values of the delay. Figure 5 shows
the period and amplitude of the resulting signal. Note that what
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FIG. 4. Amplitude of the limit cycle for systems with velocity
feedback, as a function of the delay for two different values of the
quality factor. The dotted lines show Ãτ , the approximation for large
Q values [Eq. (14)].
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FIG. 5. Period (upper panel) and amplitude (lower panel) of the
limit cycle for systems with position feedback and F = 1, as a
function of the delay for two different values of the quality factor.

is obtained with a feedback containing x(t − τ ) is very similar
to what is obtained with a feedback containing ẋ(t − τ + π/2)
(and F > 0), as happens when a harmonic approximation is
used [12].

A. Large- Q limit

It is instructive to consider what happens in the limit of
large Q for velocity feedback. In this limit, ω = 1 + O(Q−2),
T = 2π + O(Q−2), and it can be shown that Eq. (10) has two
solutions of the form Tτ = T̃τ + O(Q−1), with

T̃τ =

⎧⎪⎪⎨
⎪⎪⎩

2π, n − 1
2 � τ

π
� n + 1

2 ,

4τ
2n+1 , n + 1

2 � τ
π

� n + 1,

4τ
2n+3 , n + 1 < τ

π
� n + 3

2 ,

(13)

where n = 1,3,5, . . . if F < 0, and n = 0,2,4, . . . if F > 0
(for n = 0, replace n − 1/2 by 0). Using this, the amplitude
for large Q is Aτ = Ãτ + O(Q−1), with

Ãτ

F
=

⎧⎪⎪⎨
⎪⎪⎩

4Q

π
cos τ, n − 1

2 � τ
π

� n + 1
2 ,

1 − [
cos

(
τ

2n+1

)]−1
, n + 1

2 � τ
π

< n + 1,

1 − [
cos

(
τ

2n+3

)]−1
, n + 1 � τ

π
< n + 3

2 ,

(14)

using the same convention for τ as in the previous equation.
This shows that when Q is large, there are two very different
regimes for this oscillator. In one of them, the period coincides
with the damped period of the system, and it does not depend
on the amount of delay. On the other hand, the amplitude is
proportional to the quality factor and changes substantially as
the delay is modified, reaching a maximum at τ = nπ with n =
0,1,2, . . . if F > 0, and n = 1,3,5, . . . if F < 0. In the other
regime, the period of oscillation becomes linearly dependent
on τ , and the amplitude becomes much smaller and no longer
depends on Q. Within this small-amplitude regime, there is a
discontinuity for both the period and the amplitude at τ = nπ

with n = 0,1,2, . . . if F < 0, and n = 1,3,5, . . . if F > 0.
Figures 3 and 4 show that this limit is a good approximation

for Q > 100, except for the delay values where there is a
crossover between the two regimes.

B. Stability

Even though for all parameter values there are limit cycles
in the systems we consider, it is not necessarily true that
they are relevant for the dynamics of the system. One step
in this direction is determining whether limit cycles are
asymptotically locally stable [13]. Considering a trajectory
with a small deviation from the position of the limit cycle at a
switching time (x∗

0), and performing a linear approximation to
calculate the deviation from the position of the limit cycle at
the next switching time, one can calculate W, the Jacobian of
the resulting Poincaré map, which gives [10]

W =
(

I − (Ax∗
0 + F e1)c

c(Ax∗
0) + F e1)

)
eATτ /2, (15)

where e1 = (1,0)T , and x∗
0 is given by Eq. (6). The condition

for local stability is that this matrix has eigenvalues of absolute
value smaller than 1. But one of the eigenvalues always
vanishes (it corresponds to the left eigenvector c). Thus, the
condition for stability can be given simply in terms of the trace
of W. If we specialize to systems with velocity feedback, the
condition for stability is

g(Tτ/2)e−Tτ /4Q < 1 (16)

with

g(t) = cos(ωt) + (2ωQ)−1 sin(ωt). (17)

Interestingly, a bit of calculus shows that this condition
is fulfilled for all non-negative values of the constants. In
other words, limit cycles are always locally asymptotically
stable. Furthermore, simulations suggest that this stability can
be global (we have not found a single initial condition for
which the system does not end arbitrarily close to the limit
cycle).

IV. EXTERNAL FORCING WITH A PERIODIC SIGNAL

We turn now to the analysis of an oscillator forced by
an external periodic signal of period T1. For simplicity, we
concentrate in the following on external antiperiodic functions
[i.e., functions that satisfy f (x + T1/2) = −f (x)]. As in the
previous section, we consider here solutions that are symmetric
and have only two switchings per cycle. We define the system
as entrained if there is a limit cycle with period T1 (this is also
known as frequency locking [14]). To find these limit cycles,
we proceed as in the previous section, but replacing Tτ by T1

everywhere. We define again ti as a switching time of the limit
cycle. Defining x∗ ≡ x∗(ti), and using the symmetry condition
[x∗(ti + T1/2) = −x∗(ti)], we obtain

x∗ = −F1(e−AT1/2 + I)−1
∫ T1

2

0
e−AucT f (u + ti)du

+F [I − 2(e−AT1/2 + I)−1e−Aτ ]A−1cT . (18)

To obtain the full solution for the limit cycle, we need to
find one switching time ti , which in this case is not arbitrary
because the forced system is nonautonomous (in other words,
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the phase of the external signal determines the phase of the
solution of the system). To do this, we solve the equation for
the switching time condition,

c · x∗ = 0, (19)

with ti as the only unknown. We are interested now in finding,
in parameter space, the region of existence, i.e., the parameter
sets for which this equation has a solution. In particular, we
focus here on the region of existence in the plane (ω1,F1), for
fixed values of Q and τ . Generally, it can be shown that for a
given Q there is a solution if F1 is large enough. Conversely,
it is intuitively clear that there should be a threshold for F1,
below which there can be no entrainment.

A. Existence of entrained trajectories

To determine the conditions that must be satisfied by the
parameters for the existence of entrainment, it is useful to
rewrite Eq. (19) as

ωF1h1(ti) = 2Fe(τ−T1/2)/2Qh0(T1) (20)

with

h1(ti) =
∫ T1

2

0
f (u + ti)e

u/2Q[g(u − T1/2) + e−T1/4Qg(u)]du,

(21)

and h0(T1) and g(u) defined as in Eqs. (9) and (17), respec-
tively. If f (t) is a piecewise continuous function, then h1(ti) is
a continuous function of ti , and therefore it reaches a maximum
and a minimum in the interval [0,T1/2] at ti = tmax and
tmin, respectively. Furthermore, h1(tmax) > 0 and h1(tmin) < 0,
because of the antiperiodicity of f (t). Thus, if all other
parameters are fixed, Eq. (20) can only have a solution when
F1 � h0(T1)/h1(tmax) [if h0(T1) > 0] or F1 � h0(T1)/h1(tmin)
[if h0(T1) < 0].

In the limit of infinite Q, it is clear that h1(ti) → 0 when
T1 → 2nπ with n odd, but, as we also have h0(T1) → 0,
whether or not F1 diverges at these values will depend on the
exact form of the driving function. Other possible divergences
for F1 are the values of T1 for which h1(0) = 0 because this
could imply that either h1(tmax) = 0 or h1(tmin) = 0. Again,
this will depend on the exact form of f (t). For all other values
of T1, F1 will be bounded, as a function of Q. Equation (9)
implies that h0(T1) vanishes when T1 coincides with the period
for the unforced system, and therefore entrained trajectories
exist for every value of F1 in that case.

Taking all this into account, we can infer the general form of
the existence curve for F1 [i.e., the curve above which Eq. (20)
has a solution] for fixed τ and large Q. It has zeros where
T1 is a solution of Eq. (8) and it may have some barriers
with a height given by an increasing function of Q, with
deep valleys between barriers. For all other values of T1, the
critical values of F1 may grow with Q but are nevertheless
bounded. An important caveat is that it can happen that the
solutions have more than a switching per period, and thus
they are not acceptable. One should then calculate a second
existence curve delimiting the region where the solutions have
only one switching point. Simulations seem to show that it
is only around the zeros that this second curve is above the
existence curve (see the next section).

FIG. 6. Illustration of a trajectory (full line) of a velocity-based
feedback oscillator in phase space that is close to a periodic trajectory
(dotted line).

In the regime where the system has entrained periodic
trajectories, it is important to know where the resonances are,
i.e., the frequencies at which the amplitude has a maximum.
In particular, we look for sharp maxima with a height that is
proportional to the quality factor Q. From Eq. (18) it can be
shown that, in the limit of very large Q, sharp maxima in the
amplitude can only appear when (e−AT1/2 + I)−1 diverges. But
this matrix can be written as

(e−AT1/2 + I)−1 = eT1/4Q(e−T1/2QI + eAT1/2)

2[cosh(T1/4Q) + cos(ωT1/2)]
, (22)

which can only diverge where the denominator vanishes. It is
then straightforward to check that, for large Q, resonances can
only appear for T1 = 2πn with n = 1,3,5, . . . . Note that this
implies that even when the feedback is delayed, the resonances
depend mainly on the natural frequency of the system (when
Q is large, ω ≈ 1), and only weakly on τ . An example of this
is shown in Sec. IV C.

B. Stability of entrained trajectories

To study the stability of the periodic trajectories that
determine the entrainment of the system, we calculate the
stability of the map, x(t) → x(t + T1/2), as a function of the
initial vector xi at the initial time ti . Let x∗(t) be a periodic
orbit and x(t) a trajectory of the system for an arbitrary initial
condition. We assume that ẋ(ti) < 0 for velocity feedback
[x(ti) < 0 for position feedback], and that at ti the system is
so close to the periodic trajectory that it can be guaranteed that
there is exactly one switching time between ti and ti + T1/2.
We call this switching time t1 and we call t∗1 the first switching
time of the periodic trajectory after ti (see Fig. 6). Furthermore,
we will also assume that ti > t∗1 + τ − T1/2, which forces
us to use an initial function that has no switching time, if
we want an initial state that is very close to the periodic
trajectory. The times t1 and t∗1 can be obtained by solving
the equations c · x∗(t∗1 ) = 0 and c · x(t1) = 0, which can be
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written as

0 = ceA(t∗1 −ti )

[
x∗(ti) +

∫ t∗1 −ti

0
e−A ub−(u + ti)du

]
,

(23)

0 = ceA(t1−ti )

[
x(ti) +

∫ t1−ti

0
e−A ub−(u + ti)du

]
,

where b−(t) = F1f (t) − F . After half a period, the difference
between the trajectories becomes

x(ti + T1/2) − x∗(ti + T1/2)

= eA(T1/2)[x(ti) − x∗(ti)]

+
∫ t∗1 +τ

t1+τ

eA(ti+T1/2−u)[b−(u) − b+(u)]du, (24)

where b+(t) = F1f (t) + F . Combining Eqs. (23) and (24),
we obtain

x(ti + T1/2) − x∗(ti + T1/2) = H[x(ti) − x∗(ti)] (25)

with

H = eA(T1/2)(I + eAτ W),

W = 2F [eA(ti−t∗1 ) − eA(ti−t1)]A−1cT c eA(t1−ti )

c[(I − eA(t1−t∗1 ))x∗(t∗1 ) + ∫ t∗1
t1

eA (t1−u)b−(u)du]
.

(26)

If we take the limit xi → x∗(ti) (i.e., the initial position
of the system becomes very close to the periodic trajectory
evaluated at the initial time), we have t1 → t∗1 . In this limit, W
becomes

W = 2FeA(ti−t∗1 )cT c eA(t∗1 −ti )

c[Ax∗(t∗1 ) + b−(t∗1 )]
+ O(|t1 − t∗1 |). (27)

Because all the matrices involved are 2 × 2 matrices, their
eigenvalues can be obtained from the determinant and the
trace. Using this property, it is straightforward to show that the
eigenvalues of H are the same as those of H∗ = eA(T1/2)(I +
W∗) with

W∗ = 2F cT c
c[Ax∗(t∗1 ) + b−(t∗1 )]

. (28)

Using H∗, the conditions for asymptotic stability become
independent from the initial time ti . A given periodic trajectory
will be asymptotically stable in the parameter region where
both eigenvalues of H∗ are smaller than 1. Furthermore, when
the eigenvalues are complex, the stability condition is simply
given by det H∗ < 1. For the case of oscillators with velocity
feedback, this can be rewritten as

2Feτ/Qg(τ )

c[Ax∗(t∗1 ) + b−(t∗1 )]
< eT1/2Q − 1. (29)

C. External harmonic force and velocity feedback

As an example of the use of these formulas, we apply them
to the analysis of a feedback oscillator driven by a harmonic
force, f (t) = cos(ω1t). The condition for the existence of
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FIG. 7. Amplitude for an entrained oscillator with velocity
delayed feedback and F1 = 4. Upper, black curves correspond to
Q = 100 and τ = 2π/5, τ = 3π/5, and τ = 4π/5 (all coincide at the
sharp peak). Lower, red curves correspond to Q = 10 and τ = 2π/5,
τ = 3π/5, and τ = 4π/5. Vertical lines mark the frequencies of
oscillation for the corresponding unforced systems. In the vicinity
of the predicted resonance at ω1 = 1/3 there is a break in the lines
because for F1 = 4 there is no entrainment at these values of ω1 (these
parameters fall inside the barriers of the corresponding existence
curves).

solutions can be written as

F1 <
|h0(T1)|

√(
ω2

1 − ω2
)2 + Q−2

[
2
(
ω2

1 + ω2
) + Q−2

]
| cos(ωT1/2) + cosh(T1/4Q)| .

(30)

This shows that for τ > 0, the existence curve has maxima of
height proportional to Q at T1 = 2πn with n = 1,3,5, . . . . In
the case of τ = 0, the existence curve has zeros at these values,
which are surrounded by barriers of height proportional to Q

(see the dashed lines in Figs. 8–11).
The calculation of the amplitude of the entrained solutions

for this case shows that its dependence on the angular
frequency of the external driving force is similar to what is
observed in a harmonic oscillator. It is also apparent that the
main resonance depends very weakly on τ for large Q. Already
for Q = 100 the main resonance is the same (at T1 = T ) for
all values of τ (see Fig. 7). The height of this resonance is
proportional to Q, whereas the height of the other resonances
is clearly much smaller.

Turning now to the stability of the entrained trajectories,
we consider first the case of feedback without delay. Figures 8
and 9 show the regions in the parameter space of the driving
force where the system can be entrained. These are the regions
above the full curves, where at least one of the eigenvalues of
H∗ is 1. Except for the peaks that are observed at ω1 = ω/2n

with n ∈ N, the rest of the curve is given by the condition
det H∗(t∗1 ) = 1. The peaks become very narrow as the quality
factor is increased, and one can then assume that the stability
region can be obtained by solving Eq. (29). In the general
case, this condition gives a lower bound for the boundary of
the stability region.
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FIG. 8. Entrainment regions in the (ω1,F1) plane for a feedback
oscillator with Q = 10, driven by a harmonic signal. The dotted
line bounds the existence region of a periodic symmetric solution.
Below the full red line, these solutions lose stability. The full black
line indicates the values below which the system has no periodic
solutions with only one switching per cycle. Stars represent results
obtained from numerical simulations: with these parameter values,
90% of the systems converge to the periodic symmetric orbit (see the
text for details).

A comparison between Figs. 8 and 9 shows that the external
force has to be much stronger to drive an oscillator with a larger
quality factor. Taking the limit of large Q and F1 in Eq. (29),
it can be shown that the dependence of the critical value of F1

with the quality factor is F crit
1 ≈ Q. The figures also show that

the stability curve has a pronounced drop at ω1/ω = 1/n with
n = 1,3,5, . . . . This happens because these values are close
to the resonances mentioned at the end of Sec. IV A, which
implies that limit cycles have a large amplitude for all values
of F1, which in turn implies [see Eq. (29)] that a small value
of F1 is enough for the stability of these solutions.

To understand whether asymptotic stability results are
relevant for the dynamics of the system, we have resorted to

1/4 1/3 1/2 1 2 3 4
ω1/ω

0

100

200

300

400

F
1/F

Q=100
τ=0

FIG. 9. Entrainment regions in the (ω1,F1) plane for a feedback
oscillator with Q = 100. Conventions are the same as in Fig. 8.
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τ=Τ/4

FIG. 10. Entrainment regions in the (ω1,F1) plane for a delayed-
feedback oscillator with Q = 100 and τ = T/4. Conventions are the
same as in Fig. 8.

numerically solving Eq. (2) with different initial conditions.
These were chosen at random from a cube of size 2|x∗(ti)|
centered at x∗(ti), where x∗(ti) is the coordinate vector of the
predicted limit cycle and ti one of its switching times. After
a time between 100T1 and 500T1, we evaluated whether the
system was converging to the limit cycle given by Eq. (18).
The results of these simulations are represented in Figs. 8
and 9. The stars represent the parameter values for which 90%
of the systems converge to the periodic trajectories. Their
relative closeness to the stability curve shows that the basin
of attraction of the periodic trajectories is reasonably large.

In the previous section, it has been shown that introducing a
delay in the feedback leads to a system with a smaller response,
and this effect is maximal when the delay is equal to a quarter of
the damped period. On the other hand, when the same system
is forced by a harmonic signal, the entrainment range (i.e., the
region enclosed by the boundaries of the stability region) is
much larger than in the system with no delay in its feedback

1/3 1 3
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100

200

300

F
1/F

τ=Τ/8

1/3 1 3
ω1/ω

τ=2Τ/9

1/3 1 3

τ=3Τ/8

FIG. 11. Entrainment regions in the (ω1,F1) plane for three
delayed-feedback oscillators with Q = 100 and different values for
the delay. Conventions are the same as in Fig. 8.
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FIG. 12. Entrainment regions in the (ω1,τ ) plane for an oscillator
with velocity feedback for Q = 100. The entrainment region for
oscillators with F1 = 2F , F1 = 10F , and F1 = 20F lies between
the upper red curve and the black stability curves corresponding
to F1 = 2F , F1 = 10F , and F1 = 20F , respectively. The upper red
curve represents the values for which τ equals a semiperiod of the
driving force.

(see Fig. 10). In fact, the presence of any amount of delay
enlarges the stability zone, as Fig. 11 shows. Furthermore,
when the delay is larger than T/4, the stability region is almost
as large as in the case of τ = T/4.

To quantify this dependence on τ of the stability region, we
fixed the value of F1 and solved the stability equations for τ for
each value of ω1. The resulting curves (Fig. 12) show clearly
that for fixed τ , the entrainment range grows with τ and is
maximal for τ = T/4. This dependence can be understood, at
least for large Q and F1, by using again Eq. (29). g(τ ), in the
numerator on the left-hand side, is a decreasing function that
becomes negative when τ � T/4 + 1/2Q (we only consider
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FIG. 13. Entrainment regions in the (ω1,τ ) plane for an oscillator
with position feedback for Q = 100 and F < 0 (upper panel) or
F > 0 (lower panel). Conventions are the same as in Fig. 12.
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FIG. 14. Comparison of the amplitude of oscillation of oscillators
with velocity feedback (upper panel) and position feedback with
F > 0 (lower panel) for fixed values of the angular frequency of the
external force. Both oscillators have Q = 100.

here τ < T/2). For these values, every solution of Eq. (2) is
asymptotically stable (at least for large Q).

D. External harmonic force and position feedback

In the case of oscillators with a negative feedback based
on position, the results we obtain are very similar to the
ones presented above for oscillators with velocity feedback
but “shifting” the delay by a quarter of a period. The upper
panel of Fig. 13 shows the entrainment range in terms of
τ (compare with Fig. 12, the equivalent for the velocity
feedback oscillator).

More surprisingly, when positive feedback based on
position is allowed, the system can be entrained by an external
force, even though it cannot oscillate autonomously, as shown
in Sec. III. As a function of the delay, the entrainment range
is even larger than the entrainment range for oscillators with
velocity feedback (see the lower panel of Fig. 12). We also
find that the amplitude of the resulting oscillations is similar
to the amplitudes obtained with velocity feedback oscillators,
and that also in this case the dependence on τ is rather weak
(see Fig. 14).

V. CONCLUSIONS

In this article, we have analyzed a simple model of a
feedback oscillator driven by an external oscillatory force,
focusing on the effects of introducing a delay in the feedback
function. To do this, we have obtained an expression for the
periodic trajectories of the system, and we have performed an
analysis of the asymptotic stability of such solutions. We were
interested in particular in characterizing the entrainment region
of the oscillator, i.e., the region of parameter space where it
can have stable periodic trajectories with the same frequency
as the driving force. The criteria obtained can be applied to
many oscillatory driving functions, but we have provided here
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an example of its usefulness by applying them to the analysis
of a system driven by a harmonic external force.

Even though it is well known that the maximal response of
most self-sustained oscillators appears when the delay between
the signal and the feedback is a quarter of the period (see, e.g.,
[12,15,16]), we find that when the oscillator is driven by an
external force, things can be rather different. Both for velocity-
and position-based feedback, we found that the entrainment
range is largest for delay values for which the unforced system
does not have the maximal response. It can even be largest
when the response is minimal for the unforced case. This
agrees with the inverse relationship between the amplitude of
the unforced system and its range of entrainment found for
simple oscillator models [17], which suggests that this could
be a common feature in most oscillator systems, regardless of
their complexity.

As was to be expected, some of the features of this kind
of oscillator are very similar to what happens in a harmonic
oscillator. For example, for the unforced system, the resonance
appears when ω1, the angular frequency of the external
signal, coincides with ω, the damped angular frequency of the
oscillator, and the amplitude of the oscillations at resonance
is proportional to the quality factor Q (for relatively large
values of Q). However, when the feedback signal is delayed,
the resonance does not appear when ω1 = ωτ , the angular

frequency of the delayed, unforced system: it appears again at
ω1 = ω for all values of the delay. Interestingly, this feature
does not depend on the form of the driving function.

It would be interesting to use this formalism to study
the case of oscillating external forces that are not harmonic
and to understand how the form of the function influences
the entrainment range. This can be relevant for biological
systems because there are many examples of oscillators that
are driven by external signals that are not perfectly harmonic.
One extreme example of this is the driving of the circadian
oscillator by light pulses (see, e.g., [18]), which can even be
randomly distributed throughout the day [19].

To achieve a more realistic model of a micromechanical
oscillator, it would be necessary to include cubic nonlinearities
in the equation for the resonator. One important example of
this is the Duffing equation. Even though this equation cannot
be solved analytically in its general form, for relay feedback
one only needs the solution for a finite amount of time, and
thus a short-time approximation (as in the method of multiple
time scales [20]) could be a promising approach.
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