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The performance of the macroscopic energy equation model for laminar flows through porous media is
tested and analyzed in this study. This is achieved by comparing the behavior of the model with data
obtained from microscopic numerical simulations. These simulations correspond to a flow that is heated
by a constant temperature boundary condition at the fluid-solid interface in a simple porous structure
formed by staggered square cylinders. Specifically, laminar steady flow regimes with ReD ¼ 1, 10 and 75,
PeD in the 10-104 range, and porosities between 55 and 95% are simulated. Applying the cellular average
to the numerical solution allows obtaining the macroscopic temperature. Results clearly show the ex-
istence of two different regions at a macroscopic scale. At the entrance, there is a thermally developing
region characterized by a rapid variation of the temperature with the streamwise coordinate. The second
region is the fully developed region where the non-dimensional temperature varies exponentially with
the streamwise coordinate. The length of the developing region is found to be relatively large for high PeD
numbers allowing to conclude that the thermal entrance effect cannot be neglected in the use of
macroscopic models for large PeD numbers. The model is also tested in the fully developed region
showing excellent agreement with the data. It is found that the decay rate of the macroscopic temper-
ature in this region scales with PeD�0:8 and that the exponent is fairly independent of the porosity, flow
conditions and fluid properties. Finally, it is shown that models that ignore the entrance region or neglect
thermal dispersion are, in general, not valid.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Porous structures, such as fibrous porous media, spatially peri-
odic solid structures and open cell foams are commonly found in
many engineering and industrial applications such as grain storage,
transport in soils, flow diffusers, cryogenic tanks, core of nuclear
reactors, radiators, and so on. In many of these applications and
under laminar [1e3] or turbulent flow conditions [4e8], porous
structures are placed to interchange heat efficiently. In this study,
the focus is on the modeling of the heat transfer process in porous
structures under laminar flow conditions [1e3]. Findings of the
present study can be applied to the modeling of a variety of devices
as for example compact heat exchangers, electronic components,
cooling towers, packed bed reactors and power transformers.
Rio Negro, Argentina.

erved.
Additionally, results of this study can be applied to the modeling of
heat transfer at micro and nanoscale (e.g. Ref. [9]).

The goal of porous media models is to satisfactorily represent
the macroscopic scale of a physical process without representing
explicitly the physics at the microscopic scale (i.e. the scale of the
pore [10e12]). The volume-averaging technique, employed as a
space averaging tool, has been successful in the derivation of
porousmediamodels from conservation laws at amicroscopic scale
[13]. In particular, the macroscopic energy equation (or a macro-
scopic transport equation for a passive scalar) was originally
derived in Refs. [14,15] and variations of its original form are
commonly found in the literature (e.g. Refs. [4,16,17]). There are two
main coefficients regarding the heat transfer phenomenon at a
macroscopic scale: the interfacial heat transfer coefficient and the
thermal dispersion tensor [10]. During the last four decades, much
effort was devoted tomeasure these parameters experimentally for
different flow conditions, different fluids, and different geometries
(e.g. Ref. [18]). Nowadays, extensive research is carried out to
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Nomenclature

asf interfacial area per unit volume
Cp fluid specific heat
hsf interfacial or macroscopic heat transfer coefficient
kf fluid thermal conductivity
kD-xx dispersion coefficient in the streamwise direction
p pore length scale
u local streamwise velocity
x* streamwise non dimensional coordinate (x/2H)
D square-edge length
H REV's dimension (REV volume ¼ 2H x H)
L5% thermal entrance length
NuD macroscopic Nusselt number (hsf D/kf)
Pr Prandtl number
Pe P�eclet number
PeD P�eclet number based on the Darcy velocity and D
Re Reynolds number
ReD Reynolds number based on the Darcy velocity and D
TB bulk temperature
Ti inlet fluid temperature
Tw wall temperature
T intrinsic (fluid) cellular average of temperature
TEL thermal entrance length
U intrinsic (fluid) cellular average of streamwise velocity
UD Darcy velocity (Uf)

V volume of the REV
Vf fluid volume inside the REV

Greek symbols
a decay rate of macroscopic temperature
a2 decay rate of macroscopic temperature neglecting

diffusion effects
f porosity
n kinematic fluid viscosity
qm microscopic non dimensional temperature
q macroscopic (intrinsic cellular average) non

dimensional temperature
r fluid density
x local coordinate

Additional notations

j
VA

volume average of 4

j
CA

cellular average of 4
j intrinsic (fluid) cellular average of 4
ij space fluctuation of 4
DLFD length difference between data and the fully

developed model
%DΤFD percentage temperature difference between data and

the fully developed model
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numerically compute these coefficients for different flow condi-
tions, geometries, and fluid properties [19e21]. In general, these
coefficients complete the macroscopic differential model for the
transport of the macroscopic temperature.

As in the case of heat transfer in clear flows, the thermal
entrance length (TEL) in a porous medium appears to be a relevant
parameter to obtain. It is known, however, that the hydrodynamics
entrance length in porous media, well discussed in Ref. [10], is of
the size of a pore and therefore irrelevant at a macroscopic scale.
Literature related to the TEL in porous media is scarce. Neverthe-
less, the experimental study of Wang and Du [22] provides some
insight regarding this quantity. Measurements for the non-
dimensional interfacial heat transfer coefficient (NuD) showed
that this quantity evolves with the streamwise coordinate from a
maximum at the entrance to a fully developed value in a distance
equal to several equivalent diameters of the channel (the same
general behavior is shown in Ref. [23]). In Ref. [24], Wang et al.
analyzed further their data to find values for the TEL between 5 and
20 widths of the test section depending on the fluid properties and
Reynolds number. Their results also showed that for the same flow
conditions, the TEL is larger for the fluid with higher Prandt num-
ber. Wang et al. [24] also analyzed the data of [25] and [26] to
calculate the TEL for two different experiments with air flowing
through a porous medium. In this case, the TEL is between 2 and 4
widths of the test section. The numerical study of Imani et al. [27]
also showed the dependence of the macroscopic heat transfer co-
efficient with the streamwise coordinate and the studies carried
out by Teruel [23,29] and Teruel and Díaz [28] show the existence of
a developing region that becomes larger when the P�eclet number
increases. Additionally, the experimental study of Han et al. [30]
shows that the dispersivity in packed beds is a function of the
streamwise position and that a developing length can be calculated
measuring the spatial variation of this quantity. All the experi-
mental evidence reviewed shows that the TEL is a macroscopic
phenomenon that needs to be analyzed to find out its dependence
on the characteristics of the porous medium, fluid properties and
flow conditions.

Studies in the field also show that the use of the macroscopic
energy equation is in general accompanied with some model as-
sumptions. The most common assumption is to neglect the
entrance effect in the thermal field. To neglect the streamwise
thermal dispersion is also another findable assumption. For
instance, in Refs. [31,32], analytical solutions of the macroscopic
energy equationmodel are sought assuming constant values for the
thermal dispersion and the interfacial heat transfer coefficients (i.e.
the entrance effect is not considered). Another example of the use
of such assumptions is the numerical study of Alfiere et al. [33]. The
authors of this study are aware of the entrance effect but they
acknowledged that to the best of their knowledge there is not an
equation to calculate such effect in porous media flows. Regarding
the assumption that neglects the streamwise thermal dispersion,
this is done in Ref. [31] invoking a sufficiently high P�eclet number
or a highly convective flow. The study of Sano et al. [34] claimed an
important statement on this regard: this coefficient, the thermal
dispersion, may never be negligibly small for highly convective
flows.

The main objective of this study is to test the validity of the
macroscopic energy equation model in the laminar regime by
comparing the solution of the macroscopic model with data ob-
tained from microscopic numerical solutions in a porous structure.
In particular, the study looks forward to give some insight over
important aspects of the heat transfer process in laminar flows
through porous media that, in the author's opinion, has been
heretofore overlooked. One of them is the entrance effect in the
thermal field. Another is the validity of the macroscopic energy
equation model in the fully developed region. And finally, the
assumption that the streamwise thermal dispersion can be
neglected for high P�eclet numbers flows. The work is organized as
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follows. First, themacroscopic energy equation is presented and the
main coefficients are defined; i.e., the macroscopic (or interfacial)
heat transfer coefficient and the streamwise dispersion coefficient.
The domain employed in the simulations is shown and a short
description of the microscopic results is given. The space evolution
of the macroscopic temperature is computed for all cases simu-
lated. These results clearly show the existence of a developing re-
gion. The dependence of this region on fluid properties, flow
conditions and geometry is then analyzed and the TEL is defined
and computed. Later, the macroscopic model is tested against nu-
merical data in the fully developed region. Finally, two usual ap-
proximations found in the literature are evaluated by comparing
the model results with numerical data. The first approximation is
based on a fully developed model that neglects the entrance effect
and the second one is based on the use of a fully developed model
that neglects dispersion effects.
2. Macroscopic energy equation via cellular average

Space averaging tools are often employed to develop macro-
scopic equations in porous media [10]. Consider a porous medium
and an averaging volume (Representative Elementary Volume,

REV) with centroid in the position x and radius r0. For averaging

purposes, an auxiliary coordinate system r¼ xþ x is defined, so that

x describes the origin of each averaging volume and x is the position
in a local coordinate system specific to each averaging volume. Take
this volume as a constant (i. e. no space dependence) equals to the
sum of the fluid and solid volumes inside the REV (V ¼ Vf (

x) þ Vs(x)). Following the formalism of [35,36], the Volume Average
(VA) can be defined employing the weighting function mV:

mv ¼
�
1=V if jx� rj � ro
0 if jx� rj> ro

(1)

And a volume averaged quantity, j
VA
, is then calculated

employing the convolution product * as:

j
VAðxÞ ¼ m*

v

�
gfj

�
¼
Z
R3

mvðx� rÞgfjðrÞdVr; (2)

where gf(r) is a distribution function that takes the value one in the
fluid phase and zero in the solid phase,

gf ðrÞ ¼
�
1 if r2Vf
0 if r2Vs

: (3)

Although the VA is frequently used in the literature to develop
macroscopic equations [4e7,15e17], it has been shown that this
averaging tool yields pore-scale fluctuations when employed in
ordered media [23,28,35,36]. To solve this issue, Quintard and
Whitaker [35,36] recommended the use of the Cellular Average
(CA) for period structures. The CA is defined as in Equation (2) but
employing a weighting function mC defined as mC ¼ mg * mV * mV.
Mathematically,mC is the double application of the volume average
weighting function. The function mg is introduced to satisfy the
condition mC2C∞. It removes the discontinuity of the volume
average weighting function at the boundary but does not modify,
for continuous functions, the value of the macroscopic variable
respect to the double application of the VA. For practical purposes
and considering a REV with centroid at position x, the CA of a fluid
quantity j can be computed as:
j
CAðxÞ ¼ 1

V

Z
V

j
VA�

xþ x
�
dVx: (4)

where j
VA

can be computed as:

j
VAðxÞ ¼ 1

V

Z
V

j
�
xþ x

�
gf dVx; (5)

Additionally, the space-decomposition of Hassanizadeh and
Gray [37] can be used to decompose j in its intrinsic CA value (i.e.

jðxÞ ¼ j
CAðxÞ=f) plus a local fluctuation in space as:

j
�
xþ x

� ¼ jðxÞ þ ij
�
xþ x

�
: (6)

Applying Equations (3)e(6) and the generalization of the aver-
aging theorem [36] to the microscopic equations (i.e. energy and
momentum conservation in the fluid), a macroscopic set of equa-
tions can be obtained. For an isothermal fluid that enters to a
constant porosity porous mediumwith constant wall temperature,
the macroscopic momentum equations simple reduce to a constant
CA velocity in the streamwise direction. However, the macroscopic
energy equation must be capable to accurately describe the
behavior of the CA temperature when the fluid flows and transfers
heat in the porous medium. Under considerations of steady,
incompressible, one-dimensional flow (x-direction) in a constant
porosity medium with constant wall temperature, the transport
equation for the macroscopic fluid temperature resumes (see
Ref. [4] for the same equation but based on volume average
quantities):

rCpfU
dT
dx

¼ d
dx

"
f
�
kf þ kD�xx

�dT
dx

#
þ hsf asf

�
Tw � T

�
: (7)

Which is a convection-diffusion equation with the intrinsic CA
temperature, T , as dependent variable. This equation is character-
ized by two macroscopic coefficients, the interfacial heat transfer
(hsf) and the streamwise thermal dispersion (kD-xx). These two co-
efficients are generally defined from modeling assumptions and
conservation criteria. The interfacial heat transfer, or its equivalent
non dimensional number, NuD, is defined to assure the conserva-
tion of energy:

NuD ¼ hsf D
kf

¼ D
kf

1
V

Z
V

2
41
V

Z
Asf

kfVT,d A
!
3
5dV

asf
�
Tw � T

� : (8)

and the streamwise thermal dispersion is defined employing a
diffusion hypothesis [10] following the ideas of Taylor [38] and Aris
[39]:

kD�xx ¼ �rCp

1
Vf

Z
V

2
41
V

Z
V

iuiT dV

3
5dV

VxT
: (9)

These two macroscopic parameters were studied in detail in the
flow configuration under consideration in Ref. [23] for the same set
of simulations analyzed in this study. Computed fully developed
values for NuD and kD-xx were in excellent agreement with data
available in open literature. Values in the developing region were
also qualitatively well compared with available experimental data.
In the present study, the focus is on the macroscopic energy
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Equation (7) as a model to successfully represent the macroscopic
temperature in laminar flows through porous media.
3. Numerical method and domain of study

A schematic diagram of the domain selected for the simulation
is shown in Fig. 1. The fluid flows from left to right, entering the
porous medium after flowing a distance of H as a clear flow. The
porous medium extends in the streamwise direction from x¼ 0 to a
location between x ¼ 48H and x ¼ 220H, depending on the flow
conditions. Therefore, the porous region has between 24 and 110
REVs in a row (the REV is chosen as a cell of 2HxH in the streamwise
and spanwise directions respectively). As it will be understood
later, this large domain is chosen so that the flow achieves fully
developed conditions for high P�eclet numbers. The fluid-solid
interface is set to a different temperature than that in the fluid at
the entrance. But this is done at the location x ¼ 6H to achieve a
smooth transition in the CA temperature in the entrance region and
to allow the flow to develop hydrodynamically. To save computa-
tional time, only the bottom half of the REV (H/2) is simulated. This
simplification is based on the fact that simulations of a single REV
with periodic BCs evolve to steady solutions at the Reynolds
numbers simulated in this study [40,41].

The governing equations for the fluid phase (mass, momentum
and energy respectively) are given as follows:

V,u ¼ 0; (10)

vu
vt

þ ðVuÞ,u ¼ �Vpþ 1
Re

V2u; (11)

vT
vt

þ V,ðuTÞ ¼ 1
Pe

V2T : (12)

Boundary conditions are standard for all the boundaries of the
domain, except at the outlet, where periodic BCs are applied. On the
solid walls BCs resume:

u ¼ 0 ; T ¼
�
Ti x<6H
Tw x � 6H

�
: (13)

On the inlet of the domain (uniform field):

u ¼ ðp=H;0Þ; T ¼ Ti: (14)

On the bottom and top horizontal lines of the domain
(symmetry):
Fig. 1. Geometry of the domain simulated (smallest domain 49H x H/2, largest
Vnu ¼ 0 ;VnT ¼ 0: (15)

And on the outlet of the domain (periodicity):

uðxo; yÞ ¼ uðxo � 2H; yÞ; (16)

Tðxo; yÞ ¼ Tw þ tðΤðxο � 2Н; yÞ � ΤwÞ; (17)

where xo indicates the x-coordinate of the outlet; and t is defined
as:

t ¼ TBðxÞ � Tw
TBðx� 2HÞ � Tw

; (18)

where TB is the bulk temperature of the fluid. Equation (17), the
periodicity for temperature, has been discussed in detail by Teruel
and Díaz [28] and others [19].

To solve the set of Equations (10)e(12) under BCs given in
Equations (13)e(17), the SIMPLER algorithm developed by Patankar
[42] was employed. The diffusion and the convective terms were
modeled with central differences and the QUICK scheme respec-
tively [43,44]. To evolve the initial condition to the steady state a
backward Euler scheme was used. The solver has been fully tested
and validated for different geometries, including those presented in
this study [40,41]. Periodic variables were solved in an iterative
manner, and profiles at the outlet were obtained from previous
time steps according to Equations (16) and (17). Simulations were
considered to reach convergence when normalized residuals were
lower than 10�6. It has been carefully checked that numerical so-
lutions conserve energy in a global sense (domain) and in local
sense (REV).

The domainwas discretized using a uniform and structured grid
of squares, and a systematic grid refinement study was carried out.
Macroscopic quantities reported in this study were found to be
independent of any further grid refinement for the calculation of
macroscopic variables. The grid resolution employed for each REV
was 180 � 45 (2H x H/2, streamwise x vertical direction), 128 � 32
and 180 � 45 for 55, 75 and 95% porosity respectively. The porosity
is defined as f ¼ 1 � D2/H2 according to Fig. 1.

The Reynolds number based on the Darcy velocity and size of
the obstacles, ReD, was varied from 1 to 75. As it was mentioned,
three different porosities were simulated 55, 75 and 95%. The PeD
number, defined as ReD Pr, was varied from 50 to 104 for the cases of
55 and 75% porosity, and between 10 and 5000 for 95% porosity.
Data of a total of seventy-eight simulations is presented.
domain 221H x H/2). Case of a free stream entering the porous medium.
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4. Results and discussion

4.1. Behavior of the macroscopic temperature: developing and fully
developed regions

In order to better understand the CA temperature it is useful to
analyze the microscopic solution for the temperature in the
porous structure by representing contours of the spatial evolution
of non-dimensional microscopic temperature,
qmðx*Þ ¼ ðTðx*Þ � TwÞ=ðTi � TwÞ. Fig. 2 shows that the higher the
porosity the slower the temperature variations with the stream-
wise coordinate. This effect is not only due to the variation of the
interfacial area with porosity but also due to the sinuous path that
the flow follows in the porous structure. This is reflected at the
macroscopic scale as a decrease of NuD and an increase of kD-xx
increasing the porosity [23].

With the numerical data at hand (Fig. 2), the CA temperature can
be computed in the entire domain employing a moving REV in the
streamwise direction and a discrete equivalent of Equation (4). Note
that the CA temperature is only dependent on the horizontal co-
ordinate due to the periodicity in the vertical direction. Fig. 3 shows
the spatial evolution of macroscopic non-dimensional temperature
qmðx*Þ ¼ ðTðx*Þ � TwÞ=ðTi � TwÞ. In particular, part a) of this figure
shows this evolution for 55% porosity and ReD ¼ 1, and part b) for
95% porosity and ReD ¼ 75. Fig. 3 shows two interesting aspects to
consider. First, the reason to employ such a large domain in the
streamwise direction is revealed. For large PeD numbers the tem-
perature evolves slowly to its equilibrium value (i.e. in more than a
couple of REVs). This is even true for the 55% porosity case, for
which it is expected that the CA temperature evolves faster than at
higher porosities. For the case of 95% porosity and PeD ¼ 5000, the
value of q reduces from 1 to 0.6 in 100 REVs in a row (note that in
Fig. 2 only 12 REVs in a row are shown). And second, the large set of
values simulated for PeD yields a large variation in the decay rate of
q allowing to test the macroscopic energy equation model under a
large variety of conditions.

To easily understand the behavior of the CA temperature shown
in Fig. 3, it is useful to recall the case of a channel flowwith constant
wall temperature. For this well studied case, after a developing
region, there is a fully developed (FD) region characterized by an
exponential behavior of the non-dimensional bulk temperature.
Although Fig. 3 shows an apparent exponential decay of the
macroscopic temperature with the streamwise coordinate, a closer
look at the entrance region reveals the existence of a developing
and a FD region. Fig. 4 shows in linear-log scale some particular
cases of those shown in Fig. 3. A straight line that fits the macro-
scopic temperature far away from the inlet is superimposed to each
curve to show the deviation of the data from a model based on an
exponential decay. A fully developed region is qualitative indicated
in Fig. 4 for the curve with higher PeD considering a position where
the exponential decay deviates a given percentage from the data.
Fig. 2. Contours of qm for different porosities (55, 75 and 95%). ReD ¼ 10 and PeD ¼ 500. Note
A FD model can be easily obtained by analytically solving the
macroscopic energy Equation (7) under the assumption that
macroscopic coefficients are constants (i.e. non space dependent).
The model then yields the following analytical expression:

q
�
x*
� ¼ T

�
x*
�� Tw

Ti � Tw
¼ e�ax* : (19)

where in Equation (19), the decay rate, a, is a function of the
macroscopic parameters as well as the flow and medium
properties:

a ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4AC

p

2A
; A ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
2

1
PeD

 
1þ kD�xx

kf

!
;

C ¼ 8NuD
PeD

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
:

(20)

Equation (19) will be called the FDmodel and is represented by a
straight-line in a linear-log scale as those shown in Fig. 4. Therefore,
if the FD model is valid, data obtained from numerical experiments
should follow a straight-line in the proper scale. Note that this
assumption, that neglects the entrance effect, is in general
employedwhenmacroscopic models are used [9,31,32,34,45] and it
was clearly shown in Fig. 4 that the CA temperature develops to a
fully developed state after a thermal entrance length (similar to the
case of a channel flowwith constant wall temperature as boundary
condition). For large PeD numbers, Fig. 4 suggests that the region
where the temperature does not obey the FD model can be rela-
tively large making a FD model inadequate. As found in a previous
study [23], the macroscopic interfacial coefficient and the stream-
wise thermal dispersion computed with Equations (8) and (9)
respectively, are space dependent in the entrance region. There-
fore, the macroscopic energy equation must be solved considering
this fact to capture the right trend. If this fact is ignored, errors
given by the model must be quantified to deal with model un-
certainties. The next section is dedicated to study the aspects that
allow quantifying these errors. The first aspect to consider is the
TEL.
4.2. Developing region: the thermal entrance length

As pointed out in the experiment by Han et al. [30], the
streamwise thermal dispersion is space-dependent in the entrance
region. The experiment of Wand and Du [22] also shows that the
macroscopic heat transfer coefficient is space-dependent in the
entrance region. For the numerical experiment under consider-
ation, Teruel [23] showed that both, the streamwise thermal
dispersion and the macroscopic heat transfer coefficients show the
entrance effect before reaching a FD constant value. Naturally, if an
exponential model is assumed for the macroscopic temperature, a
must be also space dependent to match the numerical data shown
that x* ¼ x/2H and that the origin of this macroscopic coordinate is equal to 5H (Fig. 1).



Fig. 3. Space evolution of q. PeD as a parameter. a) 55% porosity, ReD ¼ 1. b) 95% porosity, ReD ¼ 75.

Fig. 4. Space evolution of q. Differences respect to an exponential decay. a) 55% porosity, ReD ¼ 1. b) 95% porosity, ReD ¼ 75.
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in Fig. 4. Fig. 5 shows the spatial evolution of these three relevant
macroscopic coefficients, NuD, kD-xx and a, for two different PeD
numbers. Note that NuD and kD-xx are computed employing the
discrete versions of Equations (8) and (9) respectively. The coeffi-
cient a is computed with Equation (20). This equation is strictly
valid when NuD and kD-xx are constant but it is an excellent
approximation when these coefficients are close to their FD values.
For this reason the a-coefficient is plotted in Fig. 5 only for those
locations where both, NuD and kD-xx, are within a 20% difference of
their FD values. The a-coefficient, calculated with Equation (20),
shows a similar behavior than that found for NuD. However, the a-
coefficient needs more distance than the heat transfer coefficient to
reach a given difference respect to its FD value due to the slow
variation of kD-xx.

The thermal entrance length is an important parameter in the
heat transfer process. It is used to define a location in the flow from
where the behavior of the heat transfer process is known. That is,
the heat transfer coefficient becomes approximately constant or
the behavior of the temperature follows a known law. For instance,
for the case of the channel flow with constant surface temperature,
this parameter is usually defined as the distance where the heat
transfer coefficient reaches a 5% difference respect to its FD value
[46]. After this distance, the non-dimensional bulk temperature
may be assumed to vary exponentially with the streamwise coor-
dinate. For the case under consideration, and different from the
channel flow case, in the developing region there are two macro-
scopic parameters that are space dependent, NuD and kD-xx.
Although any of them may be used to define the TEL, and in fact,
they reach the FD region in approximately the same distance (see
Fig. 5), it seems appropriate from a practical point of view to define
the TEL as the location from where the non-dimensional CA tem-
perature exhibits, approximately, an exponential variationwith the
streamwise coordinate. This behavior is controlled directly by a.
Therefore, the a-coefficient is chosen in this study to define the TEL.
This allows using the FD model downstream of the TEL with an
error bar that can be easily estimated based on the percentage
difference between the value of this coefficient respect to its FD
value.

The thermal entrance length, L*5%, is then defined as the non-
dimensional location (x*) from where the decay rate, a(x*),
computed with Equation (20), differs in less than 5% respect to its
FD value. This criterion is exemplified in Fig. 5 for 75% porosity,



Fig. 5. Space evolution of macroscopic coefficients (NuD, kD-xx and a). Values are
normalized with FD values. 75% porosity, ReD ¼ 10.

Fig. 6. Dependence of the TEL on PeD. Porosity and ReD as parameters. Cases with L*5% >
2.

Fig. 7. Dependence of the TEL on the porosity. PeD as parameter and ReD ¼ 10.
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ReD ¼ 10 and two different PeD numbers. In this figure, L*5% is
defined as the location where the 5% line cuts the a-curve. Two
important aspects need to be considered in the definition of L*5%.
The first one is that this quantity is determined based on numerical
experiments and employing Equation (20). The second one is that it
is assumed that the FD model is valid for locations greater that L5%.
This assumption will be tested in the next section. It is also
important to say that the behavior shown in Fig. 5 regarding the
space evolution of the macroscopic coefficients was found to be the
same for all cases simulated in this study with PeD > 100 [23].
Therefore, the definition chosen for L*5% assures that the difference
in the macroscopic heat transfer coefficient respect to its FD values
is below 5% for locations greater than L*5%.

Values reported in Table 1 are also reported in Figs. 6e8 to have
a clear understanding of the dependence of the TEL on the porosity,
ReD and PeD. Fig. 6 has been limited to data with L*5% >2 (or
equivalently, large PeD), as for lower values there is not enough
spatial resolution in the data to show a trend. Additionally, in Fig. 6,
two particular lines have been added to show qualitatively the
dependence of this quantity on PeD (note that in each line ReD is
keep constant and therefore only the Prandtl number is varying).
For the data simulated, the TEL increases as fast as PeD

0.95 for 95%
porosity and as low as PeD0.65 for 55% porosity. The TEL is larger than
2 for PeD larger than 1000, larger than 500 and larger than 200 for
55%, 75% and 95% porosity respectively. The largest calculated L*5% is
Table 1
Values for the TEL (L*5%) for all cases simulated.

L5%

PeD f ¼ 55% f ¼ 75%

ReD ¼ 1 ReD ¼ 10 ReD ¼ 75 ReD ¼ 1

10
50 1.3 1.3 1.2 1.1
100 1.2 1.2 1.1 1.0
200 1.0 1.0 1.4 1.6
500 1.8 1.8 1.8 2.8
1000 2.6 2.6 2.4 5.0
2500 5.6 5.5 4.5 11.4
5000 10.0 9.8 7.3 20.5
7500 14.2 13.7 9.4 28.1
10000 17.9 17.0 11.0 34.3
equal to 67.5 REVs in a row for the case of 95% porosity, ReD ¼ 10
and PeD ¼ 5000. Data clearly shows that the TEL can be significant
f ¼ 95%

ReD ¼ 10 ReD ¼ 75 ReD ¼ 1 ReD ¼ 10 ReD ¼ 75

1.0 1.0 1.0
1.0 1.0 1.2 1.3 1.3
0.9 0.9 1.9 2.0 1.9
1.6 1.5 3.3 3.5 3.5
2.7 2.2 8.3 8.6 8.3
4.9 3.7 16.9 17.4 16.3
10.8 7.1 42.1 42.5 38.9
18.7 10.6 66.3 67.5 64.4
24.9 12.9
29.9 14.6



Fig. 8. Dependence of the TEL on ReD. Porosity as parameter. Pr ¼ 100.

Table 2
Decay rate in the FD region. Values obtained from numerical data and percentage
difference with respect to values obtained with the model.

ReD ¼ 1 ReD ¼ 10 ReD ¼ 75

a-fitted % difference a-fitted % difference a-fitted % difference

a) 55% porosity
50 1.0750 4.6 1.0808 4.3 1.1468 4.5
100 0.6094 1.5 0.6130 1.4 0.6677 1.5
200 0.3359 0.3 0.3372 0.5 0.3798 0.5
500 0.1526 0.1 0.1536 0.1 0.1779 0.2
1000 0.0840 0.1 0.0847 0.1 0.1003 0.1
2500 0.0380 0.0 0.0385 0.0 0.0475 0.0
5000 0.0210 �0.1 0.0214 0.0 0.0277 0.0
7500 0.0149 �0.1 0.0154 0.0 0.0205 0.0
10000 0.0118 0.0 0.0123 0.0 0.0167 0.0
b) 75% porosity
50 0.4747 1.0 0.4898 1.0 0.5225 1.1
100 0.2625 0.3 0.2715 0.3 0.3068 0.4
200 0.1460 0.1 0.1510 0.1 0.1793 0.2
500 0.0673 0.0 0.0699 0.0 0.0886 0.1
1000 0.0373 0.0 0.0391 0.0 0.0517 0.0
2500 0.0171 0.0 0.0182 0.0 0.0255 0.0
5000 0.00973 �0.1 0.0105 0.0 0.0152 0.0
7500 0.00711 �0.3 0.00772 �0.1 0.0115 0.0
10000 0.00585 �0.1 0.00628 0.0 0.00942 0.0
c) 95% porosity
10 0.4103 0.7 0.4574 0.8 0.4765 0.9
50 0.1097 0.1 0.1232 0.1 0.1349 0.1
100 0.0625 0.0 0.0695 0.1 0.0773 0.0
200 0.0356 0.0 0.0392 0.0 0.0432 0.0
500 0.0168 0.0 0.0184 0.0 0.0203 0.0
1000 0.00944 0.0 0.0103 0.0 0.0111 0.0
2500 0.00438 �0.4 0.00470 �0.3 0.00486 �0.2
5000 0.00250 �2.6 0.00263 �2.9 0.00253 �5.1
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in the length of the flow domain and that it increases rapidly with
PeD for laminar flow conditions. This makes the applicability of the
FD model questionable.

The dependence of the TEL on the porosity is shown in Fig. 7 (for
constant ReD and PeD). Data shows that this quantity increases
approximately one order of magnitude varying the porosity from
0.55 to 0.95. The dependence of the TEL on the ReD is now
considered (i.e. considering the same fluid properties). With the set
of parameters simulated it is only possible to show the case of
Pr ¼ 100. Fig. 8 shows that the strong dependence of this quantity
on the ReD can be roughly estimated as L5%fRe0:75D .

Although this study does not provide enough data to develop a
correlation for the TEL, a qualitative comparison can be done with
the well-known channel flow case. For the circular tube with
diameter D, the TEL for laminar flows can be correlated as x/
D ¼ 0.55ReDPr [46]. For the porous medium under study it can be
proposed L5%f ReD

aPrb, where the exponents a and b are mainly
functions of the porosity. By inspection of Fig. 6, it can be concluded
that the exponent b varies between 0.65 and 0.95, and is weakly
dependent on ReD. By inspection of Fig. 8, the exponent a can be
roughly approximated by the value of 0.65 for high Pr.

4.3. Fully developed region

4.3.1. Decay rate: model vs. numerical data
It has already been shown that from the macroscopic point of

view there is a region where the flow is thermally developing. It is
clear than in this region the FD model is not adequate (this will be
quantified in the next section). In addition, the validity of the FD
model in the FD region needs to be evaluated by testing the defi-
nitions adopted for the macroscopic coefficients (Equations (8) and
(9)). This approach is rarely found in the literature (see exceptions
in Refs. [33,34]) but it is essential as it shows the capability of the
model to predict the correct evolution of the macroscopic tem-
perature. Therefore, to test the validity of the model in the FD re-
gion, the decay rate is computed in two different ways. First, it is
computed fitting the macroscopic temperature near the outlet in
Fig. 1, specifically in the last four REVs. In this region the expo-
nential decay is fully established as it is proved by a correlation
coefficient for the fit higher than 0.999. And second, it is computed
according to Equation (20), employing values calculated for the
macroscopic coefficients in the FD region [23]. These two values are
then compared. Table 2 shows the decay rate obtained from the
fitted values and the percentage difference between the a obtained
from the data and that obtained from the model (Equation (20)) to
the value obtained from the data. Differences are below 2% for all
cases simulated except for two particular cases (discussed below).
Therefore, the agreement between the fitted data and the model is
excellent for the large variety of parameters simulated (note that a
varies two orders of magnitude with the range of PeD simulated). It
is then concluded that the convection-diffusion model with the
definitions given for the macroscopic parameters employing the CA
tool is very accurate for the FD region. The two exceptions where
the model does not fit the data are i) the CA temperature develops
in a relatively short distance (approximately a couple of REVs) and
there is not enough spatial resolution to compute the decay rate
accurately (the lowest PeD simulated and 55% porosity) and ii) the
developing region is even larger than the domain simulated and
therefore, the macroscopic parameters cannot be calculated with
high precision (the largest PeD simulated and 95% porosity). Note
that this implies that values presented in Table 1 for this last case
are not very accurate.

Other aspect of interest is the dependence of the decay rate as a
function of the PeD number. This is shown in Fig. 9, where the fitted
decay rate is shown for all cases simulated. This global parameter
can be well approximated by afPeD�0:8. The exponent seems to be
fairly independent of f and ReD for cases simulated in this study.
4.3.2. Approximation employing the fully developed model
Calculations of energy transfer employing porous media models

are commonly found in the literature. It has been shown in the
previous section that these types of models are very accurate in the
FD region. However, it is frequently assumed that fully developed
conditions are applicable to the entire domain [9,30,31,33,34,45].
Moreover, in some cases, dispersion affects are also neglected



Fig. 9. Fitted decay rate as a function of PeD. Porosity and ReD as parameters.
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[9,30,45]. See the discussion of Sano et al. [34] and Yang and
Nakayama [47] in these regards. Although these assumptionsmight
be valid for some flow conditions, they have not been clearly
identified. As it will be shown in this study, these assumptions yield
large errors in the calculation of the temperature field and are not
recommended for porous media flows such as those analyzed in
this study. This is now discussed in detail comparing numerical
values of the CA temperature with those obtained by models based
on these assumptions. First, it is considered a hypothetical case
where the decay rate is measured experimentally in the fully
developed region (i.e. a is known experimentally). Fig.10 shows the
actual temperature for a particular case simulated in this study and
the temperature obtained from a FD model characterized by the
measured decay rate. It is illustrative to consider two situations to
evaluate differences that may appear if this model is employed.
First and considering the CA temperature, the percentage differ-
ence between the data and the model to the value of the data is
calculated (%DTFD). And second, the length difference to achieve a
Fig. 10. Space evolution of the CA temperature. Numerical data and a FD model that
matches the inlet condition.
given temperature between the data and the model (DLFD) is also
calculated. Note that these two quantities are independent on the
space coordinate in the FD region.

These two parameters are given in Table 3 for cases where the
TEL is larger than 2. The parameter %DTFD ranges from�5% to �41%
and it increases, as expected, with PeD and ReD. If for example the
length of a heat exchanger is fixed, the outlet temperature calcu-
lated with the FDmodel will be between 5 and 41% higher than the
real value. The values of DLFD range between �1 and �50. These
parameters also increase with PeD and ReD. If for example a heat
exchanger is designed to achieve a given outlet temperature, the
length of the heat exchanger calculated with the FD model will be
overestimated between 1 and 50 REVs in a row for the parameters
simulated in this study. These analyses show that the FD model
should be employed with great care in the laminar regime and it is
not applicable for large PeD numbers if the TEL is not considered.
4.3.3. Approximations employing the FD model and neglecting the
dispersion coefficient

Now, the other assumption that is employed in the literature is
evaluated: models that neglect dispersion effects. The analytical
solution of this type of models is:

q
�
x*
� ¼ Tðx*Þ � Tw

Ti � Tw
¼ e�a2x* ; (21)

where the new decay rate (a2) is calculated neglecting the diffusion
term:

a2 ¼ �C; C ¼ 8NuD
PeD

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
: (22)

This assumption is based on the fact that the streamwise ther-
mal dispersion is much larger that the thermal diffusion [23] and
that the first one is negligibly small respect to the source term in
Equation (7) or respect to the convective term in the case of large
P�eclet numbers [33,47]. For the cases simulated in this study, it will
be shown that the a2-coefficient is a poor approximation of a,
meaning that even, in the FD region, this model is not adequate.
Table 4 shows calculated values of a2 for all the cases simulated and
the percentage difference with respect to the value of a. The per-
centage differences are between 10 and 40% in the majority of the
cases simulated. These differences decrease with the porosity and
Table 3
%DTFD and DLFD for all cases simulated.

%DTFD DLFD (x*)

ReD ¼ 1 ReD ¼ 10 ReD ¼ 75 ReD ¼ 1 ReD ¼ 10 ReD ¼ 75

a) 55% porosity
1000 �12.0 �16.0 �28.0 �1.3 �1.8 �2.5
2500 �16.0 �18.5 �35.0 �4.0 �4.5 �6.3
5000 �18.0 �20.5 �39.0 �8.0 �8.8 �12.0
7500 �19.0 �21.5 �40.0 �11.8 �12.5 �16.5
10000 �19.8 �22.0 �41.0 �15.0 �16.0 �20.5
b) 75% porosity
500 �11.0 �16.0 �25.0 �1.5 �2.0 �2.5
1000 �14.0 �19.0 �30.0 �3.5 �4.5 �5.0
2500 �16.5 �22.0 �35.8 �8.8 �11.0 �12.0
5000 �18.0 �23.3 �36.0 �17.0 �20.0 �20.0
7500 �18.8 �23.5 �35.8 �23.5 �27.0 �26.5
10000 �19.0 �23.5 �35.0 �29.0 �33.0 �32.0
c) 95% porosity
200 �5.5 �9.0 �14.8 �1.5 �2.0 �3.0
500 �7.5 �11.5 �19.8 �4.0 �5.8 �9.0
1000 �8.7 �13.3 �23.3 �9.0 �12.0 �19.0
2500 �11.0 �16.0 �27.0 �21.0 �31.0 �50.0



Table 4
Calculated values for a2 and its percentage difference respect to a.

ReD ¼ 1 ReD ¼ 10 ReD ¼ 75

a2 % difference a2 % difference a2 % difference

a) 55% porosity
50 1.2609 �17 1.3051 �16 1.5036 25
100 0.7051 �16 0.7305 �17 0.8738 29
200 0.3852 �15 0.3985 �18 0.4959 30
500 0.1743 �14 0.1802 �17 0.2338 31
1000 0.0959 �14 0.0992 �17 0.1331 33
2500 0.0434 �14 0.0451 �17 0.0642 35
5000 0.0240 �14 0.0251 �17 0.0378 37
7500 0.0172 �14 0.0181 �17 0.0281 37
10000 0.0136 �15 0.0144 �17 0.0230 38
b) 75% porosity
50 0.5436 �15 0.5858 �20 0.6701 �28
100 0.2984 �14 0.3225 �19 0.3922 �28
200 0.1653 �13 0.1789 �18 0.2306 �29
500 0.0761 �13 0.0828 �18 0.1161 �31
1000 0.0422 �13 0.0464 �19 0.0690 �33
2500 0.0195 �14 0.0217 �19 0.0345 �35
5000 0.0111 �14 0.0125 �20 0.0207 �36
7500 0.0081 �14 0.0092 �19 0.0155 �35
10000 0.0066 �14 0.0075 �20 0.0126 �34
c) 95% porosity
10 0.4438 �8 0.5057 �11 0.5272 �11
50 0.1167 �6 0.1351 �10 0.1513 �12
100 0.0663 �6 0.0763 �10 0.0879 �14
200 0.0377 �6 0.0430 �10 0.0508 �18
500 0.0178 �6 0.0202 �10 0.0241 �19
1000 0.0100 �6 0.0114 �11 0.0134 �21
2500 0.0047 �6 0.0052 �11 0.0060 �23
5000 0.0026 �2 0.0029 �6 0.0032 �19
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increase with ReD. This implies that the temperature predicted by
the model rapidly deviates from the data.

It is also important to note that although in the clear flow case
the streamwise diffusion term is negligible in the limit of large
P�eclet numbers, for the macroscopic model and laminar flows it is
not. Specifically, if Equation (7) is rescaled so that the coefficient of
the convective term is 1, the coefficient of the diffusion term is then
rescaled according to Equation (20):

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
2

1
PeD

 
1þ kD�xx

kf

!
: (23)

And knowing that kD�xx=kffPe2D (see for example [23]), it is
concluded that this term cannot be neglected in the limit of high
PeD because AfPeD while the coefficient of the convective term is 1.
5. Concluding remarks

The performance of the macroscopic energy equation model for
laminar flows through porous media has been studied and
analyzed. For that purpose, a large set of numerical simulations
were carried out. These simulations allowed to obtain the space
evolution of the macroscopic temperature in a simple porous me-
dium by averaging microscopic numerical results. The domain was
large enough to allow simulations of laminar flowwith large P�eclet
numbers (PeD ¼ 104).

As in the well known case of the heat transfer in a channel, the
macroscopic temperature exhibits two regions regarding the heat
transfer process: a developing region and a fully developed region.
In the first region, the macroscopic temperature does not obey the
exponential law. The length of the developing regionwas defined as
the location where the decay rate of the non-dimensional tem-
perature (a), calculated with the FD model, is within 5% of its FD
value. With this definition, it is found that the TEL is relatively large
for large PeD numbers. In particular, the TEL is larger than 2 REVs in
a row for PeD larger than 1000, 500 and 200 for 55, 75 and 95%
porosity respectively. Additionally, the TEL can be as large as 10, 20
and 66 REVs in a row for the same porosities and PeD ¼ 5000. This
quantity was shown to increase with the Prandt number and ReD
but at a lower rate than that found in the clear channel flow case. It
also increases approximately an order of magnitude changing the
porosity from 55% to 95% for fixed ReD and PeD. These results allow
to conclude that the thermal entrance effect cannot be neglected
for large PeD numbers.

Data in the fully developed region is characterized by an expo-
nential decay of the non-dimensional temperature. In this region,
the fully developed model has an analytical solution characterized
by a decay rate dependant on the macroscopic parameters, geom-
etry and flow conditions. This decay rate was calculated based on
numerical data and computed based on model assumptions. The
agreement between both quantities was excellent proving that the
fully developed model can accurately describe the fully developed
region. Moreover, it was found that the decay rate scales with
PeD�0:8 and that the exponent is fairly independent on the porosity,
flow conditions and fluid properties for the large range of param-
eters simulated in this study.

Another important aspect considered in this study was the
evaluation of two assumptions that are often made when homo-
geneous models are employed. One of them is the assumption of
the fully developed conditions from the entrance. It was proved
that for laminar flows and especially for large PeD numbers, this
assumption is not valid. If this assumption is made, it was found
that in the FD region there is a significant percentage different
between the numerical temperature and that obtained from the
model (%DTFD), or there is a significant difference between the
lengths needed to achieve a given temperature (DLFD) calculated
with the data and with the model. The other assumption often
made in the literature is to neglect streamwise dispersion effects.
The decay rate was then calculated based on this assumption. These
values were substantially different from those computed from the
data. Moreover, it was shown that for laminar flows, dispersion
effects cannot be neglected even in the limit of large Pe numbers
because the streamwise dispersion coefficient increases as PeD2 .

The results of this study indicate that for devices that employ
liquid metals or gases as working fluids (Pr < 1) it is valid to neglect
the TEL at macroscopic scale (the PeD number is lower than 75 in
the steady laminar regime). However, for working fluids such as
water or freon (1 < Pr < 50), depending on the porosity and ReD
number, the TEL will be measurable but bounded by approximately
5 REVs. Also, for working fluids with high Pr numbers such as en-
gine oils or some alcohols (Pr > 100), the FDmodel is not applicable
and the TEL will drastically extend for distances larger than those
computed in this study. One application that exemplified the last
case is the power transformers that employ dielectric oil as a
cooling fluid.
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