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Inhomogeneous diffusion and ergodicity breaking induced by global memory effects
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We introduce a class of discrete random-walk model driven by global memory effects. At any time, the right-left
transitions depend on the whole previous history of the walker, being defined by an urnlike memory mechanism.
The characteristic function is calculated in an exact way, which allows us to demonstrate that the ensemble of
realizations is ballistic. Asymptotically, each realization is equivalent to that of a biased Markovian diffusion
process with transition rates that strongly differs from one trajectory to another. Using this “inhomogeneous
diffusion” feature, the ergodic properties of the dynamics are analytically studied through the time-averaged
moments. Even in the long-time regime, they remain random objects. While their average over realizations
recovers the corresponding ensemble averages, departure between time and ensemble averages is explicitly
shown through their probability densities. For the density of the second time-averaged moment, an ergodic limit
and the limit of infinite lag times do not commutate. All these effects are induced by the memory effects. A
generalized Einstein fluctuation-dissipation relation is also obtained for the time-averaged moments.
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I. INTRODUCTION

Random-walk dynamics is one of the more simple nonequi-
librium models that have been applied in diverse kinds of
problems arising in physics, biology, economics, etc. In their
standard Markovian formulation [1,2], the second moment of
these diffusive processes grows linearly in time, a property
shared by Brownian motion. Anomalous (sub and super)
diffusive processes [3,4] depart from the linearity condition.

The temporal dependences of the moments of a random
walk are defined from an ensemble of realizations. Neverthe-
less, single-particle tracking microscopy permits us to define
the moments from an alternative temporal moving average
performed with only one single trajectory [5–7]. From a
physical point of view, this technique allows us to ask about
the ergodic properties of a diffusion process, even when it does
not have a stationary state.

In different tracking experiments performed with biophysi-
cal arrangements [7–10], it was found that the diffusion coeffi-
cient (which parametrizes the time-averaged second moment)
becomes a random object that assumes different values for
each realization. This distribution of diffusion coefficients
renders the process inhomogeneous in the sense that in an
ensemble of simple diffusers, each one has a different diffusion
coefficient [11]. In addition to this feature, the time-averaged
second moments are characterized by a subdiffusive behavior.
Both properties lead to weak ergodicity breaking. That is,
in contrast to strong ergodicity breaking, time and ensemble
averages differ even when the system is able to visit the full
available phase space. These striking experimental results can
be captured through a continuous-time random-walk model
with waiting time distributions characterized by power-law
behaviors [11–13]. These results triggered the study of the
ergodic properties of diverse anomalous diffusion processes
[14–26] from a similar perspective.

The main goal of this paper is to explore whether the
inhomogeneous property of a diffusion process (asymptotic
randomness of the time-averaged moments) along with its
associated weak ergodicity breaking [11,12] may also be

induced by the presence of strong memory effects in stochastic
dynamics. Specifically, we are interested in globally correlated
dynamics, where the walker transition depends on its whole
previous history or trajectory.

It is known that globally correlated stochastic dynamics
leads to anomalous diffusion processes [27–35]. On the other
hand, we remark that the interplay between memory effects and
weak ergodicity breaking was study previously, such as, for
example, in correlated continuous-time random-walk models
[36,37], single-file diffusion [38], and fractional Brownian-
Langevin motion [39]. Here, we consider a different kind
of memory process. The model consists in a random walker
whose transitions depend on the whole previous history of
transitions. The right-left jump probabilities are defined by
an urnlike mechanism [40–44], which does not fulfill the
standard central limit theorem [44]. The ensemble dynamics
becomes superdiffusive (ballistic). Furthermore, in contrast
with other correlation mechanisms, here each realization is
asymptotically equivalent to those of a biased Markovian
walker but with (random) transition rates that assume different
values for each realization. This property leads to random time
averages and their associated ergodicity breaking.

We consider diffusive nonstationary dynamics (the statistics
is not invariant under a time shift). Similarly to the case of
continuous-time random walks (see, for example, Refs. [12]
and [45]), the studied model yields statistical laws for
ergodicity breaking that are different from those obtained from
dynamics with a stationary state, case analyzed in Ref. [46].
In addition, here a generalized Einstein fluctuation-dissipation
relation is established [12,47,48] for the time-averaged mo-
ments.

The paper is outlined as follows. In Sec. II, we introduce
the stochastic dynamics that defines the globally correlated
random walk. Its ensemble properties are studied through
its characteristic function, which allows us to calculate its
moments and probability evolution. In Sec. III, the time-
averaged moments and the ergodic properties are analyzed.
In Sec. IV, a generalized Einstein relation is obtained from
the time-averaged moments. Section V is devoted to the
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conclusions. Calculus details that support the main results are
provided in the Appendixes.

II. GLOBAL CORRELATED RANDOM-WALK DYNAMICS

We consider a one-dimensional random walk where both
the time and position coordinates are discrete. In each discrete
time step (t → t + δt), the walker perform a jump of length
δx to the right or to the left. For simplicity, time is measured
in units of δt. Then, t = 0,1,2, . . . . The stochastic position Xt

at time t is

Xt = X0 +
t∑

t ′=1

σt ′ . (1)

Here, X0 is the initial position, and σt = ±δx is a random
variable assigned to each step. The stochastic dynamics of
the variables {σt ′ }tt ′=1 is as follows. At t = 1 (first jump or
transition), the two possible values are chosen with probability

P (σ1 = ±δx) = q±, (2)

where the weights satisfy q+ + q− = 1. The next values are
determined by a conditional probability T (σ1, . . . σt |σt+1) [49]
that depends on the whole previous jump trajectory: σ1, . . . σt .

Different memory mechanisms can be introduced through
T (σ1, . . . σt |σt+1), such as, for example, in the elephant
random-walk model [27–29]. Here, we analyze an alternative
urnlike dynamics [46], where

T (σ1, . . . σt |σt+1 = ±δx) = λq± + t±
t + λ

. (3)

In this expression, λ is a positive free dimensionless parameter.
Furthermore, t+ and t− are the number of times that the
walker jumped (up to time t) to the right and to the left,
respectively, t = t+ + t−. Hence, with probability λ/(t + λ)
the walker jumps to the right or to the left with weights q+
and q−, respectively. Complementarily, the jump is chosen
in agreement with the weights t±/(t + λ), which gives the
dependence of the dynamics over the whole previous jump
trajectory.

Notice that in the limit λ → ∞, independent random vari-
ables with probability q± are obtained. Hence, the stochastic
dynamics becomes an usual memoryless random walk. In the
limit λ → 0, the random variables σt assume the same value
as σ1. Therefore, a deterministic behavior follows after the first
jump.

Given the transition probability (3), the set of random
variables {σt } is interchangeable [44]. Therefore, their joint
probability density is invariant under arbitrary permutation of
its arguments. In consequence, the probability of the variables
σt (jump length) is independent of t, P (σt = ±δx) = q±. The
average jump length reads

〈σ 〉 ≡
∫

dσ P (σ )σ = δx(q+ − q−). (4)

Then, for q+ �= q− a biased random walk is obtained, 〈σ 〉 �= 0.

The second jump moment is

〈σ 2〉 ≡
∫

dσ P (σ )σ 2 = δx2. (5)

Notice that both statistical moments are finite.

The initial condition X0 along with the transition probabil-
ity (3) completely define the stochastic dynamics. Below, we
characterize its statistical properties.

A. Characteristic function

The stochastic process Xt can be described through

xt ≡ Xt − X0 =
t∑

t ′=1

σt ′ , (6)

which measures the departure with respect to the initial
condition X0. Its characteristic function is defined by

Qt (k) ≡ 〈exp(ikxt )〉. (7)

Here, 〈· · · 〉 denotes an average over an ensemble of realiza-
tions. A close recursive relation for Qt (k) can be obtained as
follows. At time t + 1, it can be written as

Qt+1(k) =
〈
eikxt

∑
σ=±δx

T (σ1, . . . σt |σ )eikσ

〉
. (8)

Here, we take into account that the random variable σt+1 is
chosen in agreement with T (σ1, . . . σt |σt+1). Notice that the
average includes all possible random values of {σi}i=t

i=1, which
in turn define all possible realizations of xt . From Eq. (3), we
get

Qt+1(k) = Qt (k)
λ

t + λ

∑
μ=±

qμeikδxμ

+ 1

t + λ

∑
μ=±

〈eikxt tμ〉eikδxμ , (9)

where for shortening the expression we defined δx± ≡ ±δx.

Given that xt = δx(t+ − t−), the derivative of the characteris-
tic function (7) can be written as

d

dk
Qt (k) = iδx〈eikxt (t+ − t−)〉. (10)

Hence, after writing eikδxμ = cos(kδxμ) + i sin(kδxμ), by us-
ing that t = t+ + t− and q+ + q− = 1 [50], Eq. (9) straight-
forwardly leads to the closed recursive relation

Qt+1(k) = cos(kδx)Qt (k) + 1

t + λ
sin(kδx)

1

δx

d

dk
Qt (k)

+i(q+ − q−)
λ

t + λ
sin(kδx)Qt (k). (11)

This is the main result of this section. It completely character-
izes the probability and moments of xt .

We notice that in the limit λ → 0, the character-
istic function is Qt (k) = 〈exp(iktσ1)〉 = q+ exp(iktδx) +
q− exp(−iktδx), which consistently satisfies Eq. (11) with
λ = 0. In fact, after the first event, the next ones assume
the same value, xt = tσ1 [see Eq. (3)]. In the limit λ →
∞, the solution of Eq. (11) is Qt (k) = 〈exp(ikσ1)〉t =
[q+ exp(ikδx) + q− exp(−ikδx)]t , which corresponds to the
characteristic function of a Markovian random walk where the
steps σt are independent random variables.
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B. Moments behavior

From the characteristic function Qt (k), the moments can
be obtained by differentiation as

〈xt 〉 = −i
d

dk
Qt (k)

∣∣∣∣
k=0

, 〈x2
t 〉 = − d2

dk2
Qt (k)

∣∣∣∣
k=0

. (12)

For the first moment, Eq. (11) leads to the recursive relation

〈xt+1〉 = 〈xt 〉
[

1 + 1

t + λ

]
+ λ

t + λ
〈σ 〉, (13)

where the average jump length 〈σ 〉 is given by Eq. (4). The
solution of this equation is

〈xt 〉 = 〈σ 〉t = δx(q+ − q−)t. (14)

Hence, the bias induced by (q+ − q−) leads to a linear
increasing of 〈xt 〉.

For the second moment, it follows the recursive relation

〈x2
t+1〉 = 〈x2

t 〉
[

1 + 2

t + λ

]
+ 2λ

t + λ
〈xt 〉〈σ 〉 + 〈σ 2〉, (15)

whose solution is given by

〈x2
t 〉 = 〈σ 2〉

1 + λ
(t2 + tλ) + 〈σ 〉2λ

1 + λ
(t2 − t). (16)

From Eqs. (14) and (16), the second centered moment reads

〈x2
t 〉 − 〈xt 〉2 =

[ 〈σ 2〉 − 〈σ 〉2

1 + λ

]
(t2 + tλ). (17)

Hence, the memory effects lead to a superdiffusive behavior,
which in the asymptotic time regime becomes ballistic. The
ballistic regime is valid at any time when λ → 0. Consistently,
in the limit λ → ∞ (memoryless case) it follows that

〈x2
t 〉 − 〈xt 〉2 = [〈σ 2〉 − 〈σ 〉2]t, (18)

which corresponds to an expected standard diffusive behavior.

C. Probability evolution

After Fourier inversion, the characteristic function leads to
a recursive relation for the probability Pt (x) of xt . We get [51]

Pt+1(x) = W+
t Pt (x − δx) + W−

t Pt (x + δx), (19)

where

W±
t = 1

2

{
1 ± 1

t + λ

[(
x ∓ δx

δx

)
+ λ(q+ − q−)

]}
. (20)

The evolution (19), which is valid for t � 1, describes a
hopping process with transitions W±

t . In the limit λ → ∞,

it follows that W±
t = q±, recovering a standard random

walk. For finite λ, the memory effects appear through W±
t .

Furthermore, for Xt the hopping also depends on the initial
condition (x → X − X0), which is a non-Markovian property
shared by the elephant random-walk model [27].

An interesting aspect of the evolution (19) is given by its
continuous limit. It follows by taking the limits in which both
the length jump (δx → 0) and the time interval between jumps
(δt → 0) vanish. Then, we can approximate [for simplicity, the
(dimensional) continuous time is also denoted by t]

Pt (x ∓ δx) → Pt (x) ∓ δx
∂

∂x
Pt (x) + δx2

2

∂2

∂x2
Pt (x), (21)

along with

Pt+1(x) − Pt (x) → δt
∂

∂t
Pt (x). (22)

Introducing these approximations in Eq. (19), we obtain the
equation

∂

∂t
Pt (x) = D

∂2

∂2x
Pt (x) − 1

t + tλ

∂

∂x
[xPt (x)]

− tλ

t + tλ
V

∂

∂x
Pt (x), (23)

where the parameters are

D ≡ 1

2

δx2

δt
, V ≡ (q+ − q−)

δx

δt
, tλ ≡ λδt. (24)

The Fokker-Planck equation (23) corresponds to a Brown-
ian particle driven by a harmonic potential with spring constant
1/(t + tλ). A similar result was obtained in Ref. [27] for the
elephant random-walk model.

In the limit λ → ∞, Eq. (23) becomes

∂

∂t
Pt (x) = D

∂2

∂2x
Pt (x) − V

∂

∂x
Pt (x). (25)

Consistently, this equation corresponds to the probability
evolution of a Brownian particle with diffusion coefficient D

and subjected to a constant force proportional to V.

The evolution Eq. (23) also leads to a superdiffusive ballistic
process. Its solution can be written as [Pt=0(x) = δ(x)]

Pt (x) =
√

1

2πσ 2
t

exp

[
− (x − V t)2

2σ 2
t

]
, σ 2

t ≡ 2
D

tλ
t(t + tλ).

(26)

Hence, the (time-dependent) harmonic potential is unable to
induce a (time-independent) stationary state. In the limit λ →
0, the previous solution reads Pt (x) = δ(x − V t).

III. INHOMOGENEOUS DIFFUSION AND
ERGODICITY BREAKING

The ergodic properties of a time series X(t) associated with
an arbitrary random walker can be analyzed through the time-
averaged moments [11,12], which are defined by the following
temporal moving average:

δκ (t,�) ≡
∫ t−�

0 dt ′[X(t ′ + �) − X(t ′)]κ

t − �
. (27)

Here, � is called the lag (or delay) time, and κ is a natural
number, κ = 1,2, . . . .

For ergodic diffusion processes, in the limit of increasing
times, δκ (t,�) recovers the ensemble behavior of the corre-
sponding moments, that is,

δκ (�) ≡ lim t→∞δκ (t,�) = 〈[X(�) − X(0)]κ〉. (28)

Here, the initial condition X(0) follows from the translational
invariance of Eq. (27). A weaker condition can be formulated
by demanding the equality of the asymptotic behaviors (� →
∞) of both terms in Eq. (28).

Nonergodic processes do not fulfill Eq. (28). In particular,
inhomogeneous diffusion corresponds to the case in which
δκ (t,�), even in the long-time limit, becomes a random object
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FIG. 1. Different realizations (full lines) of the first time-averaged
moment δ1(t,�) [Eq. (27)] corresponding to the globally correlated
random-walk dynamics defined by Eq. (3). The parameters are
λ = 2, q+ = 0.8, q− = 0.2, and t = 200. The dotted (black) line
corresponds to the analytical expression (34), which gives the
ensemble mean value.

that assumes different values for each particular realization.
Below we study the time-averaged moments δκ (t,�) for the
random walk introduced in the previous section.

A. Asymptotic randomness

For the proposed model, given that the permanence time
in each state is finite, a central ingredient that determines its
ergodic properties is the asymptotic behavior (limt→∞) of the
transition probability T (σ1, . . . σt |σt+1 = ±δx). For the urn
model, Eq. (3), it is known that it converges to random values
f± [43,46], that is,

lim
t→∞ T (σ1, . . . σt |σt+1 = ±δx) = f±, (29)

where 0 � f± � 1 and f+ + f− = 1. In each particular real-
ization, f± assume different random values. Their probability
density P(f±) is a β distribution [43,46]

P(f±) = 
(λ)


(λ+)
(λ−)
f

λ+−1
+ f

λ−−1
− , (30)

where λ± ≡ λq±, and 
(x) is the Gamma function. For
clarity, these results are rederived in Appendix A. The average
over realizations of f± is 〈f±〉 = ∫ 1

0 df+P(f±)f± = q±. For
alternative memory mechanisms, such as that associated
with the elephant random-walk model [27–29], the previous
randomness is absent [46].

The convergence of the transition probability to random
values leads straightforwardly to an inhomogeneous diffusion
process. In fact, each realization becomes equivalent to that of
a biased Markovian random-walk process with transition rates
f±. The bias arises because (even when q+ = q−) in general
f+ �= f−.

In the limit λ → ∞, from Eq. (30) it follows that P(f±) =
δ(f± − q±), implying that the fractions f±, at any stage of
the diffusion process, assume deterministically the values q±.

This case corresponds to the absence of memory and leads to
a standard diffusion process [defined by Eq. (18)].

FIG. 2. Different realizations (full lines) of the second time-
averaged moment δ2(t,�) [Eq. (27)] corresponding to an unbiased
globally correlated random-walk dynamics. The parameters are λ =
2, q+ = q− = 1/2, and t = 200. The dotted (black) line corresponds
to the analytical expression (35), which gives their ensemble mean
value.

The asymptotic property (29) implies that at large times
the time-averaged moment δκ (�) = lim t→∞δκ (t,�) becomes
a random variable. In fact, its average over realizations can be
written as

〈δκ (�)〉 = 〈δκ (�,f±)〉 =
∫ 1

0
df+P(f±)δκ (�,f±). (31)

In this expression, δκ (�,f±) corresponds to the (asymptotic)
time-averaged moment corresponding to a memoryless ran-
dom walk with transition rate T (σ1, . . . σt |σt+1 = ±δx) = f±.

Given the ergodicity of this kind of dynamics, under the
replacements q± → f±, t → �, from Eqs. (28) and (14) we
get

δ1(�,f±) = �δx(f+ − f−). (32)

Similarly, taking the limit λ → ∞ (memoryless case) and
under the same replacements, from Eq. (16) we get

δ2(�,f±) = δx2{(f+ − f−)2�2 + [1 − (f+ − f−)2]�}. (33)

Equations (32) and (33) define the random values (written
in terms of f±) that assume the time-averaged moments (27)
in the long-time limit. To check these results, in Fig. 1 we
plot δ1(t,�) for the global correlated random walk defined by
Eq. (3). From each generated realization, δ1(t,�) is obtained
from its definition [Eq. (27)]. Consistent with the analysis, each
curve (for � < t) can be very well fitted by the approximation
(32), that is, a linear behavior in � is observed.

In Fig. 2, for an unbiased random walk (q1 = q2),
we plot different realizations corresponding to the second
time-averaged moment δ2(t,�). Consistent with Eq. (33), a
quadratic behavior is observed for � < t.

For both δ1(t,�) and δ2(t,�), the behaviors predicted by
Eqs. (32) and (33) lose their validity when � ≈ t. In fact, in
both figures an appreciable deviation can be observed in that
regime. The fraction of (lag) time � over which that happens
diminishes for increasing t.
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FIG. 3. Average over realizations of the first (a) and second (b)
time-averaged moments δ1(t,�) and δ2(t,�). The parameters are the
same as in Figs. 1 and 2, respectively. The circles correspond to a
numerical average performed with 103 realizations. The full lines
correspond to Eqs. (34) and (35), respectively.

B. Ergodicity in mean value

The previous figures explicitly show that, contrary to er-
godic dynamics, here the memory effects lead to a randomness
of the time-averaged moments. Their average over an ensemble
of realizations can be performed by using the probability
distribution (30). Using that 〈f±〉 = ∫ 1

0 df+P(f±)f± = q±,

Eq. (32) leads to

〈δ1(�)〉 = �〈σ 〉. (34)

Furthermore, using that 〈(f+ − f−)2〉 = [1 + λ(q+ −
q−)2]/(1 + λ), from Eq. (33) it follows that

〈δ2(�)〉 = 〈σ 2〉
1 + λ

(�2 + �λ) + 〈σ 〉2λ

1 + λ
(�2 − �). (35)

The last two expressions, under the replacement � → t ,
recover Eqs. (14) and (16), respectively. Thus, the first two
moments satisfy the ergodicity condition (28) only when
averaged over realizations. The validity of both results,
Eqs. (34) and (35), was checked numerically. In Fig. 3, the
solid black lines are defined by these equations, while the
circles correspond to an average over realizations, such as
those shown in Figs. 1 and 2.

Interestingly, the previous property is also valid for higher
time-averaged moments,

〈δκ (�)〉 = lim t→∞〈δκ (t,�)〉 = 〈[X(t) − X(0)]κ〉|t=�. (36)

Thus, in terms of the characteristic function (7), they can be
written as

〈δκ (�)〉 = i−κ dκ

dkκ
Q�(k)

∣∣∣∣
k=0

. (37)

The equality (36) is demonstrated in Appendix B. We notice
that for an arbitrary stochastic signal X(t) we may consider
the equality (36) as a definition of ergodicity in mean value.

C. Probability densities

While the asymptotic value δκ (�) = lim t→∞δκ (t,�) of
the time-averaged moments is random, Eq. (36) shows that
their average over realizations recovers the ensemble behavior.
Therefore, we can affirm that the random walker is ergodic on
average. The lack of ergodicity is given by the random nature
of δκ (�). In fact, higher moments 〈[δκ (�)]n〉 (n � 2) cannot

FIG. 4. Probability density P (ξ1) corresponding to the normal-
ized first time-averaged moment, Eq. (38), with κ = 1. The full lines
correspond to the analytical result [Eq. (41)]. The circles correspond
to a numerical simulations with 104 realizations. The parameters are
q+ = 0.8, q− = 0.2, � = 100, and t = 1000. (a) λ = 1, (b) λ = 2,

(c) λ = 10, and (d) λ = 40.

be related with the ensemble behavior. To characterize the
lack of ergodicity, we introduce the normalized (asymptotic)
time-averaged moments

ξκ ≡ lim
t→∞

δκ (t,�)

〈δκ (t,�)〉 = δκ (�,f±)

〈δκ (�)〉 , (38)

their probability density being denoted by P (ξκ ). Ergod-
icity in probability density corresponds to the absence of
randomness,

P (ξκ ) = δ(ξκ − 1). (39)

For κ = 1, from Eqs. (32) and (34) we get

ξ1 = (f+ − f−)

(q+ − q−)
, (40)

which is a random variable independent of �. It characterizes
the asymptotic (random) bias of the globally correlated random
walk. Its probability distribution from Eq. (30) reads

P (ξ1) = 1

N |δq|(1 + δqξ1)λ+−1(1 − δqξ1)λ−−1. (41)

Here, δq ≡ q+ − q−, and as before λ± = λq±. The normal-
ization constant is N = 2λ−1
(λ+)
(λ−)/
(λ). The den-
sity has support in the interval defined by |ξ1| � 1/|δq|,
and consistently with the definition (38) it satisfies 〈ξ1〉 =∫ +1/|δq|
−1/|δq| P (ξ1)ξ1dξ1 = 1. Furthermore, for λ < ∞ it departs

from Eq. (39).
In Fig. 4 we plot a set of probability densities P (ξ1) along

with their numerical versions. They were determinate from a
set of realizations such as those shown in Fig. 1. The analytical
expressions fit very well the numerical results. Depending on
the memory parameter λ, the density develops very different
dependences. For increasing λ, the density is peaked around 1
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[see Fig. 4(d)], which indicates that the ergodic regime is
approached.

The second normalized moment [κ = 2 in Eq. (38)] from
Eq. (33) can be written as

ξ2 = a(f+ − f−)2 + b, (42)

where a and b are functions that also follow from Eq. (33) and
only depend on � and λ. From Eq. (30) we get the probability
density

P (ξ2) = 1

N
1

|a|
√

a

ξ2 − b

(
1 − ξ2 − b

a

) λ
2 −1

. (43)

The variable ξ2 takes values in the interval (b,a + b). Con-
sistent with Eq. (38), it satisfies 〈ξ2〉 = ∫ a+b

b
P (ξ2)ξ2dξ2 =

b + a/(1 + λ) = 1.

For an unbiased random walk, q+ = q− = 1/2, we obtain
N = 2λ−1
2(λ/2)/[
(λ)], while from Eq. (35) it follows that

a = (� − 1)(1 + λ)

� + λ
, b = 1 + λ

� + λ
, (44)

which satisfy the previous condition b + a/(1 + λ) = 1.

In the limit λ → ∞ (with finite �), the density P (ξ2)
becomes a δ Dirac function,

lim
λ→∞

P (ξ2) = δ(ξ2 − 1), (45)

which corresponds to the ergodic regime. This results follow
straightforwardly from Eqs. (42) and (30). On the other hand,
in the limit � → ∞ (with finite λ), the parameter a goes to
1 + λ while b vanishes. Hence,

lim
�→∞

P (ξ2) = 1

N

√
1

(1 + λ)ξ2

[
1 − ξ2

1 + λ

] λ
2 −1

. (46)

From here, it is simple to prove that both kinds of limits do not
commutate,

lim
�→∞

lim
λ→∞

P (ξ2) �= lim
λ→∞

lim
�→∞

P (ξ2). (47)

In fact,

lim
�→∞

lim
λ→∞

P (ξ2) = δ(ξ2 − 1), (48)

while from Eq. (46) we get the Gamma density,

lim
λ→∞

lim
�→∞

P (ξ2) =
√

1

2πξ2
exp

[
−ξ2

2

]
. (49)

In spite of this difference, notice that the previous two
probability densities lead to 〈ξ2〉 = 1.

To check the previous results, in Fig. 5 we plot P (ξ2)
obtained numerically from a set of realizations such as those
shown in Fig. 2. For λ � 1, the distribution assumes a U -like
form [Fig. 5(a)]. For higher values of λ, added to the power-law
behavior predicted by Eq. (43) [Fig. 5(b)], P (ξ2) approaches a
delta Dirac function [Fig. 5(c)] centered in ξ2 = 1 [Eq. (45)].
When � � λ, the distribution approaches the limit defined
by Eq. (46), Fig. 5(d), which in the scale of the plot is almost
indistinguishable from the behavior (49). Therefore, Figs. 5(c)
and 5(d) explicitly show the fact that in general the ergodic
limit and the limit of infinite delay times do not commutate for
the normalized moments.

FIG. 5. Probability density P (ξ2) corresponding to the normal-
ized second time-averaged moment, Eq. (38), with κ = 2. The full
lines correspond to the analytical result [Eq. (43)]. The circles
correspond to a numerical simulations with 5 × 104 realizations. The
parameters are q+ = q− = 1/2 and t = 1000. (a) λ = 1, � = 10;
(b) λ = 2, � = 10; (c) λ = 10, � = 10; and (d) λ = 40, � = 500.

D. Correlations between time-averaged moments

In the previous section, we characterized the probability
densities of the asymptotic first and second time-averaged
moments. It is interesting to note that these objects are
correlated between them. In fact, from Eqs. (32) and (33) it
is possible to obtain the relation δ2(�,f±) = [δ1(�,f±)]2(1 −
1/�) + δx2�, which implies that

lim
t→∞ δ2(t,�) = lim

t→∞[δ1(t,�)]2

(
1 − 1

�

)
+ δx2�. (50)

Therefore, in the long-time limit, the realizations of δ1(t,�)
and δ2(t,�) become proportional. The realizations shown
in Figs. 1 and 2 are consistent with this relation, which is
strictly valid in the limit t → ∞. In spite of this fact, due
to their different scaling with �, in the long-time regime
their probability densities develop very different behaviors [see
Eqs. (41) and (47)]. Relations such as that defined by Eq. (50)
also appear in higher time-averaged moments. In fact, for all
of them, their asymptotic behavior can always be written in
terms of the random variables f±.

IV. GENERALIZED EINSTEIN RELATION

The diffusion coefficient of a normal random-walk process
can be related to its mobility. This last coefficient gives the
proportionality between the force and the average velocity of
the walker when submitted to an external field. This is the
well-known Einstein (fluctuation-dissipation) relation [1–3].
For the present model, it is not possible to establish a similar
relation in terms of the ensemble behavior. In fact, the different
time dependences of the first two moments [see Eqs. (14) and
(17)] confirm this limitation. Given the ergodicity in mean
value defined by Eq. (36), the same drawback applies to the
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asymptotic time-averaged moments. Nevertheless, from the
correlation defined by Eq. (50) we realize that such a relation
can be obtained by introducing a centered (second) time-
averaged moment (second time-averaged cumulant), defined
as

δ∗
2 (t,�) ≡ δ2(t,�) − [δ1(t,�)]2. (51)

Here, δκ (t,�) (κ = 1,2) are the usual time-averaged moments
[Eq. (27)]. Denoting its asymptotic value as

δ∗
2 (�) ≡ lim

t→∞ δ∗
2 (t,�), (52)

its average over an ensemble of realizations can be written as

〈δ∗
2 (�)〉 = 〈δ∗

2 (�,f±)〉, (53)

where δ∗
2 (�,f±) from Eqs. (32) and (33) reads

δ∗
2 (�,f±) = δx2[1 − (f+ − f−)2]�. (54)

In contrast to δ2(�,f±) [Eq. (33)], here a linear dependence
with � is obtained. Similarly, using that 〈(f+ − f−)2〉 = [1 +
λ(q+ − q−)2]/(1 + λ), the average over realizations becomes

〈δ∗
2 (�)〉 = δx2 λ

1 + λ
[1 − (q+ − q−)2]�. (55)

The case q+ = q− and q+ �= q− define the unforced and
forced (driven) dynamics, respectively. Taking a dimensional
delay time (� → �/δt), from the previous expression and
Eq. (34) it follows that

〈δ∗
2 (�)〉q+=q− = 2D∗�, 〈δ1(�)〉q+�=q− = V �, (56)

where the (average) diffusion and (average) velocity coeffi-
cients are [compare with Eq. (24)]

D∗ ≡ 1

2

δx2

δt

λ

1 + λ
, V ≡ δx

δt
(q+ − q−). (57)

They can be related as

D∗ = λ

1 + λ

δx

2

V

(q+ − q−)
, (58)

which defines an Einstein-like relation. In fact, it relates the
diffusion coefficient corresponding to the centered (second)
time-averaged moment of the unforced dynamics with the
velocity of the first time-averaged moment for the forced case
[Eq. (56)].

The standard Einstein relation involves a thermodynamic
temperature [1–3]. Here, this dependence can be introduced by
assuming that the probabilities q± are given by a Boltzmann ex-
ponential factor (activated process) q± = exp[±δxF/2kT ]/Z
[3], where F is the external force, T is the temperature, k is
the Boltzmann constant, while Z guarantees the normalization
q+ + q− = 1. Thus,

q+ − q− = tanh

[
δxF

2kT

]
. (59)

In the limit F → 0, Eqs. (58) and (59) lead to

D∗ = λ

1 + λ
kT

(
V

F

)
. (60)

In the limit λ → ∞, we obtain the standard Einstein relation
[see, for example, Eq. (5.3) in Ref. [3]]. In fact, V/F is the

(average) mobility. For finite λ, the standard result is modified
by the memory of the dynamics, which introduces the factor
λ/(1 + λ). Furthermore, notice that the generalized relation
(60) does not characterize the ensemble dynamics. In fact, it
can only be established in terms of the time-averaged moments
[Eq. (56)], which satisfy

〈δ1(�)〉q+�=q− = 1 + λ

λ

(q+ − q−)

δx
〈δ∗

2 (�)〉q+=q− . (61)

From Eq. (59) this relation can be written as (F → 0)

〈δ1(�)〉F �=0 = 1 + λ

λ

F

2kT
〈δ∗

2 (�)〉F=0. (62)

A similar property was also found for subdiffusive continuous-
time random-walk models [12] and others anomalous diffusion
processes [47,48].

V. SUMMARY AND CONCLUSIONS

We introduced a discrete random-walk model driven by
global memory effects, where each walker step depends on the
previous number of performed left-right transitions [Eq. (3)].
After obtaining a recursive relation for its characteristic
function, we obtained its first moments. Given that the memory
mechanism may induce a bias, the first moment has a linear
dependence with time [Eq. (14)]. The second moment, event
in the absence of bias, develops a superdiffusive ballistic
behavior [Eq. (16)]. In a continuous time-space limit, the
probability density is governed by a (non-Markovian) local
in-time Fokker-Planck equation [Eq. (23)], being defined by an
effective harmonic-oscillator potential with a strength constant
inversely proportional to the elapsed time.

In the long-time regime, each realization is equivalent to
that of a biased Markovian walker with transitions rates that
differs from realization to realization. This kind of asymptotic
inhomogeneous diffusion is induced by the memory effects.
Consequently, and similarly to the case of subdiffusive
continuous-time random walks, the time-averaged moments
[Eq. (27)] become random objects (Figs. 1 and 2) with a
time-independent statistics. Their average over realizations
recovers the ensemble behavior obtained from the charac-
teristic function (Fig. 3). Nevertheless, due to their intrinsic
randomness, characterized through their probability densities
(Figs. 4 and 5), the diffusion process is nonergodic. For the
second-averaged moment, we find that the ergodic limit and
the limit of large delay times do not commutate [Eq. (47)].
Added to their randomness, we showed that in general the
time-averaged moments are correlated between all of them.

Due to the different time dependences of the first and second
moments, it is not possible to establish an Einstein-like relation
for the ensemble dynamics. Nevertheless, we showed that a
generalized relation can be formulated after introducing a cen-
tered (second) time-averaged moment (second time-averaged
cumulant) [Eq. (51)]. In contrast with the standard result, the
relation between the corresponding (average) diffusion and
(average) mobility coefficients is modified by the memory
control parameter [Eqs. (58) and (60)].

The present results, as well as the analyses performed
in Refs. [36–39], confirm that different kinds of mem-
ory processes may lead to weak ergodicity breaking, in
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particular that characterized by random time-averaged mo-
ments (inhomogeneous diffusion). It is expected that the same
kind of results arise in continuous (time and space) random-
walk models with finite residence times and finite average
jump lengths. On the other hand, conditions that guarantee that
a memory mechanism leads (or not) to ergodicity breaking are
not known. General criteria for solving this issue, as well as the
interplay between global memory effects and divergent resi-
dence times, jointly with the validity of the Einstein relation,
are interesting questions that emerge from the present analysis.
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APPENDIX A: PROBABILITY DENSITY OF THE
ASYMPTOTIC TRANSITION PROBABILITIES

Here, we derive the probability density (30)
of the asymptotic transition probabilities, f± =
limt→∞ T (σ1, . . . σt |σt+1 = ±δx) [Eq. (29)].

The joint probability P (σ1, . . . σt ) of obtaining the random
values σ1, . . . σt by using Bayes rule can be written as

P (σ1, . . . σt )=P (σ1)T (σ1|σ2) · · · T (σ1, . . . ,σt−1|σt ). (A1)

Given the transition probability Eq. (3), it is simple to check
that P (σ1, . . . σt ) only depends on the number of times t±
that the values ±δx were chosen. From this interchangeability
property, the probability Pt (t+,t−) of getting t± times the
values ±δx after t steps (t = t+ + t−) can be written as

Pt (t+,t−) = t!

t+!t−!


(λ)


(t + λ)


(t+ + λ+)


(λ+)


(t− + λ−)


(λ−)
, (A2)

where the property 
(n + x)/
(x) = x(1 + x)(2 +
x) · · · (n − 1 + x) was used. The combinatorial factor
takes into account all realizations with the same numbers t±.

In the limit x → ∞, the Stirling approximation 
(x) ≈√
2π/xe−xxx , which in the same limit leads to 
(x +

α)/
(x) ≈ xα , is valid. Using that n! = 
(n + 1), and ap-
plying the previous approximations to Eq. (A2), in the limit
t → ∞ it follows that

Pt (t+,t−) ≈ 
(λ)

tλ−1

t
λ+−1
+


(λ+)

t
λ−−1
−


(λ−)
. (A3)

By performing the change of variables t± → tf±, and by using
the fact that, due to normalization t = t+ + t− there is only one

independent variable (f+ + f− = 1), the previous expression
leads straightforwardly to the β distribution Eq. (30).

APPENDIX B: ERGODICITY IN MEAN VALUE

Here, we demonstrate the validity of Eqs. (36) and (37).
Their fulfillment implies that the random walk is ergodic
in mean value. The demonstration is closely related to the
de Finetti representation theorem for dichotomic variables
[40,44]. In the present context, we notice that the probability
Pt (t+,t−) [Eq. (A2)] can be written as

Pt (t+,t−) =
∫ 1

0
df+ P(f±)Pt (t+,t−,f±). (B1)

Here, P(f±) is given by Eq. (30) while Pt (t+,t−,f±) is
the counting probability for independent variables σi = ±δx

with transition probability T (σ1, . . . σt |σt+1 = ±δx) = f±.

Therefore, it is

Pt (t+,t−,f±) ≡ t!

t+!t−!
f

t+
+ f

t−
− . (B2)

Given that the characteristic function Qt (k) [Eq. (7)] can be
written as

Qt (k) =
t∑

t±=0

Pt (t+,t−) exp[ikδx(t+ − t−)], (B3)

where t+ + t− = t, Eq. (B1) allows us to write Qt (k) as an
average over the variables f±,

Qt (k) =
∫ 1

0
df+P(f±)Qt (k,f±), (B4)

where Qt (k,f±) is the characteristic function for independent
variables with transition probabilities f±,

Qt (k,f±) = [f+e+ikδx + f−e−ikδx]t . (B5)

Given that asymptotically the realizations of the random walk
converge to that of a memoryless process with transition rate
T (σ1, . . . σt |σt+1) = f± [Eq. (29)], in each realization the
(asymptotic) statistics of [x(t ′ + �) − x(t ′)], which define the
integral defining δκ (t,�) [Eq. (27)], does not depend on t

and is defined by Eq. (B5) under the replacement t → �. The
relation Eq. (37) is a straightforward consequence on this result
and Eq. (B4).
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