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Héctor A. Bahamonde • P. L. Peri • R. Alvarez •

A. Barneix • A. Moretto • G. Martı́nez Pastur

Received: 11 January 2012 / Accepted: 13 June 2012 / Published online: 28 June 2012

� Springer Science+Business Media B.V. 2012

Abstract In most temperate forest, nitrogen (N) is

considered a limiting factor. This becomes important

in extreme environments, as Nothofagus antarctica

forests, where the antecedents are scarce. Thinning

practices in N. antarctica forests for silvopastoral

uses may modify the soil N dynamics. Therefore, the

objective of this work was to evaluate the temporal

variation of soil N in these ecosystems. The mineral

extractable soil N, net nitrification and net N miner-

alization were evaluated under different crown cover

and two site quality stands. The mineral N extractable

(NH4
?–N ? NO3

-–N) was measured periodically.

Net nitrification and net N mineralization were

estimated through the technique of incubation of

intact samples with tubes. The total mineral extract-

able N concentration varied between crown cover

and dates, with no differences among site classes. The

lowest and highest values were found in the minimal

and intermediate crown cover, respectively. In the

higher site quality stand, the annual net N minerali-

zation was lower in the minimal crown cover reaching

11 kg N ha-1 year-1, and higher in the maximal

crown cover (54 kg N ha-1 year-1). In the lower site

quality stand there was no differences among crown

cover. The same pattern was found for net nitrification.

Thinning practices for silvopastoral use of these

forests, keeping intermediate crown cover values,

did not affect both N mineralization and nitrification.

However, the results suggest that total trees removal

from the ecosystem may decrease N mineralization

and nitrification.
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Introduction

Forest ecosystems generally base their long-term

sustainability in the natural maintenance of nutrient

cycles (Perry et al. 2008), forest structure and biodi-

versity conservation (Lencinas et al. 2011). Particu-

larly nitrogen (N) is considered a limiting factor for

growth in most temperate forests (Fisher and Binkley

2000), and particularly in extreme environments, as

Nothofagus antarctica (ñire) forests (Peri et al. 2008a).

Also, it is estimated that N mineralization is the

major source of mineral N availability for plants in

terrestrial ecosystems (Vitousek and Howarth 1991).

Furthermore, the transformations of N in the soil, as

mineralization and nitrification, are affected by envi-

ronmental factors such as temperature, soil moisture,

pH, light availability (MacDonald et al. 1995; Aciego

Pietri and Brookes 2008), as well as litter-fall quality

(Jarvis et al. 1996). Net nitrification rates can reflect

the potential for N losses, either through leaching or

by gaseous emission (Vitousek and Melillo 1979;

Vitousek and Matson 1985).

There are evidences reporting that canopy opening

modifies the biogeochemical cycle of elements

(Caldentey et al. 2001; Jussy et al. 2004). Thinning

practices in N. antarctica forests for silvopastoral uses

may modify the soil N dynamics through changes in

micro- environmental factors and lower potential N

return from litterfall (Peri et al. 2008b) or due to

increasing losses of nitrate by leaching (Feller et al.

2000). Furthermore, if the N absorption decreases in

the thinned stands (less number of trees) it may be

expected a higher availability of mineral N for the

understory plants. However, major soil moisture due to

an increase of water from rainfall in the forest gaps

created after thinning could increase the losses by

nitrate leaching. In Patagonian forests few studies in N

mineralization have been conducted. Mazzarino et al.

(1998a) and Satti et al. (2003) reported potential N

mineralization of Patagonian soil forests, and Alauzis

et al. (2004) evaluated the potential N mineralization of

N. pumilio forests affected by fire in northern Pata-

gonia. However all these studies were carried out under

laboratory conditions and there are not antecedents of

in situ N mineralization for N. antarctica forests.

Recently we have reported results related to the

effect of silvicultural practices of N. antarctica forest

under silvopastoral use on decomposition rates of

grass and tree leaves in different site qualities

(Bahamonde et al. 2012a). For a whole approach of

nutrient cycling in these ecosystems, it is necessary to

know the soil N dynamics related to the silvopastoral

use of these forests.

The aims of this study were to (1) quantify the

effects of different crown cover on the concentration

of extractable mineral soil nitrogen (NH4
?–N ?

NO3
-–N) and their temporal variation in two N.

antarctica stands growing in different sites qualities;

and (2) asses the net nitrification and net N mineral-

ization in these stands at different times of the year.

Materials and methods

Study sites

The study sites were located in pure N. antarctica

forests under silvopastoral use growing in two site

qualities (site classes) in the southwestern Patagonia

(Argentina): (1) site class IV (SCIV) (51� 130 2300S–

72� 150 3900W) where the mean dominant height (H) of

mature trees reached to 8.0 m and (2) site class V

(SCV) (51� 190 0500S–72� 100 4700W) where H reached

to 4.7 m (Ivancich et al. 2011). In each stand, an

adjacent area was selected without trees representing

the ecotone zone between forest and steppe.

The climate of the area is described as cold

temperate humid with a mean annual temperatures

5.5 and 8.0 �C, and precipitation (rain and snow)

ranging between 400 and 800 mm year-1 (Soto 2004).

Composite samples of five soil cores were taken

(0.3 m depth) at random under the tree crown

projection (0.5 m from main trunk), between tree

crowns (mean distances between trees of 8.2 m), and

the adjacent area without trees at each studied sites for

physical–chemical analysis.

Dasometric characteristics of the stands were

estimated within three circular plots of 500 m2. In

each plot, total number of trees, frequency of crown

classes (dominant, codominant, intermediate and

suppressed), diameter at breast height (DBH) and

total height were measured.

Environmental measurements

Through hemispherical photos, solar radiation inten-

sities (direct and diffuse), light transmissivity and

photosyntethically active radiation (PAR) reaching
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the soil were estimated in two contrasting crown cover

situations (under and between crowns), and an adja-

cent area without trees in each study site. This

provided 3 levels of crown cover.

Air and soil temperatures, and air relative humidity

were measured continuously every 2 h with a datal-

ogging system (HOBO H8 Family, Onset Computer

Corporation, USA), using sensors located at each

crown cover, in both studied site quality stands.

Periodically (at the same time of incubation of soil)

measurements of gravimetric soil moisture were

obtained from the first 0.3 m (n = 5) in each study

situation (crown cover and site class). Then, volumet-

ric soil moisture was calculated using soil bulk density

and the gravimetric measurements.

Details of soil analysis, dasometric characteristics

of the stands and environmental data of the studied

situations are provided in Bahamonde et al. (2012a).

Experimental design and biological measurements

In situ soil incubations

A factorial experiment design with crown cover, site

class and time as main factors with 3, 2 and 6 levels,

respectively was carried out. Five plots (replicates) of

2 9 2 m were setup at random in each crown cover.

This design was repeated in the two site class (SC)

stands. The concentration of mineral N extractable

(NH4
?–N ? NO3

-–N) was measured periodically at

30, 90, 150, 210, 360 and 450 days after 1st September

2005 through the technique of incubation of intact

samples with tubes. Advantages and disadvantages of

this method can be found in Raison et al. (1987). In situ

N mineralization was determined in samples taken

with PVC tubes (covered at the top), 20 cm high and

3.5 cm diameter, and incubated in the field over time.

All soil samples were transported to the laboratory

within 1-10 days after collection inside sealed plastic

bags under cool (5.0 �C) conditions. Initial and incu-

bated samples were analyzed for inorganic N (NH4
?–

N ? NO3
-–N) in fresh soil samples extracted with

2 M KCl. Net N mineralization was estimated as the

difference between NH4
?–N ? NO3

-–N in the incu-

bated minus the initial samples. Similarly net nitrifi-

cation was estimated as the difference in NO3
-–N

between successive samplings. The extractable min-

eral nitrogen concentration (NH4–N ? NO3–N) of

samples (before and after incubation) was obtained

through the method of micro distillation by steam

(Bremner and Keeney 1965) after extraction with KCl

2 M, using reagents Devarda and MgO (Mulvaney

1996). For each treatment, the amount of extractable

nitrogen per unit area (kg ha-1) was determined using

soil bulk density data. Sub-soil samples from each date

and location were dried in oven at 105 �C to determine

gravimetric water content and then soil moisture

volumetric content was calculated using the soil bulk

density. Thus, the concentrations and availability of

N were expressed on a dry basis. Annual nitrification

and N mineralization rates (kg ha-1 year-1) were

estimated by adding partial values from each evalua-

tion period and divided by the number of years of trial

duration.

Soil incubations under laboratory conditions

Similarly to the in situ mineralization, a factorial

design was implemented considering the crown cover,

site class and sampling date as factors with 3, 2 and 3

levels each, respectively. In October 2005, February

and April 2006, 5 samples (replications) were taken

from the top 0.2 m of soil in each studied situation. All

soil samples were kept cool (5.0 �C) in sealed plastic

bags and transported to the laboratory within 6–24 h

of collection. In the laboratory the samples were

incubated to determine the potential net nitrogen

mineralization under aerobic incubation method (Hart

and Binkley 1985). Fifty grams of each soil sample

were placed in containers of 250 ml, and incubated

along 4 weeks in darkness and under optimal condi-

tions of moisture (field capacity) and temperature

(25 �C). The extractable inorganic N (NH4
?–N ?

NO3
-–N), the net N mineralization and nitrification,

were measured and calculated in the same way as in

situ mineralization.

Data analysis

Dasometric characteristics of each study stand were

analysed by analysis of variance (ANOVA). Total

transmitted radiation data were analysed by ANOVA

with crown cover as a factor. Extractable N data of

NH4
?–N, NO3

-–N and total (NH4
?–N ? NO3

-–N)

were analysed using ANOVA for repeated measures

with crown cover and site class as between-subject

factors and each sampling date as an within-subject

factor. This analysis was done because the values are
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not independent of time. This type of analysis has been

shown to be appropriate for these cases (Gurevitch

and Chester 1986). Tukey tests were performed to

define differences when F values were significant (P \
0.05). To avoid misinterpretations due to significant

interaction between factors (Willems and Raffaele

2001) multiple comparisons were made concerning to

between-subject effects, (crown cover and site class)

for each sampling date. The same analyses were

carried out for net N mineralization and nitrification in

situ and under laboratory conditions.

Linear regression analysis between environmental

variables and net N mineralization and nitrification in

situ were carried out to determine the variable with

more influence on the processes.

Results

Dasometric characteristics and micro-climate

variation

The main dasometric characteristics of the studied

stands and the micro-climate data are presented in

Bahamonde et al. (2012a). Briefly, the total height of

dominant trees, number of trees and basal area were

higher in SCIV (P \ 0.05) than in SCV. In both

stands, light transmissivity and total photosyntethical-

ly active radiation reaching the forest floor increased

(P \ 0.05) in places where crown cover decreased.

Both air and soil temperatures showed maximum

values during summer and minimum in winter in both

stands. Air temperature did not differ between differ-

ent crown cover in any of the two evaluated stands.

In contrast, soil temperatures were higher in open sites

in spring and summer during the first season in SCIV,

but not in SCV. Volumetric soil moisture was higher in

more open sites of the silvopastoral stands during

spring and summer in SCIV, while in SCV no

differences were found between crown cover. Relative

air humidity was lower in the adjacent open areas at

both stands.

Extractable N concentration

The concentration of N as NH4
?–N significantly varied

between crown cover and dates, with no differences

among site class (Table 1). The lowest concentration

was found between crowns (P \ 0.001). Considering

dates, the highest values of NH4
?–N were measured

in December 2006 (P \ 0.001) reaching an average of

17 and 11 lg g-1 dry soil in SCIV and SCV, respec-

tively (Fig. 1a, b). There was a significant interaction

(P \ 0.001) between crown cover and dates, and

between site class and date (P = 0.015). In SCIV,

during summer (February) there was a higher concen-

tration of ammonium in the area without trees, while at

the beginning of the growing season (September) there

was a major concentration in the soil under crown

(Fig. 1a). In SCV, the highest concentration of NH4
?–

N were found in the location without trees in December

2005, while in autumn (April) were measured under

crown (Fig. 1b).

The NO3
-–N concentration significantly varied

between crown cover, site class and dates (Table 1).

Averaging the two site class (data not shown), the

highest concentration (2.8 lg g-1 dry soil) was mea-

sured under crown and the lowest values between

crowns (1.9 lg g-1 dry soil). Comparing sites, the

highest concentration occurred in SCV (data not

shown). The lowest values of NO3–N were measured

in April and September (Autumn–Winter) (Fig. 1c, d).

When the proportions of each form of N were

calculated, it was observed that the predominant form

of N in all situations was the NH4
?–N representing on

average 75 % of the total extractable inorganic N.

The total mineral extractable N concentration

(NH4
?–N ? NO3

-–N) varied between crown cover

and dates, with no differences among site class

(Table 1). The lowest and highest (P \ 0.001) values

were found in the location without trees and between

crowns, respectively (data not shown). The highest

concentration of NH4
?–N ? NO3–N was measured in

December 2006. However, the interactions among

crown cover and dates, and site class and dates were

significant (Table 1). For example, in SCIV, in

February 2006 the highest concentration was mea-

sured in the location without trees, while in SCV there

were not differences among crown cover at the same

date. In December 2006 the highest concentration was

obtained under crown in both site class (Fig. 1e, f).

The net N mineralization varied significantly

between crown cover and dates, with no differences

among site class (Table 2). Averaging the two site

class, the highest values of mineralized N was

measured between crowns reaching 6.7 kg ha-1

30 days-1 (data not shown). The period with highest

mineralization rate was December 2006-February
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2007 with a mean mineralization value of 19 kg ha-1

30 days-1 (Fig. 2a, b). However, all the interactions

between main effects were significant (Table 2). For

example, the differences among crown cover were

evident in SCIV during two periods (Fig. 2a), while in

SCV there were not differences (Fig. 2b). When we

compared the values of annual N net mineralization

per unit area at each site we found different results

depending of site class. In SCIV annual net mineral-

ization was lower in the location without trees, while

in SCV there were not differences among crown cover

(Table 3).

The simple linear regression analysis showed that

the volumetric soil moisture was the only parameter

that explained variation in N mineralization at the

studied sites (P\0.05; R2 = 0.13).

In situ net nitrification significantly varied only

between periods (Table 2) with the highest values

measured in the period December 2006–February

2007 (Fig. 3a, b). Multiple comparisons between

radiation levels for the same period showed that in

SCIV the highest values of nitrification occurred

between crowns only during the December 2006–

February 2007 period (Fig. 3a). In contrast, in SCV

significant differences between radiation levels were

found in the period April-September 2006 with higher

nitrification under crown than ‘‘between crowns’’

cover condition (Fig. 3b).

Annual in situ nitrification at area basis was lower

at SCIV in the area without trees, while in SCV there

were no differences between radiation levels

(Table 4).The simple linear regression between nitri-

fication and environmental variables showed that the

initial availability of NH4 was the only measured

variable that explain variation in nitrification between

periods and crown cover in both site classes

(P \ 0.01; R2 = 0.26).

Net nitrogen mineralization measured under labo-

ratory conditions significantly varied among crown

cover, site class and sampling date (Table 2). The

highest values of mineralized nitrogen occurred

between crowns averaging 17.4 kg ha-1 30 days-1,

while there were no differences under crown and

without trees conditions. Comparing sites and sam-

pling dates, the highest values of mineralization

occurred in SCIV during February. However, as the

interactions were significant (Table 2), multiples

comparisons gave us more detailed information. In

SCIV the mineralized N was higher between crowns in

October and February (Fig. 4a), while in SCV only

there was differences in samples taken in April with

values close to zero (Fig. 4b). Net nitrogen mineral-

ization measured under laboratory conditions was

higher than in situ for both site class stands in October

2005 and February 2006, while in April 2006 there

were no differences (Figs. 2a, b, 4a, b). Thus, potential

mineralization in SCIV was up to 15 and 4 times

higher in the laboratory than those obtained in the field

in October and February, respectively. In SCV N

mineralization was up to 2 and 7 times higher in the

laboratory compared with the measured in situ for the

October and February period, respectively.

Nitrification under laboratory conditions varied

between crown cover and sampling date, with no

significant differences among sites class (Table 2).

Highest value of nitrification occurred between crown

Table 1 Repeated measures ANOVA for extractable nitrogen as ammonium (NH4
?–N), nitrate (NO3

-–N) and total (NH4
?–N ?

NO3
-–N) measured at three crown cover, two site class, and six dates in Nothofagus antarctica forests under silvopastoral use

Source df NH4
?–N

F (P)

NO3
-–N

F (P)

NH4
?–N ? NO3

-–N

F (P)

Between subject effects

Crown cover (CC) 2 15.11 (\0.001) 3.92 (0.033) 11.93 (\0.001)

Site class (SC) 1 2.23 (0.148) 8.69 (0.007) 0.08 (0.777)

Within subject effects

Date (D) 5 13.09 (\0.001) 10.71 (\0.001) 12.44 (\0.001)

Interactions

CC 9 SC 2 2.08 (0.146) 2.01 (0.156) 0.99 (0.385)

CC 9 D 10 4.09 (\0.001) 2.10 (0.072) 3.55 (0.002)

SC 9 D 5 2.94 (0.015) 4.76 (0.006) 3.19 (0.021)

CC 9 SC 9 D 10 1.70 (0.088) 0.89 (0.496) 1.74 (0.109)
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cover averaging 8.9 kg ha-1 30 days-1, while under

crown and without trees averaged 5.0 and 4.3 kg ha-1

30 days-1, respectively with no significant differences

between these conditions (data not shown). Compar-

ing sampling dates, the lowest value of nitrification

was obtained for samples taken in April with values

near zero (Fig. 4c, d). Multiples comparisons showed

that in SCIV the nitrification was lower (P \ 0.001) in

the location without trees in October with no differ-

ences among crown cover for the others dates

(Fig. 4c). In contrast, in SCV the lowest values

occurred under crown in April (Fig. 4d).

Fig. 1 Extractable mineral N concentration (NH4
?–N, NO3

-–

N and NH4
?–N ? NO3

-–N) measured in soil (0–0.2 m)

located at 3 crown cover: under crown, between crowns and

without trees, of ñire forests growing in site class IV (a, c, e) and

site class V (b, d, f). The bars indicate the standard deviation.

The mean of each radiation level, at each sampling date

followed by the same letter are not significantly different

(P \ 0.05)
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Nitrification under laboratory conditions from

samples taken in October and February were 5 and 4

times higher than those measured in the field for SCIV

and SCV, respectively (Figs. 3, 4).

Discussion

Extractable mineral N concentration

The values of extractable mineral N (NH4
?–N ?

NO3
-–N) measured in this work were lower than

those reported in soils of N. pumilio forests in Tierra

del Fuego (Argentina) (Moretto et al. 2004) and

N. betuloides forests in southern Chile (Huygens et al.

2008). The difference between our values and the

cited bibliography is likely due to contrasting forests

productivity in terms of aerial biomass. For example,

the dominant height of trees cited for N. pumilio forest

in Tierra del Fuego overcomes 14 m (Martı́nez Pastur

et al. 2000) and for N. betuloides trees reach 24 m of

height (Godoy et al. 2001), while our better evaluated

site for N. antarctica trees do not overcome 8 m

(Bahamonde et al. 2012a).

Fig. 2 In situ net N mineralization measured in soil (0–0.2 m)

located at 3 crown cover: under crown, between crowns and

without trees, of ñire forests growing in site class IV (a) and site

class V (b). The bars indicate the SD. The mean of each

radiation level, at each sampling date followed by the same letter

are not significantly different (P \ 0.05)

Table 2 Repeated measures ANOVA for in situ net nitrogen

mineralization (Net N Min), in situ net nitrification (Net Nit);

in laboratory net nitrogen mineralization (Net N Min) and in

laboratory net nitrification (Net Nit) measured at 3 crown

cover, two Site Class, and different dates (6 in situ, 3 in

laboratory) in Nothofagus antarctica forests under silvopastor-

al use

Source df In situ df In laboratory

Net N Min

F (P)

Net Nit

F (P)

Net N Min

F (P)

Net Nit

F (P)

Between subject effects

Crown cover (CC) 2 3.72 (0.039) 1.41 (0.262) 2 19.96 (\0.001) 4.15 (0.042)

Site class (SC) 1 1.07 (0.310) 4.11 (0.054) 1 13.38 (0.003) 0.07 (0.796)

Within subject effects

Date (D) 5 36.69 (\0.001) 60.48 (\0.001) 2 56.06 (\0.001) 4.07 (0.030)

Interactions

CC 9 SC 2 4.09 (0.029) 2.75 (0.084) 2 19.61 (\0.001) 4.68 (0.031)

CC 9 D 10 3.62 (0.003) 1.42 (0.251) 4 5.94 (0.002) 2.32 (0.129)

SC 9 D 5 4.01 (0.010) 2.03 (0.154) 2 1.23 (0.309) 0.062 (0.844)

CC 9 SC 9 D 10 2.19 (0.053) 1.46 (0.238) 4 3.19 (0.031) 0.43 (0.688)
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The greater concentrations of NH4
?–N in the

location without trees during summer in both site

classes would be due to a major uptake of NH4
?–N

inside the forest. There are not antecedents about the

main nitrogen source for N. antarctica, however is

well known that ammonium is the most important N

compound uptake by tree species (Rennenberg et al.

2009). Recent studies in these forests (Gargaglione

2011) have shown a facilitation effect of trees on

grasses by increasing the N uptake rate of the

herbaceous component inside the forest compared

with an adjacent area without trees. This pattern

was inverted, with greater concentrations of NH4
?-N

under trees in September (beginning of growing

season) and April (autumn) for SCIV and SCV,

respectively. We speculate that this occurred because

of the contribution of decomposing litterfall in autumn

and a decrease of nitrogen uptake after winter.

Despite of differences among site classes on

NO3
-–N concentrations (Table 1) the values were

lower than NH4
?–N. The major proportion of

NH4
?–N found in this work, also documented by

Moretto et al. (2004) in N. pumilio forests soils, may

be given mainly by the pH values prevailing in these

soils (4.9–5.6) that could inhibit nitrification (Stark

and Hart 1997; Aciego Pietri and Brookes 2008), or

because nitrates were absorbed in higher proportions

by plants or microbes (Kaye and Hart 1997), or due to

N leaching (Ritter et al. 2005). Our results suggest that

a combination of these factors may occur in the studied

ecosystems. Averaging the two site class, it is likely

that the highest values found under crown were due to

relative low leaching and absorption, whilst the lowest

concentrations between crowns could be caused by

higher leaching in gaps (Ritter et al. 2005) and greater

accumulation of N in the understorey stratum (Garga-

glione 2011).

Considering total mineral extractable N (NH4
?–N ?

NO3
-–N) the differences among crown covers depend-

ing over time could be caused by a combination of

processes. For example, higher amounts of extractable

mineral N in the location without trees during summer

(e.g., February 2006 in SCIV) would be due to

nitrogen release from decaying grasses (Bahamonde

et al. 2012a) and that soil N mineralization could

exceed N demand from grassland, mainly due to

higher temperatures (Clarkson et al. 1986). In contrast

the highest values of extractable N under crown at the

end of winter (e.g., September 2006 in SCIV) could be

due the contribution of litterfall decomposition in the

previous period (Bahamonde et al. 2012a) and because

Fig. 3 In situ net nitrification measured in soil (0–0.2 m)

located at 3 crown cover: under crown, between crowns and

without trees, of ñire forests growing in site class IV (a) and site

class V (b).The bars indicate the SD. The mean of each radiation

level, at each sampling date followed by the same letter are not

significantly different (P \ 0.05)

Table 3 Total annual net nitrogen mineralization (NH4 ? NO3)

(kg N ha-1 year-1) measured in N. antarctica forest soils

(0–0.2 m) at three crown cover and two site classes (SC)

Crown cover

Under crown Between crowns Without trees

SCIV 54.4a 72.4a 11.0b

SCV 51.6a 59.5a 59.1a

Different letters in the same site class indicate significant

differences (P \ 0.05) between radiation levels
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N uptake in winter months would be minimal due to

low soil temperatures (Dong et al. 2001).

In situ net N mineralization and nitrification

The net mineralization values estimated in this study

are within the range of those found in temperate forests

of Nothofagus and Fitzroya of southern Chile (Pérez

et al. 1998, 2003) and were higher than those reported

for soils of steppe in Patagonia (Yahdjian et al. 2006).

Nevertheless, there are antecedents suggesting that the

method used in the present study may underestimate N

mineralization rate in soils due to oxygen depletion

inside the container that depresses microbial activity

(Abril et al. 2001). Therefore, the interpretation of

results should emphases the relative differences

among treatments rather than absolute values.

The lower net N mineralization within the adjacent

area without trees in SCIV (Table 3) is difficult to

explain considering that the environmental conditions

(temperature and soil moisture) were more favorable.

However, other factors that impact the processes of

nitrification and mineralization of N such as the C:N

ratio of soil and decomposing litterfall (Mazzarino

et al. 1998a; Bengtsson et al. 2003; Booth et al. 2005;

Bertiller et al. 2006) may explain the process in SC IV.

High C:N ratios may limit microbial activity due to

lack of nitrogen. Gallardo and Schlesinger (1992)

reported a positive correlation between microbial

biomass and soil C:N ratio to values less than 20. In

this study, the low soil C:N ratio (8.1) in the adjacent

area with no trees in SCIV could be the cause of a

Fig. 4 Potential net N mineralization and nitrification measured under laboratory conditions within soil (0–0.2 m) from 3 crown cover:

under crown, between crowns and without trees, of ñire forests growing in site class IV (a, c) and site class V (b, d)

Table 4 Net nitrification (kg ha-1 year-1) measured in ñire

forest soils soils (0–0.2 m) at 3 radiation levels and two site

class (SC)

Crown cover

Under crown Between crowns Without trees

SCIV 26.0ab 37.7a 17.0b

SCV 43.2a 32.2a 36.3a

Different letters in the same site class indicate significant

differences (P \ 0.05) between radiation levels. The data were

analysed separately for each site
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lower nitrification and mineralization rate compared

to values obtained inside the forest. Also, it has been

found positive correlations between microbial bio-

mass and potential nitrogen mineralization (Mazzari-

no et al. 1998a; Satti et al. 2003; Bertiller et al. 2006).

Therefore, we speculate that low C:N ratio (as

mentioned above) may partly explain the lower values

of nitrification and N mineralization found in the

situation with no trees.

Considering the results from the correlation

between soil moisture and N mineralization found in

this study different results have been reported in the

literature. While Burke et al. (1997); Mazzarino et al.

(1998b) and Xueling et al. (2008) have reported

positive correlations, other studies found no correla-

tions (Hook and Burke 2000; Yahdjian et al. 2006).

These differences related to the effect of soil moisture

on N mineralization could be due to strong interactions

between temperature and soil moisture affecting the

process (Zak et al. 1999). Also there is evidence

indicating that excess of soil moisture reduce the

activity of micro organisms in a lack of oxygen

condition (Linn and Doran 1984) which promote a

denitrification process. In our study, the volumetric

soil moisture values (Bahamonde et al. 2012a) mostly

were in the range between water-holding capacity and

permanent wilting point for the studied soils (Baha-

monde et al. 2012b).

In general the nitrification values were low and

similar to those reported by Mazzarino et al. (1998b)

in soils of the steppe in Patagonia. In our study the

low values of nitrification may be given by the

values of pH (4.9–5.6) that would limit the process

(Stienstra et al. 1994) as mentioned above. The

correlation found between nitrification and ammo-

nium availability (as mentioned in the ‘‘Results’’)

has been reported previously (Lamb 1980; Robertson

1984), where low levels of NH4 may limit nitrifica-

tion process. Also this correlation could explain the

apparent not significant effect of soil temperature on

nitrification as it has been reported by others authors

(Breuer et al. 2002; Dalias et al. 2002). Also, it is

known that soil moisture can act as an inhibitor of

nitrification by either excess or defect, since the

nitrifiers need water and oxygen, being the water-

filled pore space a better predictor of nitrification

(Grundmann et al. 1995), which could explain the no

significant correlation between volumetric soil mois-

ture and nitrification in this study.

Potential net N mineralization and nitrification

The highest values of N mineralization and nitrifica-

tion measured in this study were lower than those

reported for forests of N. pumilio (Moretto et al. 2004)

and N. antarctica (Mazzarino et al. 1998a) in Tierra

del Fuego, and in the range of N. antarctica in northern

Patagonia (Satti et al. 2003). These differences could

be due to different soil characteristics between sites.

For example, the values reported by Satti et al. (2003)

had soils with higher pH (6.1) than our study soils,

which would favor nitrification.

The fact that both mineralization and nitrification

values measured under laboratory conditions were

higher than those observed in situ suggest that there

are environmental factors in the field that limit these

processes. For example, low soil temperature would

be the limiting factor (\13 �C) during October and

February. Similar results were reported by Pérez et al.

(1998) in forests of southern Chile attributing the

lower values obtained in field measurements to the

effect of low temperature. Different studies have

reported the direct effect of temperature on N miner-

alization with the highest rates at temperatures near

25 �C (Dalias et al. 2002; Knoepp and Swank 2002;

Bagherzadeh et al. 2008).

On the other hand, the no differences between N

mineralization and nitrification obtained in the labo-

ratory and In situ samples collected in April would

indicate that other factors rather than low temperature

are affecting the processes. As mentioned previously

there is evidence that N mineralization is directly

related to microbial biomass of soil. Thus, the carbon

source may limit the microbial biomass (Gallardo and

Schlesinger 1992; Allen and Schlesinger 2004). In the

studied forests the main contribution of organic matter

to soil litterfall occurs mainly in April (Peri et al.

2008b). Most decomposition of ñire and grasses leaves

probably start to decompose after winter (September)

when temperatures increase. Similarly, in the adjacent

area with no trees, senescent material accumulated

since April begins to decompose in the next season.

Probably, these aspects related to decomposition could

affect microbial biomass in April and therefore N

mineralization and nitrification.

From the practical point of view, Peri et al. (2008b)

reported that the removal of trees through thinning

practices for silvopastoral use of N. antarctica forest

in Patagonia caused a decrease of 35–50 % in the
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contribution of litter to soil forest. Our results suggest

that this reduction of litter in stands with less crown

cover would not affect the N mineralization rates.

Conclusions

According to the results, we speculate that concentra-

tion of total extractable mineral N (NH4 ? NO3) was

not related to crown cover, depending mainly on

environmental variation between seasons.

The results suggest that thinning practices for

silvopastoral use of N. antarctica forests (keeping

intermediate crown cover values) growing under the

Patagonian environment did not affect both N mineral-

ization and nitrification. However, lower values of N

mineralization and nitrification were found in the

location without trees in the more productive site class,

which suggest that total trees removal from the ecosys-

tem may decrease N mineralization and nitrification.

Data of N mineralization and nitrification obtained

under laboratory conditions suggest that both pro-

cesses would be limited by low soil temperature in the

field.
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