
cally, the hidden-node redundancy into consideration. In a gradi-
ent-descent feed-forward backpropagation method, there is a
chance that the solution may be trapped by local minima, which
does not happen in the case of the GA. Hence, the present algo-
rithm of training ANNs by using a GA takes advantage of the
population-to-population GA search. Hidden-node redundancy has
been handled by taking different values of the steepness of acti-
vation function. Applying two-point crossover or uniform cross-
over and replacing simple the GA by a micro-GA, the computa-
tional time may be reduced. Further improvement can be done by
considering architecture optimization. This model can be used as a
CAD model for antenna design.
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ABSTRACT: The derivation of a new condition for characterizing iso-
tropic dielectric-magnetic materials exhibiting negative phase velocity,
and the equivalence of that condition with previously derived conditions,
are presented. © 2004 Wiley Periodicals, Inc. Microwave Opt Technol
Lett 41: 315–316, 2004; Published online in Wiley InterScience (www.
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1. INTRODUCTION

Nondissipative media with both simultaneously negative permit-
tivity and permeability were first investigated by Veselago [1] in
1968. These media support electromagnetic-wave propagation, in
which the phase velocity is antiparallel to the direction of energy
flow, and other unusual electromagnetic effects, such as the rever-
sal of the Doppler effect and Cerenkov radiation. After the publi-
cation of Veselago’s work, more than three decades went by before
the actual realization of artificial materials that are effectively
isotropic, homogeneous, and possess negative real permittivity and
permeability in some frequency range [2, 3].

A general condition for the constitutive parameters of an iso-
tropic dielectric-magnetic medium to have phase velocity directed
oppositely to the power flow, when dissipation is included in the
analysis, was reported about two years ago [4]. Most importantly,
according to that condition, the real parts of both the permittivity
and the permeability need not be both negative.

In this paper, we derive a new condition for characterizing
isotropic materials with negative phase velocity. Although this
new condition looks very different from its predecessor [4], we
also show the equivalence between both conditions.

2. THE NEW CONDITION

Let us consider a linear isotropic dielectric-magnetic medium
characterized by complex-valued relative permittivity and relative
permeability scalars � � �r � i�i and � � �r � i�i. An
exp(�i�t) time dependence is implicit, with � as the angular
frequency.

The wave equation gives the square of the complex-valued
refractive index n � nr � ini as

n2 � �� f nr
2 � ni

2 � 2inrni � �r�r � �i�i � i��i�r � �r�i�.

(1)

The sign of nr gives the phase-velocity direction, whereas the sign
of the real part of n/�, given by

TABLE 1 Comparison of the Results of Using the Present
Method, the Feed-Forward Backpropagation Algorithm, and
Experimental Resonant Frequency

Patch No.

Experimental
Resonant
Frequency

(GHz)

Resonant
Frequency (GHz)
(Present Method)

Resonant
Frequency (GHz)
(Backpropagation

Algorithm)

1 5.820 5.82515 5.79649
2 4.660 4.67353 4.52594
3 3.980 3.95329 3.93908
4 3.900 3.87665 3.91498
5 2.980 3.02413 2.99279
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Re�n

�� � nr�r � ni�i, (2)

gives the direction of power flow [4]. Therefore, for this medium
to have negative phase velocity and positive power flow, the
following conditions should hold simultaneously:

nr � 0, (3)

nr�r � ni�i � 0, (4)

Eq. (1) yields the following biquadratic equation:

nr
4 � ��r�r � �i�i�nr

2 �
1

4
��i�r � �r�i� � 0. (5)

This equation has only two real-valued solutions for nr, namely,

nr � �������� � �r�r � �i�i

2 �1/ 2

. (6)

Noting that the relation

�i�i � �r�r � ���i�i � �r�r�
2 � ��i�r � �r�i�

2 (7)

holds for all values of the constitutive parameters �r,i and �r,i, we
see that

0 � ������ � �r�r � �i�i; (8)

hence, the right side of Eq. (6) is always positive.
As the negative square root must be chosen in Eq. (6) in order

to satisfy the condition (3), therefore

nr � �
1

�2
������� � �r�r � �i�i�

1/ 2, (9)

ni � �
1

�2

�i�r � �r�i

������� � �r�r � �i�i�
1/ 2 . (10)

On using these expressions and Eq. (2) in condition (4), a condi-
tion for power flow and phase velocity in opposite directions is
finally derived as follows:

�r������� � �r�r � �i�i�
1/ 2 � �i

�i�r � �r�i

������� � �r�r � �i�i�
1/ 2 � 0.

(11)

This condition can be rewritten in the very simple form

�r��� � �r��� � 0, (12)

which is the chief contribution of this paper.

3. EQUIVALENCE WITH PREVIOUSLY DERIVED CONDITION

The general condition for the phase velocity to be oppositely
directed to the power flow, which was derived about two years ago
[4], is as follows:

���� � �r����� � �r� � �i�i. (13)

Although it looks very different, this condition, which can be
rewritten as

�r��� � �r��� � ������ � �r�r � �i�i, (14)

is completely equivalent to the new condition (12).
Clearly, if (12) is satisfied, then, taking into account the validity

of (8), (14) is also satisfied. To show that the reverse is also true,
we start from (14) and assume that (12) does not hold. As the left
side of the inequality (14) is nonnegative, squaring both sides does
not change the sense of the inequality and we obtain

��r��� � �r����2 � ������� � �r�r � �i�i�
2. (15)

Simplification of this inequality leads to

�i�i������� � �r�r � �i�i� � 0. (16)

However, causality dictates that �i 	 0 and �i 	 0; hence, we
must conclude that

������ � �r�r � �i�i � 0, (17)

in contradiction with Eq. (8). Therefore, we must accept the
validity of condition (12). This completes the demonstration of the
equivalence between conditions (12) and (13).

4. CONCLUSION

We note in passing that both conditions (12) and (13) are also
equivalent to the condition

�r�i � �r�i � 0, (18)

which was reported very recently [5]. This condition is due to R.
Ruppin.

To conclude, in this work we have derived a simple new
condition for the constitutive parameters of a linear isotropic
dielectric-magnetic medium to have phase velocity that is opposite
to the direction of power flow, and we have demonstrated its
equivalence with previously derived conditions.
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