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This paper is the first of two parts of a work reviewing some approaches to the problem of time in quantum cosmology
which were put forward last decade and related to the problems of reparametrization and gauge invariance of
quantum gravity. In the present part we recall the basic features of quantum geometrodynamics and minisuperspace
cosmological models, and discuss fundamental problems of the Wheeler –DeWitt theory. Various attempts to find
a solution to the problem of time are considered in the framework of the canonical approach. Possible solutions
are investigated making use of minisuperspace models, that is, using systems with a finite number of degrees of
freedom. At the same time, in the last section of the paper we extend our consideration beyond the minisuperspace
approximation and briefly review the promising ideas by Brown and Kuchař, who propose that dust interacting
only gravitationally can be used for time measuring, and the unitary approach by Barvinsky and collaborators. The
latter approach admits both canonical and path integral formulations and anticipates the consideration of recent
developments in the path integral approach in the second part of our work.

pROBLEMA WREMENI I KALIBROWOˆNAQ INWARIANTNOSTX W KWANTOWANII KOSMOLOGIˆESKIH MODELEJ. I.
mETODY KANONIˆESKOGO KWANTOWANIQ

t.p. –ESTAKOWA, k. sIMEONE

sTATXQ QWLQETSQ PERWOJ ˆASTX@ RABOTY, SODERVA]EJ OBZOR NEKOTORYH PODHODOW K PROBLEME WREMENI W KWAN-
TOWOJ KOSMOLOGII, WYDWINUTYH W PRO[ED[EE DESQTILETIE I SWQZANNYH S PROBLEMAMI REPARAMETRIZACIONNOJ

I KALIBROWOˆNOJ INWARIANTNOSTI KWANTOWOJ TEORII GRAWITACII. w PERWOJ ˆASTI MY NAPOMINAEM OSNOWNYE

OSOBENNOSTI KWANTOWOJ GEOMETRODINAMIKI I KOSMOLOGIˆESKIH MODELEJ W MINISUPERPROSTRANSTWE I OBSUVDAEM

FUNDAMENTALXNYE PROBLEMY TEORII uILERA–dEwITTA. rAZLIˆNYE POPYTKI NAJTI RE[ENIE PROBLEMY WREMENI

RASSMATRIWA@TSQ W RAMKAH KANONIˆESKOGO PODHODA. wOZMOVNYE RE[ENIQ PROBLEMY ISSLEDU@TSQ S POMO]X@

MODELEJ W MINISUPERPROSTRANSTWE, T.E. DLQ SISTEM S KONEˆNYM ˆISLOM STEPENEJ SWOBODY. w TO VE WREMQ W PO-
SLEDNEM RAZDELE STATXI MY RAS[IRQEM NA[E RASSMOTRENIE ZA PREDELY PRIBLIVENIQ MINISUPERPROSTRANSTWA

I DAEM KRATKIJ OBZOR IDEJ bRAUNA I kUHARVA, KOTORYE WYSKAZALI PREDPOLOVENIE, ˆTO PYLX, WZAIMODEJSTWU-
@]AQ TOLXKO S GRAWITACIEJ, MOVET BYTX ISPOLXZOWANA DLQ IZMERENIQ WREMENI, A TAKVE UNITARNOGO PODHODA

bARWINSKOGO I EGO KOLLEG. pOSLEDNIJ PODHOD DOPUSKAET FORMULIROWKU KAK W RAMKAH KANONIˆESKIH METODOW,
TAK I W RAMKAH FEJNMANOWSKOGO INTEGRIROWANIQ PO TRAEKTORIQM, ˆTO PREDWARQET RASSMOTRENIE WO WTOROJ

ˆASTI NA[EJ RABOTY NEDAWNIH REZULXTATOW, POLUˆENNYH S POMO]X@ INTEGRIROWANIQ PO TRAEKTORIQM.

1. Introduction

It is generally accepted now that the initial stages of
cosmological evolution must be described by quantum
cosmology. The need for a quantum theory of the early

1e-mail: shestakova@phys.rsu.ru
2e-mail: csimeone@df.uba.ar

Universe is a logical consequence of the fact that clas-
sical general relativity is not applicable in the vicinity
of a cosmological singularity. As was pointed out by
Grishchuk and Zeldovich [36], a full cosmological the-
ory must include a notion about the origin of spacetime
itself, which is essentially a quantum gravitational phe-
nomenon. In the framework of such a full theory one
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should consider both the gravitational field and matter
quantized.

The standard approach to quantum cosmology in-
cludes three basic steps: a classical theory for the dy-
namics, a quantization prescription in terms of a wave
function or a propagator, and interpretation. The sec-
ond and third steps are highly non-trivial because gen-
eral relativity includes general covariance as a central
feature. Accordingly, the Hamiltonian formulation for
the gravitational field is that of a constrained system.
Any attempt to save gauge invariance in quantum the-
ory of gravity creates a number of problems.

The problem of time is the most well-known dif-
ficulty of the Wheeler–DeWitt quantum geometrody-
namics which is a theoretical basis for modern quan-
tum cosmology. This problem is inseparably linked
with others among which are the problems of Hilbert
space (positive-definite inner product), reparametriza-
tion non-invariance and operator ordering. The prob-
lem of time has been discussed in a plenty of papers
(see, e.g., [12, 14–17, 32, 43, 50, 68–71]. The paper by
Vilenkin [71] was one of the first works where the prob-
lem of time was considered in the context of quantum
cosmology. In the paper by Unruh [68] it was shown
that a solution of this problem may require some mod-
ification of the theory of gravity (including the Hamil-
tonian constraint). Isham [43] gave a very informative
and profound review of the problem, a classification of
existing approaches to the problem of time and many
references can be found therein. Philosophical aspects
of the problem were discussed in [70, 12].

It is not the purpose of the present paper to give an
exhaustive consideration to all approaches to the prob-
lem of time which are widespread in modern literature.
We also do not intend to repeat earlier papers on this
subject. Our aim is to review some ideas put forward in
the last decade and to show that the problem of time is
closely related to that of reparametrization and gauge
invariance of quantum gravity. Understanding the lat-
ter circumstance may shed some new light on a possible
solution of this problem.

Our work consists of two parts. In the present part
we shall recall the basic features of quantum geometro-
dynamics and minisuperspace cosmological models, dis-
cuss the fundamental problems of the Wheeler–DeWitt
theory and give a layout of the paper (Sec. 2). Fur-
ther, in Sec. 3 we shall consider various attempts to
find a solution to the problem of time in the frame-
work of the canonical approach. We shall investigate
possible solutions making use of minisuperspace models
with a finite number of degrees of freedom, which will
help us to clarify some points. However, in Sec. 4 we
shall expand our consideration beyond the minisuper-
space approximation and briefly review the promising
ideas by Brown and Kuchař [11] and also by Barvin-
sky and collaborators [4–6, 8].Barvinsky’s programme,
which can be presented both in the canonical and in the
path integral formalisms, is of great importance for un-

derstanding the relationship between imposing a gauge
condition and introducing time in quantum gravity.

In the second part of our work we shall consider in
more detail two approaches within the scope of Feyn-
man’s path integration scheme. The first approach by
Simeone and collaborators [24, 30, 33–35, 62–66] is es-
sentially based on Barvinsky’s ideas, in particular, on
the idea of deparametrization (reduction to physical de-
grees of freedom). This proposal is gauge-invariant and
lies in the course of the unitary approach to quantiza-
tion of gravity. Another approach by Savchenko, Shes-
takova and Vereshkov [57–61] is rather radical. It is
an attempt to take into account the peculiarities of the
Universe as a system without asymptotic states, which
leads to the conclusion that quantum geometrodynam-
ics constructed for such a system is, in general, gauge-
non-invariant theory. However, this theory is shown to
be mathematically consistent, and the problem of time
is solved in this theory in a natural way.

2. Quantum cosmology: basic issues

2.1. The gravitational field as a constrained
system

The Wheeler–DeWitt (WDW) quantum geometrody-
namics is based upon canonical quantization of con-
strained systems. The first step in this procedure is
rewriting of the Einstein–Hilbert action S , which is a
functional of the spacetime metric gµν(X), in a Hamil-
tonian form. Then the dynamics is given by a suc-
cession of spacelike three-dimensional hypersurfaces in
four-dimensional spacetime. By introducing the time-
like parameter τ and the internal coordinates xa (a =
1, 2, 3), the theory can be written in terms of a new set
of variables: the spatial three-metric gab on a hypersur-
face and the velocity Uµ with which this surface evolves
in spacetime. The normal and tangential components of
the velocity Uµ are the lapse and shift functions defined
by Kuchař [45] as a generalization of those introduced
by Arnowitt, Deser and Misner [2] N = (−g00)−1/2 ,
Na = gabgb0 . After the extrinsic curvature

Kab =
1

2N

(
∇aNb + ∇bNa − dgab

dτ

)
,

describing the evolution of the spacelike hypersurface
embedded in spacetime is defined, the Lagrangian form
of the Einstein action will be

S[gab, N,Na]

=
∫ τ2

τ1

dτ

∫
d3xN(3g)1/2(KabK

ab −K2 + 3R − 2Λ), (1)

where 3R is the scalar curvature of space, K = gabKab

and Λ is the cosmological constant.
The Hamiltonian form of the action is obtained by

defining the canonical momenta

pab = −2GabcdKcd,

Gabcd =
1
4

(3g)1/2(gacgbd + gadgbc − 2gabgcd), (2)
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Gabcd being the DeWitt supermetric. Then we have

S[gab, pab, N,Na]

=
∫

dτ

∫
d3x

(
pab

dgab
dτ

−NH−NaHa

)
, (3)

where

H =
1
2
Gabcdp

abpcd − (3g)1/2(3R − 2Λ),

Ha = −2gac∇dp
cd,

Gabcd = (3g)−1/2(gacgbd + gadgbc − 2gabgcd). (4)

The lapse and shift functions are not determined;
when we require the action to be stationary under an
arbitrary variation of N and Na , the Hamiltonian and
momentum constraints are obtained:

H = 0, (5)
Ha = 0. (6)

The presence of these constraints reflects the general
covariance of the theory. However, the status of the
two constraints is different: a basic role is given to the
Hamiltonian constraint (5) which generates the dynam-
ics of 3-geometry (the change of canonical data under
transition from one spacelike hypersurface to another).
A dynamical character of the Hamiltonian constraint re-
sults from the non-standard quadratic dependence of H
on the momenta pab . It is the reason why the Hamilto-
nian constraint has no analogy in other gauge theories.
The arbitrariness of N leads to the so-called many-
fingered nature of time: since the lapse corresponds to
the velocity of motion of the three-hypersurface in the
normal direction, as N depends on xa and τ , the sepa-
ration between two successive hypersurfaces is different
at different points of spacetime, and time thus has a
local character.

The momentum constraints (6) generate diffeomor-
phisms of the 3-metric gab and are similar to constraints
in the Yang–Mills theory. In their operator form after
quantization, they are considered as the conditions that
a wave function is invariant under coordinate transfor-
mations of the 3-metric. Since the wave function is also
independent of the lapse and shift functions, it leads
to the conclusion that the wave function must depend
only on 3-geometry. But the latter statement remains
to be declarative: it has no mathematical realization.
The wave function always depends on a specific form of
the metric, which gives rise to reparametrization non-
invariance of the WDW quantum geometrodynamics.

2.2. Quantization and fundamental problems
of Wheeler–DeWitt theory

In the Dirac canonical quantization, the classical con-
straints are turned into operators and are imposed on
the wave function, which must be annihilated by them.
Hence the constraint H = 0 leads to the WDW equa-
tion

HΨ = 0, (7)

A solution to this equation corresponding to the ob-
servable physical Universe is singled out by boundary
conditions which acquire the status of a fundamental
law. However, this formulation of the WDW theory is
not complete: such questions as the structure of Hilbert
space or which quantities should be considered as ob-
servables, remain open. At the same time, these ques-
tions are of great importance from the viewpoint of the
construction of any quantum theory.

The problem of time is a consequence of the fact
that the gravitational Hamiltonian is a linear combina-
tion of constraints (see (3)), which leads to a static pic-
ture of the world. DeWitt [25] commented it as follows:
Physical significance can be ascribed only to intrinsic
dynamics of the Universe while its four-dimensional de-
scription, in particular, its evolution in time, are irrele-
vant.

At the same time, any possible solution of the prob-
lem of Hilbert space implies some solution of the prob-
lem of time. One cannot determine the structure of
Hilbert space if the inner product of state vectors is not
defined. The inner product is to be conserved in time,
so some definition of time is required. As a rule, time
is identified with a function of variables of configura-
tional or phase space. But in this case the status of
time variable differs from what it is in ordinary quan-
tum mechanics, namely, an extrinsic parameter related
to an observer and marking changes in a physical sys-
tem.

Another problem, which is closely connected with
the problem of time, is the problem of observables. Ac-
cording to the Dirac scheme, observables are quantities
which have vanishing Poisson brackets with constraints.
It is indeed true for electrodynamics where all observ-
ables are gauge-invariant. But in the case of gravity
this criterion leads to the conclusion that all observables
should not depend on time. Then one loses a possibil-
ity of describing the time evolution of a gravitational
system in terms of observables.

The next problem is that of reparametrization non-
invariance: at the classical level, the gravitational con-
straints can be written in various equivalent forms,
while at the quantum level, after replacing the momen-
ta by operators, these different forms of the constraints
become non-equivalent. It is a consequence of the fact
that the DeWitt supermetric Gabcd depends, in gen-
eral, on the lapse function N [41] (in (2) the choice
N = 1 has been made). In principle, one could replace
N with another function of some new variable Ñ and
the 3-metric gab : N = v(Ñ , gab). This leads to chang-
ing the supermetric Gabcd , so that the corresponding
WDW equations would have different solutions. A re-
lation between these solutions can be found in a very
restricted class of parametrizations [38]. We shall return
to this point in Part II, where it will be argued that
reparametrization non-invariance of the WDW equation
can be understood as a hidden gauge non-invariance.
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Let us also point to the problem of a global structure
of spacetime. One can apply the canonical quantization
procedure only if spacetime has the topology R × Σ,
where Σ is some 3-manifold. In any other case it is im-
possible to introduce globally (in the whole spacetime) a
set of spacelike hypersurfaces without intersections and
other singularities, and it is impossible to introduce a
global time. In most papers, simple enough cosmologi-
cal models are considered, and this problem seems to be
not so important. But the existence of this problem, as
well as the previous ones, shows that WDW quantum
geometrodynamics needs to be modified.

2.3. Interpretation

Apart from mathematical problems, WDW quantum
geometrodynamics has no generally accepted interpre-
tation. Of course, the absence of a clear interpretation
cannot be a reason to revise a theory if the theory is
mathematically consistent. In the case of quantum ge-
ometrodynamics, however, the problem of its interpre-
tation results from its mathematical difficulties.

Thus, there does not exist a precise probability in-
terpretation of the wave function. It is related to the
mathematical problem of Hilbert space discussed above.
Some authors have proposed to start from a definition
of time allowing one to obtain a Schrödinger equation
[37, 20, 28, 18]; in this case, the physical inner product
can be defined as

(Ψ2|Ψ1) =
∫

dq Ψ∗
2 µ̂Ψ1,

with µ̂t′ = δ(t− t′), so that the integral is evaluated at
fixed time t′ . The central objection to such a procedure
is that the resulting wave functions are solutions of the
Wheeler–DeWitt equation (or can be related to them)
only in the case of a restricted class of minisuperspace
models.

Another possibility is to straightforwardly solve the
WDW equation in terms of a set of coordinates includ-
ing global time [71, 37, 35, 65, 66]: {qi} = {t, qγ} ; in
this case the physical inner product can be written as

(Ψ2|Ψ1) =
i

2

∫
dq

[
Ψ∗

1

∂Ψ2

∂t
− Ψ2

∂Ψ∗
1

∂t

]
, (8)

where the integration is done at fixed t and is restricted
to the coordinates qγ . This does not solve the problem
of defining a conserved positive probability because a
Klein–Gordon inner product is obtained, which is in
general not positive-definite. Since the difficulties arise
from the fact that the WDW equation is of second order
in all its derivatives, in the recent years there have also
been proposals based on Dirac’s solution to the prob-
lem, and some authors have introduced a spinor wave
function for cosmological models [51, 52, 53].

Once adopting the WDW theory, one should ad-
mit that a wave function satisfying Eq. (7) describes
the past of the Universe as well as its future with all
observers being inside the Universe in different stages

of its evolution, and all observations to be made by
these observers. This picture might be considered with-
in the framework of the many-worlds interpretation of
the wave function proposed by Everett [27] and applied
to geometrodynamics by Wheeler [73]. However, it does
not seem that the WDW quantum geometrodynamics
is a mathematical realization of the Everett conception.
Indeed, the wave function satisfying Eq. (7) and certain
boundary conditions are thought to be a branch of a
many-worlds wave function that corresponds to a cer-
tain universe, other branches being selected by other
boundary conditions. The information about all possi-
ble actions of an observer through the whole history of
the Universe can be contained only in boundary con-
ditions. At the same time, any mathematical realiza-
tion of the Everett conception implies that a state of a
closed system is a superposition, each element of which
is a product of some state of the first subsystem and a
relative state of the second one, one of the subsystems
being a measuring apparatus. To find such a super-
position for the Universe we need to define full sets of
orthonormal states of the subsystems, which returns us
to the problem of Hilbert space.

Barvinsky and Ponomariov [3] discussed a mathe-
matical realization of the Everett conception. Though
the full set of orthonormal states was not defined, they
showed that, to define an inner product in Hilbert
space, one should impose some gauge condition, which
makes the wave function depend to a certain extent on
this gauge condition. The state described by the wave
function was interpreted as a relative state of the Uni-
verse for the chosen gauge condition. In Sec. 4.2 we shall
comment the central points of the unitary approach to
quantum theory of gravity proposed by Barvinsky. It is
important that the work of Barvinsky and Ponomariov
has demonstrated that in any mathematical realization
of the Everett conception a wave function must contain
information on both the geometry of the Universe and
the reference frame, fixed by a gauge condition with
which this geometry could be studied.

Further, the question arises if a theory, in which the
wave function depends on a gauge condition, could be
gauge-invariant. Barvinsky and his collaborators gave
a positive answer to this question. The quantization
procedure proposed by them is thought to be a “projec-
tion” of the gauge-independent Dirac–WDW formalism
[1]. Equivalence with the Dirac–WDW scheme can be
proved in the one-loop approximation and for some spe-
cial quasiclassical states. In [7], Barvinsky wrote that
the validity of extrapolating the unitary approach to
quantum cosmology is based on the success of quan-
tizing gauge theories in asymptotically flat spacetime
in unitary gauges. We would note in this connection
that the success of quantization in asymptotically flat
spacetime is crucially based on the presence of asymp-
totic states; the latter makes possible to solve the full
set of constraints and gauge conditions within the lim-
its of perturbation theory and to split off the three-
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dimensionally transversal gravitational degrees of free-
dom from the so-called “nonphysical” ones. In a gen-
eral situation without asymptotic states it may happen
that gauge invariance should be abandoned in a for-
mally consistent formulation. It is worth emphasizing
that in both cases fixing a gauge enables one to intro-
duce time in quantum theory of gravity.

2.4. Canonical approach and an outline of this
paper

The canonical approach, in a broad sense, unifies such
methods as the Dirac quantization [26] and the quanti-
zation in unitary gauges which means a transition to a
reduced phase space of true physical degrees of freedom
(see, e.g., [7]). These methods are close to ordinary
quantum theory in the sense that the quantization pro-
cedure includes constructing a Hamiltonian formalism.

This part of our work is entirely devoted to canon-
ical methods. The aim of Sec. 3 is to illustrate that
without introducing a physical time it is difficult to
give a clear interpretation to solutions to the WDW
equation for different models. On the other hand, the
minisuperspace approach, where one deals with cosmo-
logical models with a finite number of degrees of free-
dom, makes treatable a search for a wave function with
all desired properties of a consistent theory, a precise
notion of evolution and a well-defined probability. We
shall review the most representative developments with-
in this line of work, namely, those which start from dif-
ferent programmes of deparametrization or reduction to
physical degrees of freedom as a preliminary step before
quantization [4–6, 8, 9, 20–22, 28, 29, 37, 42, 46, 48,
72]. In Sec. 2.5 we shall recall the main features of min-
isuperspace models used in our further consideration.

A possible solution to the problem of time consists in
the identification of time with some function of variables
of configurational or phase space. To anticipate our
consideration, in Sec. 2.6 we shall formulate a condition
to be satisfied by admissible functions. The notion of
intrinsic and extrinsic time will also be explained in this
section.

The definition of time enables one to come to a
Schrödinger equation with a square-root true Hamilto-
nian. In Sec. 3.1 we shall discuss a relation between the
Schrödinger equation and the WDW equation and show
that solutions to the Schrödinger equation also satisfy
the WDW equation if the Hamiltonian does not depend
on the variable defined as time.

In Sec. 3.2 we shall demonstrate, following to Háj́ıcek,
that the requirement of unitarity of a resulting theory
may be related to a correct choice of the time variable.
We shall touch upon the WKB solutions to the WDW
equation in Sec. 3.3, and it will be pointed out there
that the definition of classically forbidden and allowed
regions is difficult for models where a clear notion of
time is absent.

The role of identification of time will be illustrated
in Sec. 3.4–3.6 for the Taub Universe. The behaviour of

the wave function in minisuperspace leads to a certain
choice of solutions to the WDW equation considered in
Sec. 3.4, while other solutions are discarded. On the
other hand, the time identification procedure based on
the analogy with the ideal clock results in the opposite
choice for discarding the solutions. Namely, as will be
shown in Sec. 3.5, solutions to the Schrödinger equation
can be used to select a set of solutions to the WDW
equation. In some cases it is possible to define a phase
time in such a way that the corresponding solution to
the WDW equation will have an evolutionary form. An
example will be given in Sec. 3.6. In this situation we do
not need the Schrödinger equation to select solutions,
though there is a correspondence between the solutions
to the WDW equation with the time variable and those
of the Schrödinger equation considered in the preceding
section. Interpretation of these solutions is straightfor-
ward if the Hamiltonian is time-independent.

As was mentioned above, a possible way of intro-
ducing time into the theory consists in imposing some
gauge condition. In the canonical formalism, it may be
done by means of a time-dependent gauge condition.
This line of work will be discussed in Sec. 3.7. A weak
point of this approach is that different gauge choices
lead to nonequivalent quantizations.

In Sec. 3.8 we shall consider a coordinate choice
which gives rise to the WDW equation with a time-
inedpendent Hamiltonian. In this case there exists a di-
rect correspondence between the WDW and Schrödinger
equations and their solutions. Unfortunately, this cor-
respondence exists only for a limited class of models.

Sec. 3.9 will be devoted to rather an exotic two-
component approach, in which the WDW equation is
reduced to a set of first-order equations with respect to
time. It resembles the transition from the Klein–Gordon
equation to the Dirac equation and requires introduc-
ing a spinor wave function. This procedure also leads
to a Schrödinger equation and an appropriate interpre-
tation.

A disadvantage of the methods presented in Sec. 3 is
that they can be applied to restricted classes of mod-
els. Their application depends to a large txtent on the
choice of suitable coordinates and the resulting form of
the Hamiltonian constraint. In Sec. 4 we shall briefly
review general approaches formulated for the full gravi-
tational theory. In Sec. 4.1 we shall consider an interest-
ing idea by Brown and Kuchař [11] that dust interacting
only gravitationally can serve as a time variable. This
proposal leads to a special form of the constraints and,
eventually, to a Schrödinger equation. It lies entirely
within the scope of the canonical formalism. On the
other hand, the Barvinsky’s approach [4–6, 8], which
we have already mentioned in Sec. 2.3 and whose main
points we shall recall in Sec. 4.2, admits both the canon-
ical and path integral formulations. It anticipates a con-
sideration of recent developments in the path-integral
approach in the second part of our work.
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2.5. Minisuperspace models

If all but a finite number of degrees of freedom of the
classical theory are set to zero, we obtain the minisu-
perspace approximation; the choice of an homogeneous
lapse and zero shift lead to an action whose Hamilto-
nian form is

S[qi, pi, N ] =
∫ τ2

τ1

(
pi

dqi

dτ
−NH

)
dτ, (9)

where

H = Gij pipj + V (q). (10)

Here Gij is a reduced version of the DeWitt super-
metric and V is the potential, which depends on the
curvature and includes terms corresponding to coupling
between the gravitational field and matter fields; it is
understood that spatial integration has already been
performed, so that only integration on τ remains. As
the shift is null, the momenta read pi = 1

NGij
dqj

dτ . On
the classical path we have the Hamilton canonical equa-
tions

dqi

dτ
= N [qi,H],

dpi
dτ

= N [pi,H] (11)

and the minisuperspace version of the Hamiltonian con-
straint

H = 0.

The evolution of the lapse N is arbitrary, as it is not
determined by the canonical equations. Hence, the sep-
aration between two successive spatial three-surfaces,
although globally the same, is still undetermined: this
is the minisuperspace version of the many-fingered na-
ture of time of the full theory.

The spatial line element of an isotropic and homo-
geneous cosmological model has the form

dl2 = gabdx
adxb

where gab is the space metric, whose components are
functions of time. The isotropy and homogeneity hy-
pothesis leads to the fact that the curvature depends
on only one parameter: for k = 0 we have a flat uni-
verse, for k = −1 the universe is open, and for k = 1
the universe is closed. The spacetime metric has then
the Friedmann–Robertson–Walker form [49]

ds2 = N2dτ2

− a2(τ)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (12)

where a(τ) is the spatial scale factor.
The hypothesis of homogeneity and isotropy com-

pletely determines the form of the space metric leaving
free only the curvature; restricting the hypothesis to
homogeneity without any other symmetry assumption
allows for much more freedom. Homogeneity implies
that the metric properties are the same at any point

of space. A mathematical formulation of this is given
by a set of transformations which leave the metric un-
changed. For a homogeneous non-Euclidean space, the
transformations of the symmetry group leave invariant
three linear differential forms; these forms are not to-
tal differentials of functions of the coordinates, but they
read

σi = eiadx
a

where a = 1, 2, 3 and ei are three independent vectors.
The differential forms fulfil dσi = εijkσ

j × σk . The
invariant space metric can then be written as [49]

dl2 = gijσ
iσj = gij(eiadx

a)(ejbdx
b),

so that the spatial metric tensor has the components

gab = gije
i
ae
j
b.

Possible anisotropic cosmologies are comprised by the
Bianchi models and the Kantowski–Sachs model [55].
By introducing the diagonal 3 × 3 matrix βij their
spacetime metrics can be written as

ds2 = N2dτ2 − e2Ω(τ)(e2β(τ))ijσiσj . (13)

However, the spatial geometry of Bianchi models is es-
sentially different from that of the Kantowski–Sachs
model, because a continuous transformation carrying
from the latter to the Bianchi form does not exist.

2.6. Global phase time

A globally good time is a function t(qi, pi) which mono-
tonically increases along a dynamical trajectory, that is,
each surface t = const in phase space is crossed by a
dynamical trajectory only once; hence the successive
states of the system can be parametrized by this func-
tion. This means that t(qi, pi) must fulfil the condition

HA ∂t

∂xA
> 0 (14)

where HA are components of the Hamiltonian vector

H ≡ (Hq,Hp) =
(

∂H
∂p

,−∂H
∂q

)
. (15)

The definition of Poisson brackets clearly leads to the
equivalent condition [37]

[t,H] > 0. (16)

(If we define a scaled constraint

H = F−1H, F > 0,

it can easily be shown that H and H are equivalent,
in the sense that they describe the same parameter-
ized system: their field lines, which coincide with the
classical trajectories, are proportional on the constraint
surface. Thus if we can find a function t(qi, pi) with
the property

[t,H] > 0,
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we know that t(qi, pi) monotonically increases along the
dynamical trajectories associated to both H and H ,
and it is also a global phase time.)

Since the supermetric Gik does not depend on the
momenta, a function t(qi) is a global time if the bracket

[t(qi),H] = [t(qi), Gikpipk] = 2
∂t

∂qi
Gikpk (17)

is positive-definite. Hence if the supermetric has a diag-
onal form and one of the momenta vanishes at a given
point of phase space, then no function of only its conju-
gated coordinate can be a global time. For a constraint
whose potential can be zero for finite values of the co-
ordinates, the momenta pk can be all equal to zero
at a given point, and [t(qi),H] can vanish. Hence an
intrinsic time t(qi) [47] exists only if the potential in
the constraint has a definite sign. In the most general
case, a global phase time should be a function includ-
ing the canonical momenta; this is called an extrinsic
time t(qi, pi) [44, 74], because the momenta are related
to the extrinsic curvature Kab which describes the evo-
lution of spacelike three-dimensional hypersurfaces in
four-dimensional spacetime: in the case of no matter
fields, we have

pi ≡ pab = −2GabcdKcd.

The existence of time in terms of only the coordinates
is related to the fact that, in some special cases which
do not represent the general features of gravitation, the
coordinates can be obtained in terms of the momenta
with no ambiguities; however, this is not always possi-
ble, and a consistent quantization can require working
with an extrinsic time.

3. Canonical quantization

Imposing the operator form of the original Hamiltonian
constraint on a wave function yields the usual WDW
equation, which is second-order in all its derivatives.
A Schrödinger equation, instead, requires a preliminary
definition of time, and then it includes the notion of a
true (non-vanishing) Hamiltonian. Though the WDW
equation is the most common choice for the canonical
quantization of minisuperspaces, it is difficult to inter-
pret the resulting wave function in terms of a conserved
positive-definite inner product. The Schrödinger quan-
tization, instead, allows one to define a conserved inner
product, and then a clear probability interpretation can
be given to the wave function.

In some cases, a Schrödinger equation has been
obtained by splitting the constraint into two disjoint
sheets given by the two signs of the momentum p0

conjugated to a coordinate q0 identified as time; this
yields a canonical quantization consisting in two equa-
tions of first order in ∂/∂q0 . Thus we have a pair of
Hilbert spaces, each with its corresponding Schrödinger
equation. In this case we can say that the Schrödinger
quantization preserves the topology of the constraint

surface, that is, splitting of the classical solutions into
two disjoint subsets has its quantum version in splitting
of the theory into two Hilbert spaces [67].

The subtleties involved in splitting of the original
constraint into two constraints, namely K+ = 0 and
K− = 0, were first carefully considered by Blyth and
Isham [10]. These two constraints together are classi-
cally equivalent to the original Hamiltonian constraint
H = 0, which is quadratic in all momenta; that is, clas-
sical dynamics takes place in one of the two sheets of
the constraint surface determined by the sign of a non-
vanishing momentum. But at the quantum level this
equivalence is no more fulfilled if time appears in the
potential: a function in the kernel of the operator K̂+

or K̂− is not annihilated by the operator Ĥ , but by Ĥ
plus terms corresponding to a commutator between p̂0

and the square-root true Hamiltonian resulting from its
time-depending potential. It must be emphasized that
these terms cannot be eliminated by operator ordering.

We shall then begin with a discussion of the men-
tioned work by Blyth and Isham; also, Háj́ıcek’s thor-
ough discussion of the relation between unitarity and
the identification of time [37] is reproduced and com-
mented in detail. Then a review of two standard pro-
cedures will follow, one by Halliwell and the other by
Moncrief and Ryan, in the framework of a WDW equa-
tion straightforwardly obtained from the constraints of
different homogeneous models without a previous anal-
ysis of the problem of time. We shall emphasize unsatis-
factory points of such a procedure, and then show some
improvements based on the identification of global time
as a step before quantization. Within this context, we
shall also discuss the role of the Schrödinger equation,
both as an auxiliary tool for selecting solutions of the
WDW equation and as the central equation for quanti-
zation; in particular, we analyse an interesting approach
starting with identification of time by means of gauge
fixing and also a two-component formulation inspired in
Dirac’s solution to the problems of the Klein–Gordon
equation.

3.1. WDW equation and Schrödinger equation

A good introduction to the problem of choosing between
these two formulations can be found in an early work
by Blyth and Isham, Ref. [10]. Within the context
of canonical quantization of a Friedmann–Robertson–
Walker universe with matter in the form of a scalar
field, the authors carefully study the reduction proce-
dure leading to a Schrödinger equation and establish its
inequivalence with the standard WDW approach. The
analysis starts with identification of one of the canonical
coordinates of the model as a time variable (in practice,
the scale factor; see below), thus reducing the system
and treating it in the usual canonical form with a true
time and a true non-vanishing Hamiltonian. The result
is the time-dependent Schrödinger equation

i
∂Ψ
∂t

= hΨ, (18)
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where h is a square-root true Hamiltonian. This re-
quires a definition by means of the spectral theorem,
assuming that the square root is taken on a positive-
definite self-adjoint operator. This point relies on the
correct identification of time (see the next section); for
example, the scale factor is a bad time variable for any
model allowing for pΩ = 0.

The usual WDW approach would lead, instead of
(18), to the second-order equation

−∂2Ψ
∂t2

= h2Ψ, (19)

which in the most general case is not equivalent to
(18). In fact, by acting with h on both sides of the
Schrödinger equation, the result obtained is

−∂2Ψ
∂t2

− i
∂h

∂t
Ψ = h2Ψ. (20)

Clearly the solutions of (18) and (19) will then be differ-
ent, unless the potential in the square-root Hamiltonian
h does not depend on the variable defined as time. In
the case that h commutes at different times, integration
of (18) yields

Ψ(x, t) = exp
(
−i

∫ t

t0

h(s)ds
)

Ψ(x, t0), (21)

where x stands for the true degrees of freedom of
the system. A decomposition in terms of eigenstates
ΨE(x, t) can be given, with

ΨE(x, t) = exp
(
−i

∫ t

t0

E(s)ds
)

ΨE(x, t0),

and ΨE(x, t0) a solution of the equation

h2(x, t0)ΨE(x, t0) = E2ΨE(x, t0).

Here there is no problem with the square of the true
Hamiltonian h2 because this is an eigenvalue equation
for a fixed time t0 . Once a definite solution is obtained,
it can be provided with physical meaning because the
corresponding inner product is well defined, which is
not the case for the Klein–Gordon type equation (19).
Though the first choice of time by the authors is the
scale factor, other choices are also explored, including
extrinsic times. This is unavoidable for any Friedmann–
Robertson–Walker model with a constraint including a
potential which can be zero for finite values of the co-
ordinates.

3.2. Unitarity and time

Here we shall reproduce and analyse the early work by
Háj́ıcek where the relation existing between a correct
choice of time and the obtention of a unitary theory
[37] is clearly established, and the analogy between the
existence of a global phase time for a parametrized sys-
tem and the possibility of a globally good gauge choice
for a gauge system is discussed.

Instead of the models studied by Háj́ıcek, we shall
consider a generic (scaled) constraint of the form

−p̃2
1 + p̃2

2 + Ae(aq̃1+bq̃2) = 0 (22)

with a �= b , where we have used tildes to denote
that the variables are not necessarily the original ones,
but a set {q̃i, p̃i} including the coordinate q̃0 which
is a global time. This Hamiltonian corresponds to
some models of interest, like dilaton cosmologies, the
Kantowski–Sachs universe and even the Taub universe
after a canonical transformation. It is easy to show that
a coordinate change exists, leading to

H = −p2
x + p2

y + ζe2x = 0 (23)

with sign(ζ) = sign(A/(a2 − b2)). Depending on the
sign of the constant A in the constraint (22), these
models admit as global phase time the coordinates x or
y . In case ζ > 0, the time is t = ±x , so that, following
Ref. [37], we can define the reduced Hamiltonians as
h± = ±

√
p2
y + ζe2x , and we can write the Schrödinger

equations

i
∂

∂x
Ψ(x, y) = ∓

(
− ∂2

∂y2
+ ζe2x

)1/2

Ψ(x, y) (24)

(note that in this case we obtain a time-dependent po-
tential). If, instead, we have ζ < 0, the time is t = ±y
and the reduced Hamiltonians corresponding to each
sheet of the constraint surface are h± = ±√

p2
x − ζe2x ;

the associated Schrödinger equations are

i
∂

∂y
Ψ(x, y) = ∓

(
− ∂2

∂x2
− ζe2x

)1/2

Ψ(x, y). (25)

For both ζ > 0 and ζ < 0 we have a pair of Hilbert
spaces, each one with its corresponding Schrödinger
equation, and a conserved positive-definite inner prod-
uct allowing for the usual probability interpretation of
the wave function. This is analogous to the obtention of
two quantum propagators, one for each disjoint theory,
mentioned in the context of path integral quantization
[67, 8].

A point to be remarked is that, as a result of a cor-
rect time definition, in both cases the reduced Hamil-
tonians are real, so that the evolution operator is self-
adjoint, and the resulting quantization is unitary. In-
stead, a wrong choice of time, like for example t = ±x
in the case ζ < 0, leads to a Hamiltonian for a reduced
system which is not real for all allowed values of the
variables, and we obtain a non-unitary theory.

There is an aspect, however, which should be marked,
though it was not emphasized in Ref. [37]. In the case
ζ > 0 the Schrödinger equations can be obtained start-
ing from the constraint written as a product of two
linear constraints:(

−px +
√

p2
y + ζe2x

) (
px +

√
p2
y + ζe2x

)
= 0, (26)
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and it is then clear that the potential depends on time.
Therefore, though at the classical level this product is
equivalent to the constraint (22), in its operator ver-
sion the two constraints differ in terms associated to
the commutators between px and the potential ζe2x .
Hence, depending on which of the two classically equiva-
lent constraints we start from, we obtain different quan-
tum theories. Observe that this problem appears in the
case for which the WDW equation leads to a result in
which the identification of positive and negative-energy
solutions is not apparent, at least in the standard form:
for the case ζ > 0, t = ±x we obtain the WDW solu-
tions

Ψω(x, y) =
[
a+(ω)eiωy + a−(ω)e−iωy

]
×

[
b+(ω)Jiω(

√
|ζ|ex) + b−(ω)Niω(

√
|ζ|ex)

]
, (27)

with Jiω and Niω the Bessel and Neumann functions
of imaginary order, respectively; note that the time de-
pendence appears in the argument of Bessel functions.
Instead, for ζ < 0, t = ±y , the solutions are of the
form

Ψω(x, y) =
[
a+(ω)eiωy + a−(ω)e−iωy

]
×

[
b+(ω)Iiω(

√
|ζ|ex) + b−(ω)Kiω(

√
|ζ|ex)

]
, (28)

where Iiω and Kiω are modified Bessel functions. In
this case the usual factors ∼ eiωt associated with def-
inite energy states are obtained; moreover, now the
WDW solutions are the same, corresponding to the
Schrödinger equation, so that the inner product is well
defined.

We insist on a point regarding the topology of the
constraint: the choice of a Schrödinger formulation al-
ways preserves the classical geometry of the constraint
surface [13, 67]; in the case of a time-dependent po-
tential this is achieved by introducing the commutator

mentioned above, whose form is
[√∑

( ˆ̃pr)2 + V ( ˆ̃qi), ˆ̃p0

]

(where r �= 0, and V stands for the potential in the
scaled Hamiltonian constraint H ). It is clear that this
cannot be avoided by any operator ordering.

3.3. Approximate solutions of the WDW
equation

The impossibility of explicitly integrating the WDW
equation except for a limited class of models has led
to several attempts of quantization based on approxi-
mations valid for different regions of phase space. Con-
sider the Hamiltonian constraint of a closed (k = 1)
homogeneous and isotropic universe with a scalar field
φ and zero cosmological constant; assume a generic de-
pendence of the potential with φ , namely V (φ). The
associated WDW equation obtained by replacing p →
−i∂/∂q (and considering a trivial factor ordering) reads

(
∂2

∂Ω2
− ∂2

∂φ2
+ V (φ)e6Ω − e4Ω

)
Ψ(Ω, φ) = 0. (29)

Halliwell analysed the region of phase space such that
|V ′/V | � 1 and found solutions whose variation with
the matter field was small, so that the φ derivative can
be neglected. In the region where the scale factor is
small, the resulting WKB solutions have the exponen-
tial form [39]

Ψ(Ω, φ) ∼ exp
(
± 1

3V (φ)
(1 − e2ΩV (φ))3/2

)
(30)

and are associated with a classically forbidden region.
For large values of the scale factor, the WKB solutions
have the oscillatory form

Ψ(Ω, φ) ∼ exp
(
± i

3V (φ)
(e2ΩV (φ) − 1)3/2

)
. (31)

These solutions correspond to what is considered the
classically allowed region. Both kinds of solution can be
matched by means of the usual WKB matching proce-
dure. In case e2ΩV (φ) � 1, it can be shown that the
oscillatory wave function is peaked about a solution of
the form

eΩ ∼ e
√
V τ , φ ∼ φ0,

which corresponds to an inflationary behaviour. (For
the case V (φ)=0 an exact solution can be easily ob-
tained in terms of modified Bessel functions. This is
also the case if V (φ)=0 in a flat (k = 0) model with a
nonzero cosmological constant). Depending on the form
of V (φ), the regions considered by Halliwell may be re-
lated to those to which the analysis should be restricted
if one were to define an intrinsic time in the case of mod-
els for which this cannot be done globally. We should
signal that the absence of a notion of time within this
formulation, besides making unclear the interpretation
of the formalism, makes not completely justified the
identification of classically forbidden or allowed regions,
since this would require a separation between true de-
grees of freedom and time; we will return to this point,
with more detail, in the following paragraph.

3.4. Exact solutions without time

In the literature we can find different exact solutions to
the WDW equation for minisuperspace models. An ex-
ample among those which do not start from an explicit
deparametrization is the solution found for the Taub
universe (see the next section) by Moncrief and Ryan
[54] in the context of an analysis of a Bianchi type-IX
universe with rather a general operator ordering of the
Hamiltonian constraint [40]. In the case of the most
trivial ordering they found the following general solu-
tion to the WDW equation:

Ψ(Ω, β+) =
∫ ∞

0

dω F (ω)

×Kiω

(
1
6

e2Ω−4β+

)
K2iω

(
2
3

e2Ω−β+

)
, (32)
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where Kiω are modified Bessel functions of imaginary
argument; modified functions I would also appear, but
they are discarded because they are not well-behaved
for β+ → ±∞ (see below). In the particular case that
F (ω) = ω sinh(πω), Moncrief and Ryan showed that
the wave function can be written in the form

Ψ(Ω, β+) = R(Ω, β+)e−S (33)

with

S =
1
6

e2Ω
(
e−4β+ + 2e2β+

)
.

This wave function has a nice feature that for values
of Ω near the singularity (that is, the scale factor near
to zero), the probability is spread over all possible de-
grees of anisotropy given by β+ , while for large values
of the scale factor the probability is peaked around the
isotropic Friedmann–Robertson–Walker closed universe;
the authors, however, abstain from a naive interpre-
tation of the wave function, and they note that there
are different probability interpretations that would not
agree with this one.

There are two central objections to this straightfor-
ward procedure, and both arise from the absence of a
notion of time in the formalism: first, since time has
not been identified, it is not possible to speak about
a conserved probability, hence the meaning of the wave
function is not clear at all. Second, the choice of a set of
solutions made by discarding the modified Bessel func-
tions I would only be justified by a bad behaviour of
the wave function in a region of the configuration space
determined by the form of the potential of a true Hamil-
tonian. This is not the case, because a true Hamiltonian
is necessarily related to a physical time, which is lack-
ing in this formulation; in fact, we shall immediately
see that a careful analysis of this point leads to the
exactly opposite choice for discarding Bessel functions.
The procedure (see the next section) will be based in
an intermediate line of work consisting in combining
the WDW equation with a Schrödinger equation.

3.5. Boundary conditions for WDW solutions
from a Schrödinger equation

The problem mentioned in the two above examples
could be solved by an approach beginning with the
identification of a global phase time like that in Ref.
[18], whose authors obtain a Schrödinger equation and
use its solutions to select a set of solutions of the WDW
equation. The underlying idea is that a typical con-
straint of a parametrized system, which is linear in the
momentum conjugated to the true time, is hidden in
the formalism of gravitation. This is an extension of
the analogy between an ideal clock and empty isotropic
models [9, 28, 23]: The constraint of the ideal clock

H = pt − t2 = 0

yields the Schrödinger equation

i
∂Ψ
∂t

= −t2Ψ, (34)

which is of parabolic form and has the only solution
Ψ = eit

3/3 . As a first step to obtain the constraint
of a minisuperspace, a canonical transformation leading
to a constraint quadratic in the momenta is performed:
defining Q = pt , P = −t , we obtain

H = −P 2 + Q = 0.

(The Hamiltonian of empty isotropic models results
from the second transformation Q = Ṽ (Ω), P =
pΩ(dṼ /dΩ)−1 , with Ṽ the potential defined in Ref. [23]).
The differential equation associated with the constraint
is now of hyperbolic form:

∂2Ψ
∂Q2

+ QΨ = 0. (35)

As this equation is of second order, it has two indepen-
dent solutions, which are the Airy functions Ai(−Q)
and Bi(−Q). The central point is that while Bi(−Q)
diverges as Q → −∞ , Ai(−Q) is well-behaved (in fact,
it vanishes) in this limit, and it is a Fourier transform
of the solution of Eq. (34). This provides a rule for se-
lecting solutions of the hyperbolic equation: physical
solutions are those which are in correspondence with
the solutions of the Schrödinger equation.

This line is then followed in [18] for quantizing the
Taub universe, which is a particular case of the Bianchi
type IX model [49, 55]. In the absence of matter, its
Hamiltonian constraint reads

H = p2
+ − p2

Ω +
1
3

e4Ω(e−8β+ − 4e−2β+) = 0, (36)

where β+ determines the degree of anisotropy. The
Taub universe involves a potential which vanishes for
finite values of the coordinates, so making impossible
the definition of an intrinsic time in terms of the original
variables. By defining x = Ω − 2β+ , y = 2Ω − β+ the
constraint can be put in the form

H = p2
x − p2

y +
1
9

(e4x − 4e2y) = 0 (37)

(the authors work with a different choice of the con-
stants); then the corresponding WDW equation

(
∂2

∂x2
− ∂2

∂y2
− 1

9
e4x +

4
9

e2y

)
Ψ(x, y) = 0 (38)

is solved as was done by Moncrief and Ryan. The au-
thors obtain the solutions

Ψω(x, y) =
[
a(ω)Iiω

(
2
3

ey
)

+ b(ω)Kiω

(
2
3

ey
)]

×
[
c(ω)Iiω/2

(
1
6

e2x

)
+ d(ω)Kiω/2

(
1
6

e2x

)]
, (39)

with I and K modified Bessel functions. Then they
consider a canonical transformation generated by

Φ1(y, s) = −2
3

ey sinh s, (40)
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leading to the following form of the Hamiltonian con-
straint:

H(s, x, πs, πx) = −p2
s + p2

x +
1
9

e4x = 0, (41)

so that the momentum ps is negative-definite, and the
time is t = s ; hence the constraint is written as a prod-
uct of two factors linear in ps , the first one positivee-
definite, and the second one a constraint including a
true Hamiltonian h =

√
p2
x + (1/9)e4x which is time-

independent (as we have already remarked, this makes
possible an equivalence of the linear constraint and the
original quadratic one). This constraint then leads to
the Schrödinger equation

i
∂

∂t
Ψ(x, t) =

(
− ∂2

∂x2
+

1
9

e4x

)1/2

Ψ(x, t). (42)

It is necessary to have a prescription to give a pre-
cise meaning to the Hamiltonian operator; the square
root containing the derivative operator must be under-
stood as its binomial expansion, which allows one to
propose solutions of the form ∼ φ(x)e−iωt . According
to this interpretation, the contribution of the functions
Iiω/2((1/6)e2x) is discarded because they diverge in the
classically forbidden region associated with the expo-
nential potential 1

9e4x ; the functions Iiω((2/3)ey), in-
stead, are not discarded, because in this picture the co-
ordinate y is associated with the definition of time. In
fact, by transforming the solutions of the WDW equa-
tion, it is shown that those corresponding to the solu-
tions of the Schrödinger equation are precisely the func-
tions Iiω((2/3)ey), while the functions Kiω((2/3)ey)
must be ruled out because they cannot be associated
with definite energy states of the true Hamiltonian h .
It is remarkable that the functions in the selected sub-
space do not decay in what was previously considered a
classically forbidden zone; note then the central differ-
ence with the result of the preceding subsection.

3.6. WDW equation with extrinsic time

A possible deparametrization and canonical quantiza-
tion programme can start from a form of the Hamilto-
nian constraint such that a global phase time is easily
identified as one of the canonical coordinates (in the
general case, this could require a preliminary canonical
transformation); this is reflected in the corresponding
WDW equation, and hence the resulting wave function
has an evolutionary form. If the reduced Hamiltonian
does not depend on time, the wave function may be in-
terpreted as it is in ordinary quantum mechanics. We
shall illustrate this line of work with a solution for the
Taub universe [35].

If we admit a double sign in the generating function
for the canonical transformation, leading to a constraint
with a non-vanishing potential, then the Hamiltonian
(41) allows one to immediately define time as

t = −s sign(ps).

As we shall see in Part II, this time can be obtained by
choosing a simple canonical gauge condition, which, in
the variables q̃i including a global time, has the form
s = ηT (τ), η = ±1. The corresponding WDW equation
is

(
∂2

∂x2
− ∂2

∂s2
− 1

9
e4x

)
Ψ(x, s) = 0. (43)

This equation has the set of solutions [35]

Ψω(x, s) =
[
a(ω)eiωs + b(ω)e−iωs

]

×
[
c(ω)Iiω/2

(
1
6

e2x

)
+ d(ω)Kiω/2

(
1
6

e2x

)]
, (44)

where ±s is a global phase time. The contribution
of the functions Iiω/2 should be discarded since they
are not well-behaved for large values of x ; now this is
completely justified, since the exponential ∼ e4x is the
potential of a true Hamiltonian. Then, recalling that
t = ±s , the wave function can be given in terms of a
set of definite-energy solutions:

Ψω(x, t) = a(ω)e−iωtKiω/2

(
1
6

e2x

)
. (45)

This reflects that the two theories, corresponding to two
sheets (in terms of the new variables) of the constraint
surface, are equivalent [65].

The solutions of this WDW equation correspond
to those of the Schrödinger equation of the preceding
section. This procedure allows one to obtain them
without the necessity of defining a prescription for the
square root operator, but only by choosing trivial fac-
tor ordering; differing from the previous treatment,
now these solutions are not merely considered as a
tool for imposing boundary conditions, but are un-
derstood as the wave function of the model. A point
to be remarked is that in this description the role of
the original momenta, though unavoidably provided
the topology of the constraint surface in the origi-
nal variables, is restricted to the global phase time
s = ±arcsinh

(
1
2 (pΩ + p+)e(−2Ω+β+)

)
; another coordi-

nate entering into the wave function is a simple function
of only the original coordinates.

Though this procedure is the most straightforward,
including a correct notion of time, an unsatisfactory
point is that the resulting wave function can be inter-
preted in terms of probabilities because the constraint
of the model considered here leads to the same solu-
tions for both the WDW and the Schrödinger equa-
tions; hence we can define the probability by means of
the ordinary Schrödinger inner product, which is con-
served and positive-definite. In the case of a model with
a time-depending potential, this would not be possible,
and though we could isolate time and obtain an evolu-
tionary wave function, its meaning would not at all be
clear (see, however, Sec. 3.8 for a possible solution for a
restricted class of models).
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3.7. Gauge fixing and Schrödinger equation for
isotropic models

As we have already pointed out, a close relation exist-
ing between the identification of time and gauge fixing
suggests a possible way of solving the problem of time
in quantum cosmology. This was strongly supported
by, e.g., Barvinsky [8] (see below), and we have devel-
oped the idea for its application in the path integral
for homogeneous cosmologies (see below and [66]). An
interesting development of this line of work within the
canonical formalism is that by Cavaglià, De Alfaro and
Filippov in [20]. In their proposal, canonical gauge fix-
ing is used to reduce the system: one degree of free-
dom is given as a function of the remaining ones and
the time parameter τ , and a true (called “effective” by
the authors) Hamiltonian is obtained; this Hamiltonian
may in general depend on the time parameter. The
gauge choice is dictated by the simplicity of the Hamil-
tonian for the reduced system. Once the reduction is
performed, the system is quantized in reduced canonical
phase space; this is achieved by writing a Schrödinger
equation which is in general τ -dependent. In a given
gauge, the time parameter is connected with the canon-
ical degree of freedom that has been eliminated.

The authors illustrate their proposal studying a
Friedmann–Robertson–Walker universe with matter in
the form of a conformal scalar field (CS) and of a SU(2)
Yang–Mills field (YM) [19]. The corresponding Hamil-
tonian constraint is

−HGR + HCS + HYM = 0, (46)

where HGR is the pure gravitation Hamiltonian and

HCS =
1
2

(
p2
χ + V (χ)

)
,

HYM =
1
3

(
1
2
p2
ξ + V (ξ)

)
.

Different gauge choices and the resulting Schrödinger
equations are explored. For a gauge condition in
terms of the gravitational degree of freedom like [31],
pΩ + 1

12eΩ cot τ = 0, the equation

i
∂

∂τ
Ψ(ξ, χ, τ) = (HCS + HYM )Ψ(ξ, χ, τ) (47)

is obtained; its solution gives a wave function for both
matter fields. Rather a different choice connects the
conformal field with the time parameter: pχ−χ cot τ =
0. This gauge leads to a Schrödinger equation for the
metric and the Yang–Mills field:

i
∂

∂τ
Ψ(ξ,Ω, τ) = (HYM −HGR)Ψ(ξ,Ω, τ). (48)

An explicit solution is given for the simple case of a
closed universe with a scalar field φ with V (φ) = 0.
The gauge condition pΩ − 12eΩ sinh

(
τ√
3

)
= 0 yields

the equation(
∂

∂τ
∓ ∂

∂φ

)
Ψ(φ, τ) = 0 (49)

for the only physical degree of freedom φ . The solutions
are of the form

Ψ(φ, τ) = f(φ± τ). (50)

A particular solution is Ψ(φ, τ)O−(φ±τ)2/2σ , which rep-
resents a universe whose maximum probability follows
the classical path φ = ±τ .

Apart from the usual problem of possibly non-equi-
valent quantizations related to different gauge choices,
this procedure has the advantage that, instead of a
WDW equation (even one with time among the coor-
dinates), a Schrödinger equation is obtained. Hence
the wave function has the same properties of that in
ordinary quantum mechanics: an evolutionary form, a
conserved current and positive density. Note that the
price for this achievement has been the choice of gauges
in terms of not only the coordinates but also the mo-
menta, so that the resulting time is in general extrinsic.

3.8. Avoiding non-equivalent formulations

As we have seen, the central obstruction for the ex-
istence of a trivial correspondence between the WDW
and Schrödinger solutions for minisuperspaces is a con-
straint with a time-dependent potential. For a class of
models including some of those studied in the preceding
sections, a coordinate choice avoiding the decision be-
tween inequivalent quantum theories can be introduced
[67]. Consider the constraint (22) and define

u = α exp
(

aq̃1 + bq̃2

2

)
cosh

(
bq̃1 + aq̃2

2

)
,

v = α exp
(

aq̃1 + bq̃2

2

)
sinh

(
bq̃1 + aq̃2

2

)
, (51)

with α =
√|A| . These coordinates allow one to write

the constraint in the equivalent (scaled) form

H − p2
u + p2

v + ηm2 = 0, (52)

with η = sign(A) and m2 = 4/|a2 − b2| . It is clear
that commutators cannot appear now; hence the WDW
equation is equivalent to two Schrödinger equations.
The time is u or v , depending on η . The double sign
given by η corresponds to both possible sheets of the
constraint surface where the evolution can take place.

Let us illustrate this coordinate choice with some
simple dilatonic cosmologies (see [66] and references
therein); consider the scaled constraint

H = −p2
Ω + p2

φ + 2ce6Ω+φ = 0.

which corresponds to a flat model with the dilaton field
φ . For c < 0 we have t = ±v , while for c > 0 we obtain
t = ±u . In case c < 0 (for which the dilaton φ itself is a
globally good time as pφ �= 0), we obtain −∞ < t < ∞
on both sheets of the constraint determined by the sign
of pv ; in case c > 0 (which admits Ω as a global time),
instead, we have that t goes from −∞ to 0 on the sheet
pu > 0 and from 0 to ∞ on the sheet pu < 0, with
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t → 0 corresponding to the singularity Ω → −∞ . If
we include in the model a non-vanishing antisymmetric
field Bµν coming from the NS -NS sector of effective
string theory, the constraint turns to

H = −p2
Ω + p2

φ + 2ce6Ω+φ + λ2e−2φ = 0.

which in principle does not admit the proposed coordi-
nate change. Moreover, in case c < 0 the model does
not admit an intrinsic time. However, because these
models come from the low energy string theory, which
makes sense in the limit φ → −∞ , the eφ ≡ V (φ) fac-
tor in the first term of the potential satisfies V (φ) =
V ′(φ) � 1, and we can replace ceφ with the constant
c � c . We can then perform the canonical transfor-
mation introduced for the Taub universe to obtain a
constraint with only one term in the potential:

H = −p2
Ω + p2

s + 2ce6Ω = 0,

and we can apply our procedure starting from this con-
straint. As before, for c < 0 we obtain t = ±v , while
for c > 0 we obtain t = ±u . Now, because both u and
v depend on the coordinate s which involves in its defi-
nition the original momenta, the time is extrinsic (note
that in case c < 0 an intrinsic time does not exist).
However, in case c > 0, t behaves with Ω as it did in
the absence of the antisymmetric field; t goes from −∞
to 0 on the sheet pu > 0 of the constraint surface and
from 0 to ∞ on the other sheet, while t → 0 for the
singularity Ω → −∞ .

3.9. Two-component wave function

A two-component formulation is a possible way to asso-
ciate a set of differential equations which are first-order
in the time derivative with a Klein–Gordon type equa-
tion, as is the WDW one. Hence a Schrödinger equation
is obtained, to which the well-known resolution proce-
dures can be applied and an interpretation in terms of
a well-defined inner product can be given. As was re-
cently shown in Refs. [51, 52, 53], such an idea can be
effectively carried out for some minisuperspace models.
The procedure reduces resolution of the WDW equation
to an eigenvalue problem analogous to that of a non-
relativistic harmonic oscillator and a series of algebraic
equations which can be solved by iteration. Application
of the theory of pseudo-Hermitian operators [53] allows
one to solve the problem of constructing an invariant
positive-definite inner product on the space of solutions
of the WDW equation.

The method has been exemplified with a Friedmann–
Robertson–Walker universe with matter in the form of
a massive scalar field φ . The corresponding second-
order equation is reduced by identifying the logarithm
of the scale factor Ω as a time variable, and defining
the wave function

Ψ =
1√
2

(
ψ + iψ̇

ψ − iψ̇

)
, (53)

where dots mean derivatives with respect to Ω, and the
time-dependent Hamiltonian operator

H =
1
2

(
1 + D −1 + D
1 −D −1 −D

)
, (54)

where D−∂2/∂φ2 −ke4Ω +m2φ2e6Ω . This leads to the
Schrödinger equation

iΨ̇ = HΨ (55)

which is solved by finding solutions to the eigenvalue
problem HΨn = EnΨn (see Ref. [52] for details). For
the closed (k = 1) model, imaginary eigenvalues are
obtained for eΩ > m ; the corresponding eigenvectors
are null. The not completely satisfactory feature of
imaginary eigenvalues is associated with the fact that
the scale factor is really not a global time for a closed
Friedmann–Robertson–Walker universe.

4. Beyond the minisuperspace
approximation

In this section we shall review two approaches dealing
with the full theory: the first one consists in a proposal
of Brown and Kuchař [11] for using dust as time within
the canonical formalism; this leads to a constraint lin-
ear in the momentum conjugated to the corresponding
field, and therefore to a Schrödinger equation; the sec-
ond one is Barvinsky’s programme [4, 5, 6, 8], presented
both in the canonical and path integral formalisms; this
contains the basic ideas underlying any deparametriza-
tion procedure.

4.1. Dust as time

The proposal presented by Brown and Kuchař in Ref. [11]
is to find a medium which, when quantizing the system
in the Dirac formulation for constrained systems, leads
to a Schrödinger equation — a functional one, because
the proposal is presented at the general superspace
level.

It is found that incoherent dust, that is, dust which
interacts only gravitationally, is a good choice for a time
variable. A central feature of dust is that the Hamil-
tonian in the resulting Schrödinger equation does not
depend on the dust variables. Hence the Hamiltonian
density commutes (then allowing for a simultaneous def-
inition by spectral analysis), and the equation can be
solved by separating dust (time) from the gravitational
degrees of freedom.

The Hamiltonian and momentum constraints, re-
sulting when adding the dust contribution in the action,
can be put in such a form that they can be solved in the
dust momentum field. This leads to the new constraints
H↑(X) and H↑k(X), the first one generating dynam-
ics along the dust flow lines, and the others inducing
motion on the surfaces of constant proper time of dust.
The true Hamiltonian associated with the choice of dust
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as time is a square root G(X) depending only on the
gravitational degrees of freedom.

The variables T,Zk and their conjugate quantities
M,Wk (k = 1, 2, 3) are introduced, such that the values
of Zk are the comoving coordinates of dust particles,
while T is the proper time along the particle flow lines.
In terms of these new variables, the Hamiltonian and
momentum constraints of the whole system read

H↑ = P (X) + h(X, gab, p
ab) = 0, (56)

H↑k = Pk(X) + hk(X,T,Zk, gab, p
ab) = 0 (57)

where

h(X) = −
√

G(X),
G(X) = (HG)2 − gabHG

a HG
b ,

hk(X) = Za
kH

G
a +

√
G(X)T,aZa

k ;

here HG and HG
a are the usual Hamiltonian and mo-

mentum constraints of pure gravitation, and P is the
projection of the rest mass current of dust onto the
four-velocity of Eulerian observers, while Pk = −PWk .
Note that the Hamiltonian h(X) does not depend on
the dust variables. To proceed with the canonical quan-
tization, a new set of variables T(z),P(z),gkl(z),pkl(z)
is introduced with the following meaning: T is the
proper time along the dust worldline whose Lagrangian
coordinate is zk , P is the dust rest mass per unit co-
ordinate cell, and gkl is the metric giving the proper
distance between nearby particles with coordinates zk

and zk + dzk . This yields the Hamiltonian constraint

H↑ = P(z) + h(z,gkl,pkl) = 0. (58)

Hence the resulting Schrödinger equation for the wave
functional Ψ(Z,T,g) is

i
δΨ(Z,T,g)

δT
= h(z,g,p)Ψ(Z,T,g). (59)

But since the wave functional must satisfy the mo-
mentum constraints which, as operators, are functional
derivatives with respect to the canonical coordinates
Zk , Ψ does not depend on Zk and hence one obtains

i
δΨ(T,g)

δT
= h(z,g,p)Ψ(T,g). (60)

Replacement of the WDW equation with this functional
Schrödinger equation thus allows one to define a con-
served positive-definite inner product. (To be precise,
to obtain a self-adjoint new physical Hamiltonian h ,
the theory must be restricted to the subspace given by
the positive eigenvalues of the operator Ĝ associated
with G defined above). It is interesting to note that
the idea of Brown and Kuchař has been recently ap-
plied by A. Sen [56] to string cosmology, with a tachyon
playing the same role as dust, that is, as a time variable
for the system and leading to a Schrödinger equation.

4.2. Reduction to true degrees of freedom as a
way to unitary quantum cosmology

A central contribution to the search for a unitary quan-
tum theory of gravity has been that of Barvinsky [1,
3, 4, 5, 6, 8]. It is clearly beyond the scope of these
notes to give a thorough review of his seminal works
— moreover, they are mostly devoted to the full the-
ory rather than to the minisuperspace approximation
— but since most of our own contributions have largely
drawn on them, here we shall briefly comment some of
their central aspects.

The programme starts from reduction of gravity
theory to true physical variables ζ by means of gauge
fixing, which appears natural after the following con-
siderations. The dynamical evolution, which includes
the problem of the multiplicity of times associated
with the fact that separation between successive three-
hypersurfaces is arbitrary, can be reproduced by gauge
transformations [8]. The extremal condition δS = 0
gives the canonical equations

dqi

dτ
= Nµ[qi,Hµ],

dpi
dτ

= Nµ[pi,Hµ]. (61)

A solution of these equations describes the evolution
of a spacelike hypersurface along the timelike direction,
and the presence of the multiplier N introduces arbi-
trariness in the evolution, which is related to the mul-
tiplicity of times. From a different point of view, the
constraint H = 0 acts as a generator of gauge transfor-
mations which can be written as

δεq
i = εµ(τ)[qi,Hµ],

δεpi = εµ(τ)[pi,Hµ],

δεNµ =
∂εµ(τ)

∂τ
− uνρµ ερNν , (62)

where uνρµ are the structure functions of the constraints
algebra. Then, from (61) and (62), we see that the dy-
namical evolution can be reproduced by a gauge trans-
formation progressing with time, that is, any two suc-
cessive points on each classical trajectory are connected
by a gauge transformation; this leads to the idea of
identifying time and true degrees of freedom by fixing
the gauge.

Once the gauge is fixed, the constraints are solved,
then yielding a true non-vanishing Hamiltonian and a
physical time. The reduced system is then quantized,
and the theory is reformulated in terms of the initial
superspace variables q (that is, in terms of the canon-
ical variables including spurious degrees of freedom).
This procedure allows one to obtain a wave function
Ψ(q) solving the operator form of the constraints and
including the central feature of a precise inner product
allowing for a clear probabilistic interpretation.

After reduction of the classical theory, quantization
follows the usual path integral procedure; and the sub-
sequent reformulation in terms of the original variables
gives a unitary gauge-independent superspace propaga-
tor which allows one to evolve the initial conditions on
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a given Cauchy surface, that is, to evolve from a given
subspace in superspace. This allows for obtention of a
wave function Ψ(q) for which the measure is well de-
fined in the sense that the probability amplitude is con-
served in the superspace theory including a multiplicity
of times.

Within this context, Barvinsky has also analysed the
generalized Batalin–Fradkin–Vilkovisky (BFV) canon-
ical quantization and has shown that the superspace
wave function Ψ(q) is an intermediate step between the
wave function for the physical degrees of freedom ψ(ζ)
and the quantum states in the extended BFV Hilbert
space. Also, a definite operator ordering, and the corre-
sponding quantum corrections, are given which ensure
the closure of the constraint algebra and their hermitic-
ity properties resulting from the BFV formalism.

Some points of Barvinsky’s proposal can be out-
lined: 1) The absence of an asymptotically free limit in
gravity theory forces the choice of a coordinate repre-
sentation; this implies the restriction to systems which
admit an intrinsic time, which appears in the reduction
procedure as a result of imposing gauges not involv-
ing the momenta. 2) To avoid a frozen formalism, the
appropriate gauge conditions must be explicitly time-
dependent:

χ(q, τ) = 0. (63)

3) Because of the form of the Hamiltonian constraint,
which is quadratic in the momenta, the theory in the
reduced space described by the set of canonical vari-
ables (ζA, πa) includes two physical Hamiltonians H±
satisfying

H−(ζ,−π, τ) = −H+(ζ, π, τ), (64)

corresponding to two disjoint theories. 4) It is assumed
that the quantum description in terms of the physical
degrees of freedom (ζA, πa) is a gauge-invariant quan-
tum theory for the original variables (qi, pi, Nµ). 5)
The theory in the physical subspace is given by the
commutation relations

[ζA, πA] = iδAB (65)

and the Schrödinger equation

i
∂

∂τ
ψ(ζ, τ) = H(ζ, π, τ)ψ(ζ, τ) (66)

with the inner product

〈ψ̃|ψ〉 =
∫

dζ ψ̃∗ψ, (67)

or, in the path integral formulation, by the propagator

K(ζ2, τ2|ζ1, τ1) =
∫

Dζ Dπ exp (iS[ζ, π]) . (68)

6) Once the reduced theory has been constructed, so
ensuring unitarity of the quantum description, a refor-
mulation in terms of the original variables is performed.

This means obtaining a wave function Ψ(q) and gauge
fixing in superspace, establishing a correspondence be-
tween Ψ(q) and ψ(ζ), and definition of a conserved
inner product in the Hilbert space associated with su-
perspace, as well as a proof of consistency of different
gauge choices. The existence of two disjoint theories at
the level of the true degrees of freedom is reflected in
the fact that two superspace propagators

K+(q2|q1), K−(q2|q1)

are obtained. Since these propagators are gauge-inde-
pendent, after transition from a theory for true degrees
of freedom to a unitary theory in superspace one obtains
a wave function Ψ(q) which depends only on the initial
gauge conditions, included in the initial-value data for
it (see Ref. [8] for detail).
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