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This is the second part of the work devoted to the problem of time in quantum cosmology. Here we consider in detail
two approaches within the scope of Feynman path integration scheme: The first, by Simeone and collaborators, is
gauge-invariant and lies within the unitary approach to a consistent quantization of gravity. It is essentially based
on the idea of deparametrization (reduction to physical degrees of freedom) as a first step before quantization. The
other approach by Savchenko, Shestakova and Vereshkov is rather radical. It is an attempt to take into account
the peculiarities of the Universe as a system without asymptotic states, which leads to the conclusion that quantum
geometrodynamics constructed for such a system is, in general, a gauge-noninvariant theory. However, this theory
is shown to be mathematically consistent, and the problem of time is solved thereby in a natural way.

pROBLEMA WREMENI I KALIBROWOˆNAQ INWARIANTNOSTX W KWANTOWANII KOSMOLOGIˆESKIH MODELEJ.
II. nOWYE REZULXTATY W FORMALIZME INTEGRIROWANIQ PO PUTQM

t.p. –ESTAKOWA, k. sIMEONE

sTATXQ QWLQETSQ WTOROJ ˆASTX@ RABOTY, POSWQ]ENNOJ PROBLEME WREMENI W KWANTOWOJ KOSMOLOGII. zDESX MY

PODROBNO RASSMATRIWAEM DWA PODHODA W RAMKAH FEJNMANOWSKOGO INTEGRIROWANIQ PO TRAEKTORIQM. pERWYJ,
PREDLOVENNYJ sIMEONE I EGO KOLLEGAMI, KALIBROWOˆNO-INWARIANTEN I LEVIT W RUSLE UNITARNOGO PODHODA K

NEPROTIWOREˆIWOMU KWANTOWANI@ GRAWITACII. oN SU]ESTWENNO OPIRAETSQ NA IDE@ DEPARAMETRIZACII (RE-
DUKCII K FIZIˆESKIM STEPENQM SWOBODY) KAK PREDWARITELXNOGO “TAPA PERED KWANTOWANIEM. dRUGOJ PODHOD,
PREDLOVENNYJ wERE[KOWYM, sAWˆENKO I –ESTAKOWOJ, QWLQETSQ W DOSTATOˆNOJ MERE RADIKALXNYM. —TO POPYT-
KA PRINQTX WO WNIMANIE OSOBENNOSTI wSELENNOJ KAK SISTEMY BEZ ASIMPTOTIˆESKIH SOSTOQNIJ, ˆTO PRIWODIT K

ZAKL@ˆENI@, ˆTO KWANTOWAQ GEOMETRODINAMIKA, POSTROENNAQ DLQ TAKOJ SISTEMY, PREDSTAWLQET SOBOJ, WOOB]E

GOWORQ, KALIBROWOˆNO-NEINWARIANTNU@ TEORI@. pOKAZANO, ODNAKO, ˆTO “TA TEORIQ MATEMATIˆESKI NEPROTIWO-
REˆIWA, A PROBLEMA WREMENI RE[AETSQ W NEJ ESTESTWENNYM OBRAZOM.

1. Introduction

In Part I of our work [39], we have considered the most
representative approaches to the well-known problem of
time in quantum cosmology which lie in the framework
of canonical quantization. Unfortunately, most of these
proposals can be only applied to restricted classes of
models. The most interesting and promising approaches
which go beyond the minisuperspace approximation are
the proposals by Brown and Kuchař [8] and by Barvin-
sky and collaborators [1–4], the latter having been for-
mulated mainly in the framework of the Feynman path
integral formalism.

1e-mail: shestakova@phys.rsu.ru
2e-mail: csimeone@df.uba.ar

The main object of the path integral approach [12,
16, 17] is a transition amplitude between two states
which is obtained as a sum over all histories of the expo-
nential of the action. For a constrained system, diver-
gences yielded by overcounting of paths in phase space,
which are physically equivalent, should be avoided by
imposing gauge conditions which select one path from
each equivalence class [13, 14]. In its phase space form,
the propagator then reads

〈qi
2|qi

1〉 =∫
DqiDpiDNδ(χ)|[χ,H]| exp

(
iS[qi, pi, N ]

)
. (1)

Here χ = 0 is a gauge-fixing function, and |[χ,H]| is
the Faddeev–Popov determinant which makes the result
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independent of the gauge choice. Admissible gauge con-
ditions are those which can be reached from any path
by performing a gauge transformation compatible with
the symmetries of the action.

Since, in gravitational dynamics, the Hamiltonian
generates the evolution and also acts as a generator
of gauge transformations, it is natural to think that
time could be defined by means of gauge fixing, so that
the resulting non-divergent amplitudes would include
a clear notion of evolution. But the problem arises
that the gauges defining time in terms of the canoni-
cal variables are the so-called canonical gauges, which
can be imposed only if the constraints are linear in the
canonical momenta, while the Hamiltonian constraint
in the gravitational action is quadratic in momenta [46].
This seemed to be an obstacle for a programme of de-
parametrization based on this idea; however, we will
show in Sec. 2 that, for a class of cosmological models,
this can be solved by associating to them an ordinary
gauge system (that is, a system with constraints linear
in momenta), so that gauge fixing in the gauge system
defines time for the corresponding minisuperspace [41].

In Sec. 2, we shall follow Simeone and collaborators
[11, 15, 20–22, 40–44]. The connection between fix-
ing an admissible gauge condition and the definition of
time will be considered in detail in Sec. 2.1. In Sec. 2.2,
we will describe a special canonical transformation that
gives rise to an action for a system with a zero Hamil-
tonian and a constraint which is linear in momenta. On
this way, we face the problem of observations mentioned
in Part I of our work: new canonical variables appear to
be conserved quantities since they commute with a new
Hamiltonian. So we need another canonical transfor-
mation which leads to a time-dependent Hamiltonian.
This will be discussed in Sec. 2.3. We will arrive at a
formulation in terms of true degrees of freedom in what
we call the reduced phase space. It allows us to define
a transition amplitude through a path integral by the
usual Faddeev–Popov procedure in Sec. 2.4. Examples
will be given in Sec. 2.5.

In the approaches of Barvinsky and of Simeone and
collaborators, time is introduced into the theory by
means of a time-dependent gauge condition. In Sec. 3 it
will be shown that time may appear as a consequence of
breaking down the gauge invariance of the theory, even
if the gauge condition is time-independent. In the ap-
proach presented in the papers by Savchenko, Shestako-
va and Vereshkov [32–36], the authors argued that the
breakdown of gauge invariance is inevitable since the
Universe as a physical system does not possess asymp-
totic states. This prevents imposing asymptotic bound-
ary conditions which eventually ensure the gauge invari-
ance. This will be discussed in Sec. 3.1. In Sec. 3.2, the
dynamics of a simple minisuperspace model in extended
phase space will be constructed, and its quantum ver-
sion will be explored in Sec. 3.3. Finally, in Sec. 3.4 we
shall touch upon an intriguing question of whether the
irreversibility of time could be related to a nontrivial
topology of the Universe.

2. Path integral quantization of
minisuperspaces as ordinary gauge
systems

In this section we shall review our procedure for asso-
ciating an ordinary gauge system to a minisuperspace
model, which allows one to effectively deparametrize the
minisuperspace and to obtain a consistent path integral
quantization. The analogy between gauge transforma-
tions and dynamical evolution, reflected in the equa-
tions

dqi

dτ
= Nµ[qi,Hµ],

dpi

dτ
= Nµ[pi,Hµ] (2)

and

δεq
i = εµ(τ)[qi,Hµ],

δεpi = εµ(τ)[pi,Hµ],

δεNµ =
∂εµ(τ)
∂τ

− uνρ
µ ερNν (3)

is the basic idea leading to the reduction procedure
identifying the physical degrees of freedom and time.
However, because of the lack of gauge invariance at
the end points in the action of gravitation resulting
from the quadratic form of the Hamiltonian constraint,
admissible gauges do not possess the canonical form
χ(qi, pi, τ) = 0; hence, in order to perform the de-
parametrization, we shall introduce a reformulation of
the theory leading to a globally gauge-invariant action
[41].

2.1. Gauge fixing and deparametrization

Admissible gauge conditions are those which can be
reached from any path by means of gauge transforma-
tions, leaving the action unchanged, and such that only
one point of each orbit is on the manifold defined by
χ = 0. This requires analyzing the possibility of the
Gribov problem [23, 29], namely, that, depending of the
form of the orbits and on the topology of the constraint
surface, it may be difficult to intersect it with a gauge
condition which is crossed by each orbit only once.

If it is possible to perform a canonical transforma-
tion (qi, pi) → (Qi, Pi) such that the Hamiltonian H
is matched to one of the new momenta, in terms of the
new variables the action functional will include a con-
straint which is linear and homogeneous in momenta.
This is equivalent to saying that the canonical variables
(Qi, Pi) describe an ordinary gauge system, so that the
canonical gauges χ(Qi, Pi, τ) = 0 are admissible.

The condition that a gauge transformation moves a
point of an orbit off the surface χ = 0 is fulfilled if

[χ,H] 	= 0. (4)

Now, since Q0 and P0 are conjugated variables,

[Q0, P0] = 1 (5)
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and if we identify H ≡ P0 , then a gauge condition of
the form

χ ≡ Q0 − T (τ) = 0 (6)

with T a monotonous function is a good choice. Eq. (4)
only ensures that the orbits are not tangent to the sur-
face χ = 0; however, since (6) defines a plane Q0 =
const for each τ , if at any τ any orbit was intersected
more than once (thus yielding Gribov copies) at another
τ , it should be [χ, P0] = 0. Therefore this gauge fixing
procedure avoids the Gribov problem [40].

A connection with the identification of time is as
follows: as we have already seen, for a parametrized
system whose canonical variables are (qi, pi), a global
phase time t(qi, pi) is a function satisfying the condition
[24]

[t,H] > 0. (7)

Since the Poisson bracket is invariant under a canoni-
cal transformation, from (5) and (7) it follows that a
global phase time can be defined for a minisuperspace
by imposing on its associated gauge system a gauge con-
dition in terms of the coordinate Q0 . In other words,
a gauge choice for the gauge system defines a particular
foliation of spacetime for the corresponding cosmologi-
cal model [41]. If a gauge choice avoiding the Gribov
ambiguity can be found, then a definition of time which
is good everywhere is obtained. A transformation such
that H = P0 can always be found locally; in the next
paragraphs we shall show how a canonical transforma-
tion, which works in the whole phase space, can be
found.

2.2. Gauge-invariant action for a
minisuperspace

Here we shall review our procedure of obtaining a
gauge-invariant action for cosmological models whose
Hamiltonian constraint is such that a solution for
its associated τ− independent Hamilton–Jacobi equa-
tion can be found. Consider a complete solution [31]
W (qi, αµ, E) of the Hamilton–Jacobi equation

H

(
qi,

∂W

∂qi

)
= E, (8)

where H is not necessarily the original Hamiltonian
constraint, but it can be a scaled Hamiltonian, that
is, H = F−1H with F a positive-definite function of
qi . If E and the integration constants αµ are matched
to the new momenta P 0 and Pµ , respectively, then
W (qi, P i) turns out to be the generating function of a
canonical transformation (qi, pi) → (Q

i
, P i) defined by

the equations

pi =
∂W

∂qi
, Q

i
=

∂W

∂P i

, K = NP 0 = NH, (9)

where K is a new Hamiltonian. The new coordinates
and momenta satisfy the conditions

[Q
µ
, P 0] = [Q

µ
,H] = 0,

[Pµ, P 0] = [Pµ,H] = 0,

[Q
0
, P 0] = [Q

0
,H] = 1.

The variables (Q
µ
, Pµ) are then observables: they

commute with the constraint, so that they are gauge-
invariant. The resulting action

S[Q
i
, P i, N ] =

∫ τ2

τ1

(
P i

dQ
i

dτ
−NP 0

)
dτ (10)

describes a system with a zero true Hamiltonian and a
constraint which is linear and homogeneous in momenta
(hence canonical gauges would be admissible in a path
integral with this action). The action S is related to S
by

S[qi, pi, N ] =
∫ τ2

τ1

(
pi
dqi

dτ
−NH

)
dτ

+
[
Q

i
(qi, pi)P i(qi, pi)−W (qi, P i)

]τ2

τ1

, (11)

so that the gauge-invariant action S differs from the
original action S in end-point terms [28]. These terms
do not modify the dynamics since they can be included
in the action integral as a total derivative with respect
to the parameter τ .

2.3. Time and the true degrees of freedom

The observables Q
µ

and Pµ are conserved quantities
because they commute with K = NP 0 . This makes
impossible the characterization of the dynamical tra-
jectories of the system by an arbitrary choice of Q

µ

at the end points τ1 and τ2 . To obtain a set of ob-
servables such that the choice of the new coordinates
is sufficient for characterizing the dynamical evolu-
tion, non-conserved variables must be defined, and a
new τ−dependent transformation leading to a non-null
Hamiltonian must be introduced.

Let us consider the canonical transformation gener-
ated by

F (Q
i
, Pi, τ) = P0Q

0
+ f(Q

µ
, Pµ, τ), (12)

which leads to

P 0 =
∂F

∂Q
0 = P0 = H

Pµ =
∂F

∂Q
µ =

∂f

∂Q
µ ,

Q0 =
∂F

∂P0
= Q

0
,

Qµ =
∂F

∂Pµ
=

∂f

∂Pµ
. (13)

The generator f defines a canonical transformation in
what we call the reduced phase space, which corre-
sponds to the true degrees of freedom of the theory.
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The coordinates and momenta (Qµ, Pµ) are observables
because

[Qµ, P0] = [Pµ, P0] = 0,

but they are not conserved quantities because their evo-
lution is determined by the non-zero Hamiltonian

K = NP0 +
∂f

∂τ
= NH +

∂f

∂τ
. (14)

Indeed,

dQµ

dτ
=

∂K

∂Pµ
=

∂2

∂τ∂Pµ
f(Q

µ
(Qµ, Pµ), Pµ, τ),

dPµ

dτ
= − ∂K

∂Qµ
= − ∂2

∂τ∂Qµ
f(Q

µ
(Qµ, Pµ), Pµ, τ),

(15)

so that

h(Qµ, Pµ, τ) ≡
∂

∂τ
f(Q

µ
(Qµ, Pµ), Pµ, τ) (16)

is a true Hamiltonian for the reduced system (below
we shall give a prescription for choosing f ). For the
coordinate conjugated to P0 we have

dQ0

dτ
= [Q0,K] = N [Q0, P0] = N. (17)

The transformation (Q
i
, P i) → (Qi, Pi) yields addi-

tional end point terms of the form[
QµPµ − f(Q

µ
(Qµ, Pµ), Pµ, τ)

]τ2

τ1

.

The gauge-invariant action resulting from the two suc-
cessive canonical transformations (qi, pi) → (Q

i
, P i) →

(Qi, Pi) is

S[Qi, Pi, N ] =
∫ τ2

τ1

(
Pi
dQi

dτ
−NP0 −

∂f

∂τ

)
dτ, (18)

and, in terms of the original variables, it includes end
point terms:

S[qi, pi, N ] =
∫ τ2

τ1

(
pi
dqi

dτ
−NH

)
dτ

+
[
Q

i
P i −W (qi, P i) +QµPµ − f(Q

µ
, Pµ, τ)

]τ2

τ1

,(19)

where Q
i
, P i, Q

µ and Pµ must be written in terms of qi

and pi . The action S[Qi, Pi, N ] describes an ordinary
gauge system with the constraint P0 = 0, so that the
coordinate Q0 is pure gauge, that is, Q0 is not associ-
ated with a physical degree of freedom. This coordinate
can be defined as an arbitrary function of τ by means
of a canonical gauge choice. Writing Q0 in terms of qi

and pi , we have a function of the original phase space
variables whose Poisson bracket with H = P0 is positive
definite; since H differs from the original Hamiltonian
constraint only by a positive-definite function, we can
always define a global phase time as

t(qi, pi) ≡ Q0(qi, pi) (20)

because [t(qi, pi),H(qi, pi)] = [Q0, P0] = 1, and then

[t(qi, pi),H(qi, pi)] > 0. (21)

The key point that allows us to define a global phase
time for the minisuperspace by imposing a canonical
gauge condition on the associated gauge system de-
scribed by (Qi, Pi) is that, in terms of these vari-
ables, we have a natural choice of a function whose
Poisson bracket with the constraint is everywhere non-
vanishing.

2.4. Path integral

The action S[Qi, Pi, N ] is stationary when the coordi-
nates Qi are fixed at the boundaries. The coordinates
and momenta (Qi, Pi) describe a gauge system with a
linear constraint, so that this action allows one to ob-
tain the amplitude of the transition |Qi

1, τ1〉 → |Qi
2, τ2〉

by the usual Faddeev–Popov procedure:

〈Qi
2, τ2|Qi

1, τ1〉 =∫
DQ0 DP0 DQµ DPµ DNδ(χ)|[χ, P0]|eiS[Qi,Pi,N ] (22)

with S[Qi, Pi, N ] the gauge invariant action (18), and
where χ = 0 can be any canonical gauge condition.
The Faddeev–Popov determinant |[χ, P0]| ensures that
the result does not depend on the gauge choice. If we
perform functional integration on the lapse N enforcing
the paths to lie on the constraint hypersurface P0 = 0,
we obtain

〈Qi
2, τ2|Qi

1, τ1〉 =
∫

DQ0 DQµ DPµ δ(χ) |[χ, P0]|

× exp
(
i

∫ τ2

τ1

[
Pµ

dQµ

dτ
− h(Qµ, Pµ, τ)

]
dτ

)
, (23)

where h ≡ ∂f/∂τ is the true Hamiltonian of the re-
duced system. The path integral gives an amplitude
between states characterized by the variables which,
when fixed at the boundaries, make the action station-
ary. Since S is stationary when Qi are fixed, we choose
the gauge in the most general form giving Q0 as a func-
tion of the other coordinates Qµ and τ ; thus a choice
of the boundary values of the physical coordinates and
τ fixes the boundary values of Q0 . With the choice
χ ≡ Q0−T (Qµ, τ) = 0 and after trivially integrating in
Q0 we finally obtain

〈Qi
2, τ2|Qi

1, τ1〉 =
∫

DQµ DPµ

× exp
(
i

∫ τ2

τ1

[
Pµ

dQµ

dτ
− h(Qµ, Pµ, τ)

]
dτ

)
, (24)

so that we have 〈Qi
2, τ2|Qi

1, τ1 〉 = 〈Qµ
2 , τ2|Q

µ
1 , τ1 〉 .

Now, what we are in search for is an amplitude between
states characterized by the original variables of the
minisuperspace. Since the original action S[qi, pi, N ]
is stationary when the coordinates qi are fixed at the
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boundaries, it is common to seek a propagator of the
form

〈qi
2|qi

1〉, (25)

so that the states are characterized only by the coordi-
nates. But, as we have already remarked, in cosmology
it is not always possible to define time in terms of the qi

only; then the amplitude 〈 qi
2|qi

1 〉 could not in general
be understood as the probability that the observables
of the system take a certain values at time t if at a
previous time instant they took other given values.

If we pretend that

〈Qµ
2 , τ2|Q

µ
1 , τ1〉 = 〈qi

2|qi
1〉,

the paths should be weighted by the action S in the
same way as they are weighted by S , and the quan-
tum states |Qµ, τ〉 should be equivalent to |qi〉 . Since
the path integral in the variables (Qi, Pi) is gauge-
invariant, this requirement is verified if it is possible
to impose a globally good gauge condition χ̃ = 0 such
that τ = τ(qi) is defined. But this can be fulfilled only
when there exists a global time t(qi), which is not true
in general. In the most general case, a global phase time
must necessarily involve the momenta, and then we can-
not fix the gauge in such a way that τ = τ(qi). Hence,
we should admit the possibility of identifying the quan-
tum states in the original phase space not by qi but by
a complete set of functions of both the coordinates and
the momenta, qi and pi .

This may suggest giving up the idea of obtaining an
amplitude for states characterized by the coordinates.
However, while deparametrization in terms of the mo-
menta may be completely valid at the classical level, at
the quantum level there is an obstacle which is peculiar
of gravitation [4]: There are basically two representa-
tions for quantum operators, the coordinate represen-
tation and the momentum representation, in which the
states are characterized by occupation numbers asso-
ciated with given values of the momenta. The latter
is appropriate when the theory under consideration al-
lows for the existence of asymptotically free states, so
that there exists an interpretation in terms of creation
and annihilation operators. In quantum cosmology such
asymptotic states, in general, do not exist. An appro-
priate representation is then a coordinate one, in which
the quantum states are represented by wave functions
in terms of the coordinates. The usual Dirac–Wheeler–
DeWitt quantization with momentum operators in the
coordinate representation follows this line; but, as we
have already noted, this formalism is devoid of a clear
notion of time and evolution, unless there exists time in
terms of the canonical coordinates only.

An intermediate way can then be followed: When
the constraint allows for the existence of an intrinsic
time, our deparametrization and path integral quantiza-
tion procedure straightforwardly gives a transition am-
plitude for states characterized by the original coordi-
nates; this provides a quantization with a clear distinc-
tion between time and the observables. On the other

hand, when only an extrinsic time exists, we change
from the original variables (qi, pi) to a set (q̃i, p̃i) de-
fined in such a way that the Hamiltonian constraint
of a given model has a non-vanishing potential; then
an intrinsic time exists in terms of the coordinates q̃i ,
and the action S[q̃i, p̃i, N ] is stationary when q̃i are
fixed at the boundaries. Therefore our procedure yields
a transition amplitude for states characterized by the
new coordinates, which is given by

〈q̃i
2|q̃i

1〉 = 〈Qµ
2 , τ2|Q

µ
1 , τ1〉.

In both cases we obtain consistent quantization with
a clear distinction between time and the observables.
Though this seems to complicate the interpretation of
the resulting propagator, the original momenta turn out
to appear only in the time variable, while the new
coordinates corresponding to the physical degrees of
freedom depend on qi only (a detailed discussion has
been given in the context of quantization of the Taub
anisotropic cosmology; see [22, 44]).

The form of the Hamiltonian h of the reduced sys-
tem depends on the choice of the function f . We can
choose f so that that the amplitude 〈Qµ

2 , τ2|Q
µ
1 , τ1〉 is

equivalent to 〈q̃i
2|q̃i

1〉 . This requires that the Hamilto-
nian constraint should allow one to define time in terms
of the coordinates q̃i and that the end point terms van-
ish on the constraint surface and in the gauge χ̃ = 0
defining τ = τ(q̃i), that is,[

Q
i
P i −W +QµPµ − f

]τ2

τ1

∣∣∣∣
P0=0,χ̃=0

= 0. (26)

Since the action S is gauge-invariant, this ensures that,
with any gauge choice, the paths are weighted in the
same way by S and S . This requirement gives a pre-
scription for the generator f(Q

µ
, Pµ, τ) which deter-

mines the reduced Hamiltonian h = ∂f/∂τ . Since f
depends only on the observables, h commutes with the
complete Hamiltonian K = NP0 + h , so that

dh

dτ
=

∂2f

∂τ2
.

Thus a generator f linear in τ yields a conserved
Hamiltonian for the reduced system.

The reduced Hamiltonian h could be both positive
or negative definite. As we shall illustrate with the sec-
ond example in the next subsection, in general the sign
of h will be in correspondence with the sign of a non-
vanishing momentum of the set {p̃i} in terms of which
the constraint surface splits into two sheets. The for-
malism will therefore include two theories for the phys-
ical degrees of freedom, corresponding to each sign of h
associated with one of the two sheets of the constraint
surface. The path integral in the reduced space will give
two propagators, one for the evolution of the wave func-
tions of each theory (see [4], and [24] for an analogous
point of view). Note that then, if our path integral is to
be associated with canonical quantization, splitting the
formulation into two disjoint theories is in correspon-
dence with two Schrödinger equations; so in general
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it does not coincide with the conventional Wheeler–
DeWitt quantization. However, the existence of two
disjoint theories, one for each sheet of the constraint
surface, is a general property resulting from working
with the time t(q̃i), which comes from the fact that
we want to identify the path integral in the variables
Qi with a transition amplitude between states given in
terms of the coordinates q̃i ; the non-equivalence be-
tween the Schrödinger and Wheeler–DeWitt quantiza-
tions, instead, depends on the model under considera-
tion as well as on the choice of coordinates. This has
been discussed in detail in [45].

2.5. Examples

Consider the Hamiltonian constraint of the most gen-
eral empty homogeneous and isotropic cosmological
model:

H = −1
4
e−3Ωp2

Ω − keΩ + Λe3Ω = 0. (27)

This Hamiltonian corresponds to a universe with arbi-
trary curvature k = −1, 0, 1 and non-zero cosmological
constant; we shall assume Λ > 0. If k = 0, we have a de
Sitter universe. The classical evolution corresponds to
an exponential expansion. For both k = 0 and k = −1,
the potential is never zero, and thus pΩ cannot change
its sign. On the contrary, for the closed model pΩ = 0
is possible.

It is convenient to work with the rescaled Hamilto-
nian H = e−ΩH :

H = −1
4
e−4Ωp2

Ω − k + Λe2Ω = 0. (28)

The constraints H and H are equivalent because they
differ only in a positive factor. The τ− independent
Hamilton–Jacobi equation for the Hamiltonian H has
the solution

W (Ω, P 0) = 2η
∫

dΩe2Ω
√

Λe2Ω − k − P 0, (29)

which is the generating function of the canonical trans-
formation (Ω, πΩ) → (Q

0
, P 0) defined by

Q
0
= −ηΛ−1

√
Λe2Ω − k − P 0, P 0 = H, (30)

with η = sign(pΩ). Then we define the function F =
Q

0
P0+f(τ) which generates the second canonical trans-

formation yielding a non-vanishing true Hamiltonian
h = ∂f/∂τ and Q0 = Q

0
, P 0 = P0 .

The variables Q0 and P0 describe the gauge system
into which the model has been turned. The gauge can
now be fixed by means of a τ−dependent canonical
condition like χ ≡ Q0 − T (τ) = 0 with T a monotonic
function of τ . Then we can define time as

t = Q0|P0=0 = −ηΛ−1
√

Λe2Ω − k, (31)

or, using the constraint equation,

t(Ω, pΩ) = −1
2
Λ−1e−2ΩpΩ, (32)

which is in agreement with the time obtained by match-
ing the model with an ideal clock [7, 10]. There arises
an important difference between the cases k = −1
and k = 1: for k = −1, the constraint surface splits
into two disjoint sheets. In this case the evolution
can be parametrized by a function of the coordinate
Ω only, the choice given by the sheet on which the
system remains: on the sheet pΩ > 0, the time is
t = −Λ−1

√
Λe2Ω + 1, while on the sheet pΩ < 0 we

have t = Λ−1
√
Λe2Ω + 1. Deparametrization of the flat

model is completely analogous. For the closed model,
instead, the potential can be zero, and the topology
of the constraint surface is no more equivalent to that
of two disjoint planes. Although for Ω = − ln(

√
Λ)

we have V (Ω) = 0 and pΩ = 0, at this point it is
dpΩ/dτ 	= 0. Hence in this case Ω cannot parametrize
the evolution, because the system can pass from (Ω, pΩ)
to (Ω,−pΩ); therefore a global phase time must neces-
sarily be defined as a function of both the coordinate
and the momentum.

The system has one degree of freedom and one con-
straint, so that it is pure gauge. In other words, there
is only one physical state: from a given point in phase
space, any other point on the constraint surface can be
reached by means of a finite gauge transformation. This
provides a proof of the consistency of our procedure: it
should be possible to verify that the transition proba-
bility written in terms of the variables which include a
globally well defined time is equal to unity.

Quantization is straightforward, and the above ob-
servation is reflected in that we obtain the propagator
[21]

〈Q0
2, τ2|Q0

1, τ1〉 = exp
(
−i

∫ τ2

τ1

∂f

∂τ
dτ

)
, (33)

and then the transition probability from Q0
1 at τ1 to

Q0
2 at τ2 is indeed∣∣〈Q0

2, τ2|Q0
1, τ1 〉

∣∣2 = 1. (34)

When the model is open or flat, the coordinates Ω and
Q0 are uniquely related; hence the result simply reflects
the fact that once a gauge is fixed, there is only one
possible value of the scale factor a ∼ eΩ at each τ , and

|〈Ω2|Ω1〉|2 = 1. (35)

But in the case of a closed model, at each τ there
are two possible values of the coordinate Ω; however,
there is only one possible value of the momentum pΩ

at each τ . Hence the transition probability in terms
of Q0 does not correspond to the evolution of the
coordinate Ω, but rather of its derivative, and the am-
plitude 〈Q0

2, τ2|Q0
1, τ1〉 corresponds to the amplitude

〈pΩ,2|pΩ,1〉 , and we have

|〈pΩ,2|pΩ,1〉|2 = 1. (36)

The fact that the resulting amplitude is not equivalent
to 〈Ω2|Ω1〉 is clearly not a failure of the quantization
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procedure, because for this model a characterization of
states in terms of only the original coordinates is not
possible if we want to retain a formally right notion of
time for the whole evolution.

Now let us apply our formulation to a system with
true degrees of freedom; consider a Hamiltonian con-
straint of the form

H = G(q̃2)(p̃2
1 − p̃2

2) + V (q̃1, q̃2) = 0, (37)

where G(q̃2) > 0. This constraint includes homoge-
neous and isotropic models, both relativistic and dila-
tonic, and also some anisotropic models, like Bianchi
type I, the Kantowski–Sachs universe and the Taub uni-
verse (after an appropriate canonical transformation in-
troduced in [22]). We shall restrict our analysis to the
cases in which the potential V (q̃1, q̃2) has a definite
sign, so that q̃i is a set of coordinates including global
time; we shall assume V > 0. We shall also suppose
that the coordinates

x = x(q̃1 + q̃2), y = y(q̃1 − q̃2) (38)

can be introduced, so that 4(∂x/∂q̃1)(∂y/∂q̃1) = V/G ;
then we can write the constraint in the (scaled) equiva-
lent form

H = pxpy + 1 = 0. (39)

The solution of the corresponding Hamilton–Jacobi
equation can be chosen in such a way that the canonical
variables of the associated gauge system are given by

Q0 = y/P,

Q = x+ [y(1− P0)− ηT (τ)] /P 2,

P0 = pxpy + 1,
P = px. (40)

Thus the canonical gauge condition χ ≡ Q0 − T (τ) = 0
is associated with the extrinsic time t = y/px . We can
also define an intrinsic time, which is related to the ob-
tention of a transition amplitude between states charac-
terized by the coordinates. The end point terms associ-
ated with the canonical transformation (x, y, px, py) →
(Qi, Pi) are of the form

B(τ) = 2Q0 −Q0P0 − 2η
T (τ)
P

. (41)

On the constraint surface P0 = 0, these terms clearly
vanish in the gauge χ ≡ ηQ0P − T (τ) = 0, which is
in correspondence with the intrinsic time and the true
Hamiltonian(s)

t(q̃1, q̃2) = η y(q̃1 − q̃2), h(Q,P, τ) =
η

P

dT

dτ
, (42)

with η = sign(px) = sign(p̃1 + p̃2) = sign(p̃2), because
V > 0 ensures that |p̃2| > |p̃1| . The propagator for the
transition |q̃1

1 , q̃
2
1〉 → |q̃1

2 , q̃
2
2〉 is given by

〈q̃1
2 , q̃

2
2 |q̃1

1 , q̃
2
1〉

=
∫

DQDP exp
[
i

∫ T2

T1

(
PdQ− η

P
dT

)]
, (43)

where the end points are given by T1 = ±y(q̃1
1 − q̃2

1)
and T2 = ±y(q̃1

2 − q̃2
2). Note that with the gauge choice

defining an intrinsic time, the observable Q reduces to
a function of only the original coordinates:

Q|χ=0 = x(q̃1 + q̃2).

Hence the paths go from Q1 = x(q̃1
1 + q̃2

1) to Q2 =
x(q̃1

2 + q̃2
2). The propagator in the reduced space is

therefore that of a system with a true degree of free-
dom given by the coordinate Q . Also, since p̃2 does not
vanish on the constraint surface, the coordinate q̃2 is it-
self a global time, namely t∗ ; hence, though q̃2 is not
the time parameter in the path integral, the transition
amplitude could be written as 〈x2, t

∗
2|x1, t

∗
1〉 . Observe

that by considering both possible signs of the reduced
Hamiltonian, this path integral gives the transition am-
plitude for both theories corresponding to both sheets
of the constraint surface identified by the sign of the
momentum p̃2 .

3. A closed universe as a system
without asymptotic states and the
problem of time

Several years ago, a new approach to constructing quan-
tum geometrodynamics was proposed by Savchenko,
Shestakova and Vereshkov [32–36]. A central place
in this approach is given to the Schrödinger equation
for the wave function of the Universe which contains
time as an external parameter, as in ordinary quan-
tum mechanics. However, the appearance of time in
the Schrödinger equation is a consequence of breaking
down the gauge invariance of the theory. The proposed
formulation is radically different from the generally ac-
cepted Wheeler–DeWitt quantum geometrodynamics,
so one needs to have strong grounds for justifying this
formulation.

3.1. Asymptotic states and gauge invariance

A key point of the authors’ argument is an analysis of
the role of asymptotic states in quantum gravity [34]. It
is emphasized that any gauge-invariant quantum field
theory is essentially based on the assumption about
asymptotic states. Indeed, in the case of canonical
quantization, in order to separate true physical degrees
of freedom from “nonphysical” ones, we need to resolve
gravitational constraints. It can be done in the limits
of perturbation theory in asymptotically flat spaces or
in some special cases. But in a general situation, if
the Universe has some nontrivial topology and does not
possess asymptotic states, this procedure meets unsur-
mountable mathematical difficulties.

In the path integral approach, which was accepted
by the authors as the most adequate one, asymptotic
boundary conditions ensure the BRST-invariance of a
path integral and play the role of selection rules; as a
consequence, the path integral does not depend on a
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gauge-fixing function (see [27]). Since a closed universe
is a system without asymptotic states, it is not correct
in this case to impose asymptotic boundary conditions
in a path integral, so that the set of all possible tran-
sition amplitudes determined through the path integral
inevitably involves gauge-noninvariant ones.

If the path integral is considered without asymp-
totic boundary conditions, it should be skeletonized on
a full set of gauge-noninvariant equations obtained by
varying an appropriate effective action including the
ghost and gauge-fixing terms. Furthermore, there are
two non-equivalent ways to proceed: to make use of
the Batalin–Vilkovisky (Lagrangian) [6] or the Batalin–
Fradkin–Vilkovisky (Hamiltonian) [18, 5, 19] effective
action. There is a difference in the structure of ghost
sectors, which, in turn, results from the fact that the
gauge group of gravity does not coincide with the group
of canonical transformations generated by the gravi-
tational constraints. Two formulations based on the
Lagrangian and Hamiltonian effective actions could be
made equivalent in the gauge-invariant sector, the lat-
ter being singled out by means of asymptotic bound-
ary conditions. Again, here we can see a crucial role
of the assumption about asymptotic states in ensuring
gauge invariance. In a situation without asymptotic
states, one has to make a choice between these two ef-
fective actions; the authors give preference to the La-
grangian formalism since it maintains the original group
of gauge transformations. Moreover, one cannot ensure
the BRST invariance of the action without imposing
asymptotic boundary condition, and the BFV scheme
is then broken.

This approach leads to an extended set of the Ein-
stein equations in which the constraints are broken even
at the classical level. Eventually, this causes a dynami-
cal Schrödinger equation and the appearance of time. A
similar modification of the Hamiltonian constraint and
the related time-dependent Schrödinger equation was
discussed early by Weinberg [48] and Unruh [47]. The
modification aimed at solving the cosmological constant
problem, and the cosmological constant appeared to be
a Hamiltonian eigenvalue. It resulted from an addi-
tional condition on the metric tensor which did not fix
a gauge. It is then clear that the modification sug-
gested by Weinberg and Unruh did not involve other
gravitational constraints and equations of motion and
was considered as a remedy for a particular (though
very important) problem.

Another argument in favour of the gauge-noninva-
riant approach is the parametrization non-invariance of
the Wheeler–DeWitt equation [26, 25]. The authors
consider a unified interpretation of the choice of gauge
variables (parametrization) and the choice of gauge con-
ditions; the latter together determine the equations for
the metric components g0µ , fixing a reference frame, as
is illustrated by the scheme [37]

Parametrization
g0µ = vµ (µν , γij)

+ ⇒ Equations for g0µ

Gauge conditions g0µ = vµ (fν (γij) , γij)
µν = fν (γij)

Here µν are new gauge variables, in particular, the
lapse and shift functions, N and Ni , γij is the 3-
metric. Thus even if one considers µν to be inde-
pendent of γij , different parametrizations will corre-
spond to different reference frames. This leads to the
conclusion that a transition to another gauge variable
is formally equivalent to imposing a new gauge con-
dition, and vice versa, and the parametrization non-
invariance of the Wheeler–DeWitt equation is ill-hidden
gauge non-invariance.

3.2. Hamiltonian dynamics in extended phase
space

After these preliminary notes, let us go into mathemat-
ical details. The authors consider a simple minisuper-
space model with the gauged action

S =
∫
dt

{
1
2
v(µ,Qa)γabQ̇

aQ̇b − 1
v(µ,Qa)

U(Qa)

+ π
(
µ̇− f,aQ̇

a
)
− iw(µ,Qa) ˙̄θθ̇

}
. (44)

Here Qa stands for physical variables such as a scale
factor or gravitational-wave degrees of freedom and ma-
terial fields, and an arbitrary parametrization of a gauge
variable µ determined by the function v(µ,Qa) is ac-
cepted. For example, in the case of an isotropic universe
or the Bianchi IX model µ is bound to the scale factor
r and the lapse function N by the relation

r3

N
= v(µ,Qa). (45)

A special class of time-independent gauges is used:

µ = f(Qa) + k; k = const. (46)

It is convenient to present the gauge in a differential
form,

µ̇ = f,aQ̇
a, f,a

def=
∂f

∂Qa
. (47)

Here θ, θ̄ are the Faddeev–Popov ghosts after the re-
placement θ̄ → −iθ̄ . Furthermore,

w(µ,Qa) =
v(µ,Qa)

v,µ
; v,µ

def=
∂v

∂µ
. (48)

Varying the effective action (44) with respect to Qa ,µ ,π
and θ , θ̄ one gets, accordingly, the equations of mo-
tion for physical variables, the constraint, the gauge
condition and equations for ghosts. The extended set
of Lagrangian equations is complete in the sense that
it enables one to formulate the Cauchy problem. An
explicit substitution of trivial solutions for ghosts and
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the Lagrangian multiplier π to this set of equations
turns one back to the gauge-invariant classical Einstein
equations.

The path integral approach does not require the con-
struction of a Hamiltonian formulation before deriving
the Schrödinger equation, but it implies that the Hamil-
tonian formulation can be constructed. Indeed, in the
class of gauges (47) the Hamiltonian can be obtained
in a usual way, according to the rule H = pq̇ − L ,
where (p, q) are the canonical pairs of extended phase
space (EPS), by introducing momenta conjugate to all
degrees of freedom including the gauge ones,

H = PaQ̇
a + πµ̇+ ρ̄θ̇ + ˙̄θρ− L

=
1
2
GαβPαPβ +

1
v(µ,Qa)

U(Qa)− i

w(µ,Qa)
ρ̄ρ, (49)

where α = (0, a), Q0 = µ ,

Gαβ =
1

v(µ,Qa)

(
f,af

,a f ,a

f ,a γab

)
. (50)

The set of Hamiltonian equations in EPS

Ẋ = {H,X}, X = (Pa, Q
a, π, µ, ρ̄, θ, ρ, θ̄) (51)

is completely equivalent to the extended set of La-
grangian equations, the constraint and the gauge con-
dition acquiring the status of Hamiltonian equations.
The idea of extended phase space is exploited in the
sense that the gauge and ghost degrees of freedom are
treated on an equal basis with other variables. This
gave rise to the name “quantum geometrodynamics in
extended phase space” accepted by the authors.

Obviously, Hamiltonian dynamics is constructed
here in a different way than in the BFV approach
where constraints are maintained and play a central
role. Here the Hamiltonian constraint is modified and
looks as follows:

π̇ = − i

w2(µ,Qa)
w,µρ̄ρ+

1
v2(µ,Qa)

v,µ ×

×
[
1
2

(
PaP

a + 2πf,aP
a + π2f,af

,a
)
+ U(Qa)

]
. (52)

The gauge-dependent terms can be eliminated by mak-
ing use of trivial solutions for π and the ghosts. It is
generally accepted that these trivial solutions can be
singled out by asymptotic boundary conditions, if one
ignores the problem of Gribov’s copies. Furthermore,
the restriction on the class of admissible parametriza-
tions, v(µ,Q) = u(Q)

µ , together with the trivial solu-
tions for π and ghosts reduce the constraint to the form

T =
1

2u(Qa)
PaP

a +
1

u(Qa)
U(Qa) = 0. (53)

The restriction on the class of parametrizations is nec-
essary for the physical Hamiltonian to be proportional
to the constraint H0 = µT . We come to the conclu-
sion that the primary and secondary constraints π = 0,

T = 0 correspond to a particular situation when it is
possible to single out the trivial solutions for π and
ghosts by asymptotic boundary conditions. So, in this
sense, the Dirac quantization is applicable to systems
with asymptotic states only. The same is true for the
BFV approach which inherits most of features of the
Dirac quantization.

3.3. Quantum geometrodynamics in extended
phase space

The constraint (52) can be presented in the form H =
E , where E is a conserved quantity (a new integral of
motion). Accordingly, in quantum theory the relation
H = E should be replaced by a stationary Schrödinger
equation, H|Ψ〉 = E|Ψ〉 , the Hamiltonian spectrum in
EPS being not limited by the unique zero eigenvalue.

So, there is no reason to require that a wave func-
tion of a closed universe should satisfy the Wheeler–
DeWitt equation. Independently of our notion of gauge
invariance or non-invariance of the theory, the wave
function should obey some Schrödinger equation. The
Schrödinger equation is derived from the path integral
with the effective action (44) by a standard method
originated by Feynman [16, 9]. For the present model it
reads

i
∂Ψ(µ,Qa, θ, θ̄; t)

∂t
= HΨ(µ, Qa, θ, θ̄; t), (54)

where

H = − i

w

∂

∂θ

∂

∂θ̄
− 1

2M
∂

∂Qα
MGαβ ∂

∂Qβ
+

1
v
(U − V );

(55)

the operator H corresponds to the Hamiltonian in EPS
(49). M is the measure in the path integral,

M(µ,Qa) = v
K
2 (µ,Qa)w−1(µ,Qa); (56)

K is the number of physical degrees of freedom; the
wave function is defined on extended configurational
space with the coordinates µ, Qa, θ, θ̄ . V is a quan-
tum correction to the potential U , which depends on
the chosen parametrization (45) and gauge (46):

V =
5

12w2

(
w2

,µf,af
,a + 2w,µf,aw

,a + w,aw
,a

)
+

1
3w

(
w,µ,µf,af

,a + 2w,µ,af
,a + w,µf

,a
,a + w,a

,a

)
+
K − 2
6vw

(v,µw,µf,af
,a + v,µf,aw

,a

+ w,µf,av
,a + v,aw

,a)

− K2 − 7K + 6
24v2

(
v2

,µf,af
,a + 2v,µf,av

,a + v,av
,a

)
+

1−K

6v
(v,µ,µf,af

,a + 2v,µ,af
,a + v,µf

,a
,a + v,a

,a). (57)

Let us emphasize that the Schrödinger equation
(54)–(57) is a direct mathematical consequence of a
path integral with the effective action (44) without
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asymptotic boundary conditions. Once we reject im-
posing asymptotic boundary conditions, we are doomed
to come to a gauge-dependent description of the Uni-
verse.

The general solution to the Schrödinger equation has
the following structure:

Ψ(µ, Qa, θ, θ̄; t) =∫
Ψk(Qa, t) δ(µ− f(Qa)− k) (θ̄ + iθ) dk. (58)

As one can see, the general solution is a superposi-
tion of eigenstates of a gauge operator,

{µ− f(Qa)}|k〉 = k |k〉;
|k〉 = δ (µ− f(Qa)− k) . (59)

It can be interpreted in the spirit of Everett’s “rela-
tive state” formulation. In fact, each element of the
superposition (58) describes a state in which the only
gauge degree of freedom µ is definite, so that a time
scale is determined by processes in the physical subsys-
tem through the functions v(µ, Qa), f(Qa) (see (45),
(46)), while k is determined by the initial clock setting.
The function Ψk(Qa, t) describes a state of the physical
subsystem for a reference frame fixed by the condition
(46). It is a solution to the equation

i
∂Ψk(Qa; t)

∂t
= H(phys)[f ]Ψk(Qa; t), (60)

H(phys)[f ] =[
− 1

2M
∂

∂Qa

1
v
Mγab ∂

∂Qb
+

1
v
(U − V )

]∣∣∣∣∣
µ=f(Qa)+k

. (61)

One can seek a solution to Eq. (60) in the form of a
superposition of stationary state eigenfunctions:

Ψk(Qa, t) =
∑

n

cknψn(Qa) exp(−iEnt);

H(phys)[f ]ψn(Qa) = Enψn(Qa). (62)

The eigenvalues En should not be associated with
the energy of any material field. It results from fixing
a gauge condition and characterizes a subsystem which
corresponds to observational means — a reference frame
(see [34, 35] for details).

Having constructed the general solution to the Schröd-
inger equation, one can pose the question: can a physi-
cal part of the wave function obey the Wheeler–DeWitt
equation under some additional conditions? A natu-
ral additional condition in EPS is the requirement of
BRST invariance of the wave function. Indeed, in the
BFV approach the requirement of BRST invariance
leads immediately to the Wheeler–DeWitt equation.
The BRST charge has an especially simple form for the
present model,

ΩBFV = ηαGα = T θ − iπρ, (63)

where Gα = (π, T ) is the full set of constraints, and
due to arbitrariness of BFV ghosts {ηα} one gets the

Wheeler – DeWitt equation T |Ψ〉 = 0 from the require-
ment ΩBFV |Ψ〉 = 0.

It is not the case in the approach considered above.
We should recall that the original group of transfor-
mations was the group of gauge transformations in the
Lagrangian formalism. It is the reason why the trans-
formations generated by (63) do not coincide with those
under which the action (44) is invariant. The BRST
charge constructed according to the BFV prescription
turns out to be irrelevant in this consideration. Instead,
there exists another quantity that plays the role of the
BRST generator,

Ω = w(Qa, µ) πθ̇ −Hθ = − i, πρ−Hθ. (64)

It is easy to check that (64) generates transformations
in EPS which are identical to the BRST transforma-
tions in the Lagrangian formalism. Nevertheless, it can-
not be presented as a combination of constraints with
infinitesimal parameters replaced by ghosts and cannot
help us to obtain the Wheeler–DeWitt equation [35].

On the other hand, as the authors show, the fact
that the wave function obeys the Wheeler–DeWitt
equation does not mean that this wave function de-
scribes the Universe in a gauge-invariant way, i.e., in-
dependently of a reference frame. If one puts µ =
k, E = 0 and restricts the class of parametriza-
tions, as was done above (see (53) and the text be-
fore), the equation for the physical part of the wave
function H(phys)Ψk(Qa) = EΨk(Qa) is reduced to
the Wheeler–DeWitt equation with its parametriza-
tion non-invariance and without any visible vestige of
a gauge. By construction, however, a solution to this
equation corresponds to a particular choice of a gauge
condition and a particular line in the Hamiltonian spec-
trum. It is enough then to fix the parametrization to
complete the choice of a reference frame. It confirms
the conclusion about ill-hidden gauge-noninvariance of
the Wheeler–DeWitt equation which has been done in
the beginning of this section.

All this demonstrates that this attempt to derive a
gauge-invariant quantum theory from a more general
gauge non-invariant one rises many questions. For a
system with asymptotic states, we have the BFV ap-
proach where we consider constraints at the classical
level before quantization. But even in this case mak-
ing use of asymptotic boundary conditions to exclude
the gauge-non-invariant terms is an idealization in the
sense that we neglect the problem of Gribov’s copies.

3.4. Topology of the Universe and
irreversibility of time

In conclusion we shall touch upon one of the conse-
quences of the approach presented — irreversibility of
a transition to another reference frame in the frame-
work of the gauge-non-invariant description [38]. Since
the reference frame was declared to be a constituent of
an integrated system as well as the physical Universe
and plays a role of a measuring device, any change of
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the reference frame will cause changes in the observed
physical picture. Indeed, let us consider a small vari-
ation of the gauge-fixing function f(Qa), so that the
reference frame will be fixed by the condition

µ = f(Qa) + δf(Qa) + k. (65)

Then, in a new basis corresponding to this reference
frame, the wave function will take the form

Ψ(µ, Qa, θ, θ̄; t) =∫
Ψ̃k(Qa, t) δ

(
µ−f(Qa)−δf(Qa)− k

)
(θ̄ + iθ) dk. (66)

Here the function Ψ̃k(Qa, t) satisfies Eq. (60) with the
Hamiltonian

H(phys)[f + δf ] =
[
− 1

2M
∂

∂Qa

(
1
v
Mγab ∂

∂Qb

)

+
1
v
(U − V )

]∣∣∣∣∣
µ=f(Qa)+δf(Qa)+k

. (67)

Obviously, the equation for the physical part of the
wave function with the Hamiltonian (67) cannot be re-
duced, in general, to an equation with the Hamiltonian
(61). The measure in the subspace of physical degrees
of freedom also depends on the gauge condition chosen,
as follows from the normalization equation∫

Ψ∗
k′(Qa, t)Ψk(Qa, t) δ(µ− f(Qa)− k′)

× δ(µ− f(Qa)− k) dk′ dkM(µ, Qa) dµ
∏
a

dQa

=
∫

Ψ∗
k(Q

a, t)Ψk(Qa, t)M(f(Qa) + k, Qa)

×
∏
a

dQa dk = 1. (68)

Due to smallness of δf(Qa), one can write

H(phys)[f + δf ] = H(phys)[f ] +W [δf ] + V1[δf ]. (69)

For our minisuperspace model, the operator W [δf ]
reads

W [δf ] =

{
1

2M2

∂M

∂µ
δf

∂

∂Qa

(
1
v
Mγab ∂

∂Qb

)

− 1
2M

∂

∂Qa

[(
1
v

∂M

∂µ
− M

v2

∂v

∂µ

)

× δfγab ∂

∂Qb

]}∣∣∣∣∣
µ=f(Qa)+k

, (70)

and V1[δf ] is the change of the quantum potential V
(57) in the first order of δf .

One can inquire how the probabilities of station-
ary states (62) change under the perturbation W [δf ] +
V1[δf ] , which is due to a small variation of the gauge-
fixing function f(Qa). The Hamiltonian (67) is Her-
mitian by construction in a space with the measure

M(f(Qa) + δf(Qa) + k, Qa), however, it is not Her-
mitian in a space with the measure M(f(Qa) + k, Qa)
in which the functions (62) are normalized. In this
space the operator (70) will have, in general, an anti-
Hermitian part. So any transition to another reference
frame must be irreversible.

This is true for a transition to another reference
frame in the same spacetime region, and this is also true
if spacetime consists of several regions where different
reference frames are introduced. A nontrivial topology
of the Universe may be a reason why one has to in-
troduce various reference frames in different spacetime
regions. In particular, we can consider mutually inter-
secting spacetime regions ordered in time. Every time
when we move from one region to another, the physical
part of the wave function will undergo a non-unitary
transformation followed by changing in the measure in
the subspace of physical degrees of freedom, which may
lead to irreversible consequences in the physical picture
of the Universe. If so, taking into account an interaction
with the reference frame — the measuring instrument
representing the observer in quantum theory of gravity
— not only enables one to introduce time into quantum
geometrodynamics, but also may attach an irreversible
nature to the cosmological evolution.

4. Discussion

Among many attempts to give a solution to the prob-
lem of time, we have paid a considerable attention to
two approaches, which are, as a matter of fact, very
different. The first one, by Simeone and collaborators,
considered in Sec. 2, is a development of the unitary
approach to quantum gravity inspired by earlier works
of Barvinsky and Háj́ıček. The key point here is a re-
duction of the gravitational action to that of an ordi-
nary gauge system. Since the Hamiltonian constraint
is quadratic in momenta, we come, in general, to two
formulations of the theory which correspond to two dis-
joint sheets of the constraint surface given by the two
signs of the momentum conjugated to a time variable.
The proposed procedure enables one to formulate the
theory in terms of true degrees of freedom and then to
return to a transition amplitude between states charac-
terized by the original variables of phase space, so that
the whole scheme is gauge-invariant. This approach
demonstrates how time can be introduced into the the-
ory without breaking down its gauge invariance. Let
us emphasize that the requirement of gauge invariance
is conventionally thought of to be one of basic require-
ments for a physical theory.

In this sense, the second approach, presented in
Sec. 3, is very radical. According to the analysis by
Isham [30], approaches to the problem of time can be
subdivided into three main categories: those in which
time is identified before quantizing, those in which time
is identified after quantizing and approaches in which
time plays no fundamental role at all. The proposal by
Savchenko, Shestakova and Vereshkov does not belong
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to any of these categories. In their scheme, time nat-
urally appears while quantizing a gravitational system,
namely, while driving a Schrödinger equation from the
path integral. In this consideration, time has a status of
an external parameter, as in ordinary quantum mechan-
ics. The price for it is a refusal from gauge invariance
of the theory.

We would note that the fact that the Universe does
not possess asymptotic states has not been analysed
earlier from the viewpoint of its connection with gauge
invariance. Traditionally, the Universe was quantized
as any gauge system dealt with in laboratory physics.
On the other hand, in modern field theory one can find
indications that the role of gauge degrees of freedom
may not be just auxiliary. It will suffice to mention the
Aharonov–Bohm effect and instanton solutions. All of
them originate from a nontrivial topological structure of
spacetime. A future development will give an objective
appraisal to the proposed approaches to the problem of
time which remains to be a fundamental problem in the
construction of quantum gravity.
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