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Evolutionary algorithms provide flexibility and robustness required to find satisfactory solutions in com-
plex search spaces. This is why they are successfully applied for solving real engineering problems. In
this work we propose an algorithm to evolve a robust speech representation, using a dynamic data
selection method for reducing the computational cost of the fitness computation while improving the
generalisation capabilities. The most commonly used speech representation are the mel-frequency cep-
stral coefficients, which incorporate biologically inspired characteristics into artificial recognizers. Recent
utomatic speech recognition
volutionary computation
honeme classification
epstral coefficients

advances have been made with the introduction of alternatives to the classic mel scaled filterbank,
improving the phoneme recognition performance in adverse conditions.

In order to find an optimal filterbank, filter parameters such as the central and side frequencies are
optimised. A hidden Markov model is used as the classifier for the evaluation of the fitness for each indi-
vidual. Experiments were conducted using real and synthetic phoneme databases, considering different

ssific
hone
additive noise levels. Cla
optimised filterbank for p

. Introduction

Automatic speech recognition (ASR) systems require a prepro-
essing stage to emphasize the key features of phonemes, thereby
llowing an improvement in classification results. This task is usu-
lly accomplished using one of several different signal processing
echniques such as filterbanks, linear prediction or cepstrum analy-
is [1]. The most popular feature representation currently used for
peech recognition is mel-frequency cepstral coefficients (MFCC)
2]. MFCC is based on a linear model of voice production together
ith the codification on a psychoacoustic scale.

However, due to the degradation of recognition performance in
he presence of additive noise, many advances have been conducted
n the development of alternative noise-robust feature extrac-

ion techniques. Moreover, some modifications to the biologically
nspired representation were introduced in recent years [3–6]. For
nstance, Slaney introduced an alternative [7] to the feature extrac-
ion procedure. Skowronski and Harris [8,9] introduced the human
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ation results show that the method accomplishes the task of finding an
me recognition, which provides robustness in adverse conditions.

© 2011 Elsevier B.V. All rights reserved.

factor cepstal coefficients (HFCC), consisting in a modification to the
mel scaled filterbank. They reported results showing considerable
improvements over the MFCC. The weighting of MFCC according
to the signal-to-noise ratio (SNR) on each mel band was proposed
in [10]. For the same purpose, the use of Linear Discriminant Anal-
ysis in order to optimise a filterbank has been studied in [11]. In
other works the use of evolutive algorithms have been proposed
to evolve features for the task of speaker verification [12,13]. Sim-
ilarly, in [14] an evolutive strategy was introduced in order to find
an optimal wavelet packet decomposition.

Then, the question arises if any of these alternatives is really
optimal for this task. In this work we employ an evolutionary
algorithm (EA) to find a better speech representation. An EA is
an heuristic search algorithm inspired in nature, with proven
effectiveness on optimisation problems [15]. We propose a new
approach, called evolved cepstral coefficients (ECC), in which an
EA is employed to optimise the filterbank used to calculate the cep-
stral coefficients (CC). The ECC approach is schematically outlined
in Fig. 1. To evaluate the fitness of each individual, we incorporate
a hidden Markov model (HMM) based phoneme classifier. The pro-
posed method aims to find an optimal filterbank, meaning that it
results in a speech signal parameterisation which improves stan-

dard MFCC on phoneme classification results. Prior to this work,
we obtained some preliminary results, which have been reported
in [16].

A problem arises in this kind of optimisation because over-
training might occur and resulting filterbanks could highly depend

dx.doi.org/10.1016/j.asoc.2011.01.012
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:ldvignolo@fich.unl.edu.ar
dx.doi.org/10.1016/j.asoc.2011.01.012
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perceived pitch [1]. The mel scaled filterbank (MFB) is comprised of
Fig. 1. General scheme of the proposed method.

n the training data set. This problem could be overcome by increas-
ng the amount of data, though, much more time or computational
ower would be needed for each experiment. In this work, instead,
e incorporate a training subset selection method similar to the

ne proposed in [17]. This strategy enables us to train filterbanks
ith more patterns, allowing generalisation without increasing

omputational cost.
This paper is organized as follows. First we introduce some basic

oncepts about EAs and give a brief description of mel-frequency
epstral coefficients. Subsequently, the details of the proposed
ethod are described and its implementation is explained. In the

ast sections, the results of phoneme recognition experiments are
rovided and discussed. Finally, some general conclusions and pro-
osals for future work are given.

.1. Evolutionary algorithms

Evolutionary algorithms are search methods based on the Dar-
inian theory of biological evolution [18]. This kind of algorithms
resent an implicit parallelism that may be implemented in a num-
er of ways in order to increase the computational speed [14].
sually an EA consists of three operations: selection, variation and

eplacement [19]. Selection gives preference to better individu-
ls, allowing them to continue to the next generation. The most
ommon variation operators are crossover and mutation. Crossover
ombines information from two parent individuals into offspring,
hile mutation randomly modifies genes of chromosomes, accord-

ng to some probability, in order to maintain diversity within the
opulation. The replacement strategy determines which of the cur-
ent members of the population, should be replaced by the new
olutions. The population consists of a group of individuals whose
nformation is coded in the so-called chromosomes, and from

hich the candidates are selected for the solution of a problem.
ach individual performance is represented by its fitness. This value
s measured by calculating the objective function on a decoded
orm of the individual chromosome (called the phenotype). This

unction simulates the selective pressure of the environment. A
articular group of individuals (the parents) is selected from the
opulation to generate the offspring by using the variation opera-
ors. The present population is then replaced by the offspring. The

Fig. 2. Magnitude spectrums of the excitation signal X(f) and the voca
puting 11 (2011) 3419–3428

EA cycle is repeated until a desired termination criterion is reached
(for example, a predefined number of generations, a desired fitness
value, etc.). After the evolution process the best individual in the
population is the proposed solution for the problem [20].

1.2. Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients are the most commonly
used alternative to represent speech signals. This is mainly because
the technique is well-suited for the assumptions of uncorrelated
features used for the HMM parameter estimation. Moreover, MFCC
provide superior noise robustness in comparison with the linear-
prediction based feature extraction techniques [21].

The voice production model commonly used in ASR assumes
that the speech signal is the output of a linear system. This means
that the speech is the result of a convolution of an excitation signal,
x(t), with the impulse response of the vocal tract model, h(t),

y(t) = x(t) × h(t), (1)

where t stands for continuous time. In general only y(t) is known,
and it is frequently desirable to separate its components in order to
study the features of the vocal tract response h(t). Cepstral analysis
solves this problem by taking into account that if we compute the
Fourier transform (FT) of (1) then the equation in the frequency
domain is a product:

Y(f ) = X(f )H(f ), (2)

where variable f stands for frequency, X(f) is the excitation spec-
trum and H(f) is the vocal tract frequency response. Then, by
computing the logarithm from (2), this product is converted into
a sum, and the real cepstrum C(t) of a signal y(t) is computed by:

C(t) = IFT{loge|FT{y(t)}|}, (3)

where IFT is the inverse Fourier transform. This transformation has
the property that its components, which were nonlinearly com-
bined in time domain, are linearly combined in the cepstral domain.
This type of homomorphic processing is useful in ASR because the
rate of change of X(f) and H(f) are different from each other (Fig. 2).
Because of this property, the excitation and the vocal tract response
are located at different places in the cepstral domain, allowing them
to be separated. This is useful for classification because the infor-
mation of phonemes is given only by H(f).

In order to combine the properties of the cepstrum and the
results about human perception of pure tones, the spectrum of the
signal is decomposed into bands according to the mel scale. This
scale was obtained through human perception experiments and
defines a mapping between the physical frequency of a tone and the
a number of triangular filters whose center frequencies are deter-
mined by means of the mel scale. The magnitude spectrum of the
signal is scaled by these filters, integrated and log compressed to
obtain a log-energy coefficient for each frequency band. The MFCC

l tract impulse response H(f) from simulated voiced phonemes.
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Fig. 3. Mel scaled filterbank in

re the amplitudes resulting from applying the IFT to the result-
ng sequence of log-energy coefficients [22]. However, because the
rgument of the IFT is a real and even sequence, the computation
s usually simplified with the cosine transform (CT). Fig. 3 shows a

FB comprised of 26 filters in the frequency range from 0 to 8 kHz.
s it can be seen, endpoints of each filter are defined by the central

requencies of adjacent filters. Bandwidths of the filters are deter-
ined by the spacing of filter central frequencies which depend on

he sampling rate and the number of filters. That is, if the number of
lters increases, the number of MFCC increases and the bandwidth
f each filter decreases.

. Materials and methods

This section describes the proposed evolutionary algorithm, the
peech data and the preprocessing method. First, the details about
he speech corpus are given and the ECC method is explained. In
he next subsection some considerations about the HMM based
lassifier are discussed and finally the data selection method for
esampling training is explained.

.1. Speech corpus and processing

For the experimentation, both synthetic and real phoneme
atabases have been used. In the first case, five Spanish vowels were
odelled using the classical linear prediction coefficients [1], which
ere obtained from real utterances. We have generated different

rain, test and validation sets of signals which are 1200 samples in
ength and sampled at 8 kHz. Every synthetic utterance has a ran-

om fundamental frequency, uniformly distributed in the range
rom 80 to 250 Hz. In this way we simulate both male and female
peakers. First and second resonant frequencies (formants) were
andomly modified, within the corresponding ranges, in order to
enerate phoneme occurrences.
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Fig. 4. Synthetic phoneme database. (a) First and second for
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quency range from 0 to 8 kHz.

Our synthetic database included the five Spanish vowels /a/, /e/,
/i/, /o/ and /u/, which can be simulated in a controlled manner.

Fig. 4 shows the resulting formant distribution and some syn-
thetic phoneme examples. White noise was generated and added
to all these synthetic signals, so that the SNR of each signal is ran-
dom and it varies uniformly from 2 dB to 10 dB. As these vowels are
synthetic and sustained, the frames were extracted using a Ham-
ming window of 50 ms length (400 samples). The use of a synthetic
database allowed us to maintain controlled experimental condi-
tions, in which we could focus on the evolutive method, designed
to capture the frequency features of the signals while disregarding
temporal variations.

Real phonetic data was extracted from the TIMIT speech
database [23]. Speech signals were selected randomly from all
dialect regions, including both male and female speakers. Utter-
ances were phonetically segmented to obtain individual files with
the temporal signal of every phoneme occurrence. White noise
was also added at different SNR levels. In this case, the sam-
pling frequency was 16 kHz and the frames were extracted using a
Hamming window of 25 ms (400 samples) and a step-size of 200
samples. All possible frames within a phoneme occurrence were
extracted and padded with zeros where necessary. The English
phonemes /b/, /d/, /eh/, /ih/ and /jh/ were considered. The occlusive
consonants /b/ and /d/ are included because they are very difficult
to distinguish in different contexts. Phoneme /jh/ presents special
features of the fricative sounds. Vowels /eh/ and /ih/ are commonly
chosen because they are close in the formant space. This group
of phonemes was selected because they constitute a set of classes
which is difficult to classify [24].
For simplicity we introduced the steps for the computation of
CC in the continuous time and frequency domains. Although, in
practice we use digital signals and the discrete versions of the
transforms mentioned in Section 1.2. For both MFCC and ECC
the procedure is as follows. First, the spectrum of the frame is

b
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Fig. 5. Scheme of the

ormalised and integrated by the triangular filters, and every coef-
cient resulting from integration is then scaled by the inverse of the
rea of the corresponding filter. As in the case of Slaney’s filterbank
7], we give equal weight to all coefficients because this is shown to
mprove results. Then the discrete cosine transform (DCT) is com-
uted from the log energy coefficients. As the number of filters nf

n each filterbank is not fixed, we set the number of output DCT
oefficients to [nf/2] + 1.

.2. Evolutionary cepstral coefficients

The MFB shown in Fig. 3, commonly used to compute cepstral
oefficients, reveals that the search for an optimal filterbank can
nvolve adjusting several of its parameters, such as: shape, ampli-
ude, position and size of each filter. However, trying to optimise
ll the parameters together is extremely complex, so we decided
o maintain some of the parameters fixed.

We carried out this optimisation in two different ways. In
he first case, we considered non-symmetrical triangular filters,
etermined by three parameters each. These three parameters
orrespond to the frequency values where the triangle for the fil-
er begins, where the triangle reaches its maximum, and where
t ends. This is depicted in Fig. 5, where the mentioned param-
ters are called ai, bi and ci respectively. They are coded in the
hromosome as integer values, indexing the frequency samples.
he size and overlap between filters are left unrestricted in this
rst approach. The number of filters was also optimised by adding
ne more gene to the chromosome (nf in Fig. 5). This last ele-
ent in the chromosome indicates that the first nf filters are

urrently active. Hence, the length of each chromosome is three
imes the maximum number of filters allowed in a filterbank, plus
ne.

In a second approach, we decided to reduce the number of opti-
isation parameters. Here, triangular filters were distributed along

he frequency band, with the restriction of half overlapping. This
eans that only the central positions (parameters ci in Fig. 5) were

ptimised, and the bandwidth of each filter was adjusted by the
receding and following filters. In this case, the number of filters
as optimised too.

In other approaches [13], polynomial functions were used to
ncode the parameters which were optimised. Here, in contrast, all
he parameters are directly coded in the chromosome. In this way
he search is simpler and the parameters are directly related to the
eatures being optimised.

Each chromosome represents a different filterbank, and they are
nitialized with a random number of active filters. In the initializa-
ion, the position of the filters in a chromosome is also random
nd follows a discrete uniform distribution over the frequency
andwidth from 0 Hz to half the sampling frequency. The position,
etermined in this way, sets the frequency where the triangle of the
lter reaches its maximum. Then, in the case of the three-parameter

lters, a binomial distribution centred on this position is used to

nitialize the other two free parameters of the filter.
Before variation operators are applied, the filters in every chro-

osome are sorted by increasing order with respect to their central
osition. A chromosome is coded as a string of integers and the
osome codification.

range of values is determined by the number of samples in the
frequency domain.

The EA uses the roulette wheel selection method [25], and
elitism is incorporated into the search due to its proven capabilities
to enforce the algorithm’s convergence under certain conditions
[18]. The elitist strategy consists in maintaining the best individ-
ual from one generation to the next without any perturbation. The
variation operators used in this EA are mutation and crossover, and
they were implemented as follows. Mutation of a filter consists
in the random displacement of one of its frequency parameters,
and this modification is made using a binomial distribution. This
mutation operator can also change, with the same probability, the
number of filters in a filterbank. Our one-point crossover opera-
tor interchanges complete filters between different chromosomes.
Suppose we are applying the crossover operator on two parents, for
instance A and B. Then, if parent B contains more active filters than
parent A, the crossover point is a random value between 1 and the
nf value of parent A. All genes (filters and nf) beyond that point in
either chromosome string are swapped between the two parents,
resulting in an offspring with the same nf of the first parent and an
offspring with the same nf of the second parent.

The selection of individuals is also conducted by considering
the filterbank represented by a chromosome. The selection process
should assign greater probability to the chromosomes providing
the better signal representations, and these will be those that obtain
better classification results. The proposed fitness function consists
of a phoneme classifier, and the recognition rate will be the fitness
value for the individual being evaluated.

2.3. HMM based classifier

In order to compare the results to those of state of the art speech
recognition systems, we used a phoneme classifier based on HMM
with Gaussian mixtures (GM). This fitness function uses tools from
the HMM Toolkit [26] for building and manipulating hidden Markov
models. These tools rely on the Baum–Welch algorithm [27] which
is used to find the unknown parameters of an HMM, and on the
Viterbi algorithm [28] for finding the most likely state sequence
given the observed events in the recognition process.

Conventionally, the energy coefficients obtained from the inte-
gration of the log magnitude spectrum are transformed by the DCT
to the cepstral domain. Besides the theoretical basis given in Section
1.2, this has the effect of removing the correlation between adjacent
coefficients. Moreover, it also reduces the feature dimension.

Even though DCT has a fixed kernel and cannot decorrelate the
data as thoroughly as data-based transforms [29], MFCC are close
to decorrelated. The DCT produces nearly uncorrelated coefficients
[30], which is desirable for HMM based speech recognizers using
GM observation densities with diagonal covariance matrices [31].

2.4. Dynamic subset selection for training
A problem in evolutionary optimisation is that it requires enor-
mous computational time. Usually, fitness evaluation takes the
most time since it requires the execution of some kind of program
against problem specific data. In our case, for instance, we need to
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narrow filter from 0 to 40 Hz, besides these two. This narrow filter
isolates the peaks at zero frequency from the phoneme informa-
tion. Another likeness is that, in the band from approximately 1000
to 2500 Hz, the four filterbanks show similar filter distribution. On
the other hand, a feature which is present only in the second filter-

Table 1
Average classification rates (percent) for synthetic phonemes. The maximum rates
for each column are bold highlighted and the rest of the improvements over the
reference are in italics.

FB # filters # coeff Validation test

DCM FCM

EFB 1 17 9 95.20 97.00
Fig. 6. Scheme of the dynamic subset selection method.

rain and test an HMM based classifier using a phoneme database.
his implies that the time for the evolution is proportional to the
ize of the data needed for fitness evaluation, as well as the popula-
ion size and the number of generations. On the other hand, the data
sed for fitness evaluation dramatically influences the generalisa-
ion capability of the optimised solution. Hence, there is a trade off
etween the generalisation capability and the computational time.

In this work we propose the reduction of computational costs
nd the improvement of generalisation capability by evolving fil-
erbank parameters on a selected subset of train and test patterns,
hich is changed during each generation. The idea of active data

election in supervised learning was originally introduced by Zhang
t al. for efficient training of neural networks [32,33]. Motivated by
his work, Gathercole et al. introduced some training subset selec-
ion methods for genetic programming [17]. These methods are
lso useful in evolutionary optimisation, allowing us to significantly
educe the computation time while improving generalisation capa-
ility.

While in [17] only one training data set was considered, our
ubset selection method consists in changing the test subset, as
ell as the training subset, in every generation of the EA. For the

est set, the idea is to focus the EA attention onto the cases that
ere mostly misclassified in previous generations and the cases

hat were not used recently.
In order to illustrate this, an example with two classes of two-

imensional patterns is outlined in Fig. 6. The subset is selected
rom the original data set according to the classification results.
he algorithm randomly selects a number of cases from the whole
raining and test sets every generation, and a test case has more
robability to be selected if it is difficult or has not been selected for
everal generations. Another difference with the method proposed
n [17] is that the size of test and train subsets remains strictly the
ame for all generations. In the first generation the testing subset
s selected assigning the same probability to all cases. Then, during
eneration g, a weight Wi(g) is determined for each test case i. This
eight is the sum of the current difficulty of the case, Di(g), raised

o the power d, and the age of the case, Ai(g), raised to the power a,

i(g) = Di(g)d + Ai(g)a. (4)

The difficulty of a test case is given by the number of times it was
isclassified and its age is the number of generations since it was

ast selected. Exponents d and a determine the importance given
o difficult and unselected cases respectively. Given the sample size
nd other characteristics of the training data, these parameters are
mpirically determined. Each test case is given a probability Pi(g)
f being selected. This probability is given by its weight, multiplied
y the size of the selected subset, S, and divided by the sum of the
eights of all the test cases:

i(g) = Wi(g) × S
∑ . (5)
jWj(g)

When a test case i is selected, its age Ai is set to 1 and, if it is not
elected, its age is incremented. While evaluating the EA popula-
ion, difficulty Di is incremented each time the case i is misclassified.
puting 11 (2011) 3419–3428 3423

However, a problem arises when using an elitist strategy
together with this method. As train and test subsets change, the
best individual at a given time may no longer be the best one for the
next generation. Although, probably it is still a good individual, we
decided to maintain the best chromosome from the previous gen-
eration and assign the classification result from the current subset
as its fitness.

3. Results and discussion

3.1. Synthetic Spanish phonemes

We conducted different EA runs and we found the best results
when we evolved only the central filter positions and the number
of filters, which we allowed to vary from 17 to 32. For the EA, the
population size was set to 100 individuals and crossover rate was
set to 0.8. The mutation rate, meaning the probability of a filter to
have one of its parameters changed, was set to 0.1.

During the EA runs we used a set of 500 training signals and a
different set of 500 test signals to compute the fitness for every indi-
vidual. In this case, training and testing sets remained unchanged
during the evolution. Each run was terminated after 100 genera-
tions without any fitness improvement. When a run was finished,
we took the twenty best filterbanks according to their fitness, and
we made a validation test with another set of 500 signals. From
this validation test we selected the two best filterbanks, discarding
those that were over-optimised (those with higher fitness but with
lower validation result).

Table 1 summarizes the validation results for filterbanks from
two different optimisations, and includes the classification results
obtained using the standard MFB on the same data sets. The fourth
column contains the classification results obtained when using an
HMM with diagonal covariance matrices (DCM), and the fifth col-
umn contains the results obtained when using an HMM with full
covariance matrices (FCM). Evolved filterbanks (EFB) 1 and 2 were
obtained using HMM with DCM as fitness during the optimisation,
while EFBs 3 and 4 were obtained using HMM with FCM. It can
be observed that we obtained filterbanks that perform better than
MFB when using FCM–HMM. Also, it is important to notice that
MFB also performs better using FCM–HMM.

Fig. 7 shows these four EFBs. One feature they all have in
common is the high density of filters from approximately 500 to
1000 Hz, which could be related to the distribution of the first fre-
quency formant (Fig. 4). Moreover, considering the second formant
frequency, it can be noticed that these groups of filters could dis-
tinguish phonemes /o/ and /u/ from the others. Another common
trait in these four filterbanks is that the frequency range from 0 to
500 Hz is covered by only two filters, although, in EFB 3 there is a
EFB 2 18 10 95.40 96.80
EFB 3 18 10 93.00 96.40
EFB 4 17 9 94.60 96.20
MFB 23 13 94.80 96.20
MFB 17 9 93.00 95.20
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Table 2
Classification rates for English phonemes, obtained as average over ten train/test
partitions (percent). Filterbanks optimised at 0 dB SNR. The maximum rates for each
SNR level are bold highlighted.

FB # filters # coeff −5 dB 0 dB 20 dB Clean Diff.

A0 32 17 24.76 32.62 58.26 65.54 0.44
A1 17 9 20.26 26.02 62.16 62.62 −9.68
A2 21 11 20.16 21.34 59.56 60.00 −19.68
A3 29 15 24.34 32.92 66.08 64.32 6.92
A4 19 10 20.38 26.32 63.64 61.22 −9.18
A5 19 10 20.52 26.24 60.62 60.26 −13.10
A6 21 11 31.10 35.78 61.52 60.80 8.46
A7 29 15 22.58 30.52 63.90 64.58 0.84

optimised using signals at 20 dB SNR and clean signals respectively.
Again, we can see that some EFBs perform considerably better than
the MFB with noisy test signals, and there is even an improvement
at 20 dB SNR in these cases.

Table 3
Classification rates for English phonemes, obtained as average over ten train/test
partitions (percent). Filterbanks optimised at 20 dB SNR. The maximum rates for
each SNR level are bold highlighted.

FB # filters # coeff −5 dB 0 dB 20 dB Clean Diff.

B0 20 11 20.04 22.24 62.30 63.06 −13.10
B1 19 10 22.18 30.06 53.76 64.12 −10.62
B2 22 12 22.44 30.24 60.68 64.96 −2.42
B3 19 10 21.38 27.84 68.08 67.80 4.36
B4 19 10 21.10 26.72 62.40 64.52 −6.00
B5 19 10 22.06 34.54 55.56 64.46 −4.12
EFB 3.

Fig. 7. Filterbanks optimised for phonemes /

ank is the attention given to high frequencies, as opposed to MFB,
nd taking higher formants into account.

.2. Real English phonemes

In the second group of experiments the best results were
btained when considering non-symmetrical triangular filters,
etermined by three parameters each. Also in this case, the number
f filters in the filterbanks was allowed to vary from 17 to 32. For the
tness computation we used a dynamic data partition of 1000 train-

ng signals and 400 test signals, and an HMM based classifier with
CM. The data partition used during the EA runs was changed every
eneration according to the strategy described in Section 2.4, and
honeme samples were dynamically selected from a total of 6045
ignals available for training and 1860 signals available for testing.
s mentioned in Section 2.4, some preliminary experiments were
arried out in order to set difficulty and age exponents (parameters
and a in Eq. (4)). Given the sample size and using different com-
inations, we found that a good choice is to set both parameters d
nd a to 1.0.

As in the experiments with synthetic phonemes, a EA run was
nded after 100 generations without any fitness improvement, and
e took the ten best filterbanks according to their fitness. The set-

ings for the parameters of the EA were also the same values given
n Section 3.1. We made validation tests with ten different data
artitions consisting of 2500 train patterns and 500 test patterns
ach. Moreover, these validation tests were made using test sets at
ifferent SNR levels.

Here we show the classification results of filterbanks obtained
rom three EA runs which only differ in the noise level used for train
nd test sets for the fitness computation. Table 2 shows average
lassification results comparing filterbanks optimised for signals at
dB SNR against standard MFB, using DCM–HMM. We tested the
est ten EFBs at different SNR, always training the classifier with
lean signals. Each one of these results were obtained as the aver-
ge of the classification with ten different data partitions. The last
olumn gives the accumulated difference between each of the first
en rows and the last row, the higher values indicate the best filter-

anks. For example, in Table 2, we obtain the value 0.44 in the first
ow by adding the difference of the values from column 4 to column
in the first row, from those in row 11. As the number of filters is

ne of the optimised parameters, we compare all the EFBs against
MFB composed of 23 filters, which is a standard setup in speech
A8 25 13 22.94 30.76 62.10 62.08 −2.86
A9 22 12 23.60 31.54 63.54 66.14 4.08
MFB 23 13 20.00 23.18 68.40 69.16

recognition. It can be seen that when testing at −5 and 0 dB SNR the
EFB A6 performs much better than MFB. From this we can assume
that the distribution of filters in EFB A6 allows to distinguish bet-
ter the formant frequencies from the noise frequency components.
This means that the use of the evolved filterbank results in features
which are more robust than the standard parameterisation.

The same comparison is made in Tables 3 and 4 for filterbanks
B6 18 10 20.22 31.92 68.44 66.64 6.48
B7 19 10 22.88 31.98 64.44 67.26 5.82
B8 18 10 21.58 27.90 64.04 61.88 −5.34
B9 19 10 22.82 31.08 64.28 68.04 5.48
MFB 23 13 20.00 23.18 68.40 69.16
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Table 4
Classification rates for English phonemes, obtained as average over ten train/test
partitions (percent). Filterbanks optimised for clean signals. The maximum rates for
each SNR level are bold highlighted.

FB # filters # coeff −5 dB 0 dB 20 dB Clean Diff.

C0 21 11 20.56 27.94 64.14 63.48 −4.62
C1 18 10 20.08 34.20 61.26 60.66 −4.54
C2 19 10 20.28 27.74 62.62 60.72 −9.38
C3 18 10 21.94 30.32 62.70 64.36 −1.42
C4 18 10 20.56 36.88 69.82 68.08 14.60
C5 18 10 22.26 30.42 65.14 63.40 0.48
C6 19 10 20.30 30.16 64.82 62.62 −2.84
C7 18 10 20.16 30.66 63.22 61.96 −4.74
C8 18 10 26.52 33.56 56.62 64.00 −0.04
C9 18 10 20.40 26.68 66.88 66.22 −0.56
MFB 23 13 20.00 23.18 68.40 69.16

Table 5
Classification rates for English phonemes, obtained as average over ten train/test
partitions (percent). The maximum rates for each SNR level are bold highlighted.

FB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 30 dB Clean

A3 24.34 32.92 37.68 46.36 52.98 66.08 65.04 64.32
A6 31.10 35.78 44.38 46.88 53.12 61.52 60.36 60.80
B6 20.22 31.92 55.12 67.20 68.84 68.44 67.20 66.64
B7 22.88 31.98 36.86 44.42 49.64 64.44 67.58 67.26
C4 20.56 36.88 60.30 68.32 68.70 69.82 67.42 68.08
C5 22.26 30.42 34.38 44.32 57.28 65.14 63.52 63.40
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MFB 20.00 23.18 37.90 44.68 51.42 68.40 69.80 69.16
HFCC 20.24 25.98 47.26 62.78 67.68 70.54 69.42 70.36
Slaney 29.94 30.28 36.44 54.76 60.66 62.02 61.52 62.78

From these three groups of EFBs we selected some of the best
FBs and further tested them at 5, 10, 15 and 30 dB SNR. The average
esults from ten data partitions can be found in Table 5, as well as
he results for the MFB, HFCC and Slaney filterbanks. For the HFCC
0 filters were considered, one filter was added to the filterbank
roposed in [34] because the sampling frequency used in our exper-

ments is higher. The bandwiths of the filters in HFCC are controlled
y a parameter called E-factor, which was set to 5, based on the
ecognition results shown in [34]. As suggested, the first 13 cepstral
oefficients were considered. The Slaney filterbank was comprised
f 40 filters, as proposed in [7], and 20 cepstral coefficients were
omputed.

It can be seen that the EFBs perform better than the standard
FB when the SNR in testing signals is lower than the SNR in

he training signals. Moreover, EFB C4 and EFB B6 outperform the
laney filterbank in all noise conditions considered except in the

ase of −5 dB SNR. On the other hand, the EFBs perform better than
he HFCC filterbank at the lower SNRs, this is from −5 dB to 15 dB
NR. These improvements may be better visualized in Fig. 8, where
t is easy to appreciate that EFB C4 outperforms MFB in the range
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ig. 8. Performance of the best EFBs compared with MFB (English phonemes).
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from 0 dB to 15 dB SNR. It can be seen that MFB is not outperformed
for 30 dB SNR and clean signals, however this behaviour is common
to most robust ASR methods [35]. For instance, the HFCC filterbank
outperform MFB for noisiest cases, however, above 20 dB SNR the
improvements are smaller. Moreover, the degradation of recogni-
tion performance is proportional to the mismatch between the SNR
of the training set and the SNR of the test set [4,36].

Fig. 9 shows the selected EFBs from Table 5. As we stated before,
one feature they all have in common is the wide bandwidth of most
of the filters, compared with the MFB. This coincides with the study
in [34] about the effect of wider filter bandwidth on noise robust-
ness. In all the EFBs we can also see high overlapping between
different filters, as there was not any constraint about this in the
optimisation. However, this high overlapping which results in cor-
related CC could be beneficial for classification with full covariance
matrix HMM. We can observe the grouping of a relatively high num-
ber of filters in the frequency band from 0 Hz to 4000 Hz in the case
of EFB C4, which gives the best results for noisy test signals.

In order to analyse what information these representations are
capturing, we recovered an estimate of the short-time magni-
tude spectrum using the method proposed in [37]. Which consists
in scaling the spectrogram of a white noise signal by the short-
time magnitude spectrum recovered from the cepstral coefficients.
Figs. 10 and 11 show the spectrograms of sentence SI648 from TIMIT
corpus, with additive noise at 50 dB and 10 dB SNR respectively.
Fig. 10 shows that wide filters of the EFB blur energy coefficients
along the frequency axis, and it is more difficult to notice the for-
mant frequencies, though this information is not lost. Moreover,
phoneme classification is made easier by removing information
related to pitch. On the other hand, from Fig. 11 it can be seen that
when the signal is noisy, the relevant information is clearer in the
spectrogram reconstructed from ECC. This is because the filter dis-
tribution and bandwidths of EFB C4 allow the relevant information
on higher frequencies to be conserved, which is hidden by noise
when using MFCC.

Table 6 exhibits the confusion matrices for MFB and EFB C4,
obtained when testing with signals at 10 and 15 dB SNR. From these
matrices, it can be seen that phonemes /eh/ and /ih/ are mostly mis-
classified using MFB and they are frequently well classified using
EFB C4. In fact, when the SNR is high, the performance in the clas-
sification of each of the five phonemes is similar for both MFB and
EFB C4. However, the lower the SNR, the more MFB fails to classify
phonemes /eh/ and /ih/. These are mostly confused with phonemes
/b/ and /d/, while the success rate for phonemes /b/, /d/ and /jh/ is
barely affected. On the other hand, when using EFB C4 the effect
of noise degrades the success rate for all phonemes uniformly, but
none of them are as confused as in the case of MFB. That is, not only
the average of success rate is higher, but also the variance between
phonemes is lower. This means that the evolved filterbank provides
a more robust parameterisation as it achieves better classification
results in the presence of noise.

3.3. Statistical dependence of ECC

As we mentioned in Section 2.3, MFCC are almost uncorrelated
and are suitable for the utilization of HMM. However, this assump-
tion of weak statistical dependence may not be true for the ECC.
As Fig. 9 shows, filter bandwidth and overlapping is usually higher
for the optimised filterbanks than MFB. This means that the energy
coefficients contain highly redundant information, and DCT may
not be enough to obtain near decorrelated coefficients in this case.

In fact, we have studied and compared the statistical dependence
of MFCC and ECC, and noticed that optimised coefficients show, in
general, higher correlation. Fig. 12 shows the correlation matrices
of 10 cepstral coefficients computed over 1500 frames. In order to
make this comparison, we used a MFB consisting on 18 filters, the
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Fig. 9. Filterbanks optimised for phoneme

ame number of filters in the optimised filterbank named C4. Cor-
elation coefficients corresponding to MFB are shown on top and
hose corresponding to the optimised filterbank C4 at the bottom.
s can be seen, correlation matrices show high statistical depen-
ence between cepstral coefficients corresponding to phonemes

eh/ and /ih/, and this is much more noticeable for the case of
he evolved filterbank. In order to obtain a measure of the statis-
ical dependence, the sum of the correlation coefficients for each
honeme was obtained. These values can be seen in Table 7, and

ig. 10. Spectrograms for sentence SI648 from TIMIT corpus at 10 dB SNR. Computed
rom the original signal (top), reconstructed from MFCC (middle) and reconstructed
rom ECC (bottom).
d/, /eh/, /ih/ and /jh/ from TIMIT database.

they were computed as
∑

i
∑

j|Mi,j| − trace(|M|), where M is the
matrix of correlation coefficients. From these values we can also see
that ECC are more correlated than the MFCC for the set of phonemes
we have considered.

The statistical dependence which is present in ECC implies that

GM observation densities with diagonal covariance matrices (DCM)
may not be the best option. Hence we decided to use full covariance
matrices instead, to model the observation density functions during
the optimisation. Moreover, as the MFCC are not completely decor-

Fig. 11. Spectrograms for sentence SI648 from TIMIT corpus at 50 dB SNR. Computed
from the original signal (top), reconstructed from MFCC (middle) and reconstructed
from ECC (bottom).
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Fig. 12. Correlation matrices of MFCC (top) and ECC (bottom).

Table 6
Confusion matrices. Average classification rates (percent) from ten data partitions. The maximum average rates for each SNR level are bold highlighted.

MFB EFB C4

/b/ /d/ /eh/ /ih/ /jh/ /b/ /d/ /eh/ /ih/ /jh/

15 dB
/b/ 64.7 34.8 00.0 00.0 00.5 56.9 39.7 01.8 01.4 00.2
/d/ 11.7 83.2 00.0 00.1 5.00 14.1 79.9 00.6 00.9 04.5
/eh/ 33.1 51.0 05.0 07.1 03.8 03.9 04.5 73.5 18.1 00.0
/ih/ 21.8 45.3 04.7 18.9 09.3 12.6 09.9 18.2 59.3 00.0
/jh/ 00.1 14.6 00.0 00.0 85.3 00.3 25.3 00.2 00.3 73.9

Avg: 51.42 Avg: 68.70

10 dB
/b/ 55.4 44.0 00.0 00.0 00.6 48.8 48.6 01.5 00.5 00.6
/d/ 07.4 89.2 00.0 00.0 30.4 08.2 86.4 00.0 00.0 05.4
/eh/ 25.6 70.6 00.0 00.0 30.8
/ih/ 13.5 68.6 00.0 00.0 17.9
/jh/ 00.0 21.2 00.0 00.0 78.8

Avg: 44.68

Table 7
Sum of correlation coefficients.
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/b/ /d/ /eh/ /ih/ /jh/

MFB 02.1 24.9 30.4 27.2 11.2
C4 28.8 27.5 33.1 45.5 32.2

elated, they also allowed the classifier to perform better when
sing full covariance matrices (FCM) (see Table 1).

. Conclusion and future work

A new method has been proposed for evolving a filterbank, in
rder to produce a cepstral representation that improves the classi-
cation of noisy speech signals. Our approach successfully exploits
he advantages of evolutionary computation in the search for an
ptimal filterbank. Free parameters and codification provided a
ide search space, which was covered by the algorithm due to

he design of adequate variation operators. Moreover, the data
election method for resampling prevented the overfitting without
ncreasing computational cost.

The obtained representation provides a new alternative to
lassical approaches, such as those based on a mel scaled filter-

ank or linear prediction, and may be useful in automatic speech
ecognition systems. Experimental results show that the proposed
pproach meets the objective of finding a more robust signal repre-
entation. This approach facilitates the task of the classifier because
t properly separates the phoneme classes, thereby improving the
03.7 06.5 77.4 12.4 00.0
09.1 10.3 22.9 57.7 00.0
00.2 28.3 00.0 00.2 71.3

Avg: 68.32

classification rate when the test noise conditions differ from the
training noise conditions. Moreover, with the use of this optimal
filterbank the robustness of an ASR system can be improved with
no additional computational cost. These results also suggest that
there is further room for improvement over the psychoacoustic
scaled filterbank.

In future work, the utilisation of other search methods, such
as particle swarm optimisation and scatter search will be studied.
Different variation operators can also be considered as a way to
improve the results of the EA. Moreover, the search for an optimal
filterbank could be carried out by evolving different parameters.
The possibility of replacing the HMM based classifier by another
objective function, in order to reduce computational cost, will also
be studied. In particular, we will consider fitness functions which
incorporate information such as the gaussianity and the correlation
of the coefficients, as well as the class separability.
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