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Abstract
We consider the resolvent of a system of first-order differential operators with
a regular singularity, admitting a family of self-adjoint extensions. We find that
the asymptotic expansion for the resolvent in the general case presents powers
of λ which depend on the singularity, and can take even irrational values. The
consequences for the pole structure of the corresponding ζ - and η-functions
are also discussed.
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Mathematics Subject Classification: 81Q10, 34L05, 34L40

1. Introduction

It is well known that in quantum field theory under external conditions, quantities such as
vacuum energies and effective actions, which describe the influence of boundaries or external
fields on the physical system, are generically divergent and require a renormalization to get a
physical meaning.

In this context, a powerful and elegant regularization scheme to deal with these problems is
based on the use of the ζ -function [1, 2] or the heat-kernel (for recent reviews see, for example,
[3–7]) associated with the relevant differential operators appearing in the quadratic part of the
actions. In this way, ground-state energies, heat-kernel coefficients, functional determinants
and partition functions for quantum fields can be given in terms of the corresponding ζ -
function, where the ultraviolet divergent pieces of the one-loop contributions are encoded as
poles of its holomorphic extension.

Thus, it is of major interest in physics to determine the singularity structure of ζ -functions
associated with these physical models.
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In particular [8], for an elliptic boundary value problem in a ν-dimensional compact
manifold with boundary, described by a differential operator A of order ω, with smooth
coefficients and a ray of minimal growth, defined on a domain of functions subject to local
boundary conditions, the ζ -function

ζA(s) ≡ Tr{A−s} (1.1)

has a meromorphic extension to the complex s-plane whose singularities are isolated simple
poles at s = (ν − j)/ω, with j = 0, 1, 2, . . . .

In the case of positive definite operators, the ζ -function is related, via Mellin transform,
to the trace of the heat-kernel of the problem, and the pole structure of ζA(s) determines the
small-t asymptotic expansion of this trace [8, 9]:

Tr{e−tA} ∼
∞∑

j=0

aj (A)t(j−ν)/ω (1.2)

where the coefficients are related to the residues by

aj (A) = Res|s=(ν−j)/ω�(s)ζA(s). (1.3)

For operators −(d/dx)2 + V (x) with a singular potential V (x) asymptotic to g/x2 as
x → 0, this expansion is substantially different. If g � 3/4, the operator is essentially
self-adjoint. This case has been treated in [10–12], where log terms are found, as well as terms
with coefficients which are distributions concentrated at the singular point x = 0. For the case
g > −1/4, the Friedrichs extension has been treated in [13] for operators in L2(0, 1), and in
[14] for operators in L2(R+).

On the other hand, [15] gave the pole structure of the ζ -function of a second-order
differential operator defined on the (non-compact) half-line R+, having a singular zeroth-order
term given by V (x) = gx−2 + x2. It showed that, for a certain range of real values of g,
this operator admits nontrivial self-adjoint extensions in L2(R+), for which the associated
ζ -function presents isolated simple poles which (in general) do not lie at s = (1 − j)/2 for
j = 0, 1, . . . , and can even take irrational values.

A similar structure has been noticed in [16] for the singularities of the ζ -function
of a system of first-order differential operators in the half line, appearing in a model of
supersymmetric quantum mechanics with a singular superpotential ∼x−1.

Let us mention that singular potentials ∼1/x2 have been considered in the description
of several physical systems, such as the Calogero model [15, 17–19], conformal invariant
quantum mechanical models [20–22] and, more recently, the dynamics of quantum particles
in the asymptotic near-horizon region of black holes [23–27]. Moreover, singular
superpotentials have been considered as possible agents of supersymmetry breaking in models
of supersymmetric quantum mechanics [28–30] (see also [16]).

It is the aim of the present paper to analyse the behaviour of the resolvent and ζ - and
η-functions of a system of first-order differential operators with a regular singularity in a
compact segment, admitting a family of self-adjoint extensions.

We will show that the asymptotic expansion for the resolvent in the general case presents
powers of λ which depend on the singularity, and can take even irrational values. The
consequence of this behaviour on the corresponding ζ - and η-functions is the presence of
simple poles lying at points which also depend on the singularity, with residues depending on
the self-adjoint extension considered.
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We first construct the resolvents for two particular extensions, for which the boundary
condition at the singular point x = 0 is invariant under the scaling x → cx. The resolvent
expansion for these special extensions displays the usual powers, leading to the usual poles
for the ζ -function. The resolvents of the remaining extensions are convex linear combinations
of these special extensions, but the coefficients in the convex combination depend on the
eigenvalue parameter λ. This dependence leads to unusual powers in the resolvent expansion,
and hence to unusual poles for the zeta-function. These self-adjoint extensions are not
invariant under the scaling x → cx; as c → 0 they tend (at least formally) to one of the
invariant extensions, and as c → ∞ they tend to the other. As c → 0 the residues at the
anomalous poles tend to zero, whereas as c → ∞ these residues become infinite. The way
these residues depend on the boundary condition is explained by a scaling argument in
section 7.

The structure of the paper is as follows: in section 2, we define the operator and determine
its self-adjoint extensions, and in section 3 we study their spectra. In section 4 we construct
the resolvent for a general extension as a linear combination of the resolvent of two limiting
cases, and in section 5 we consider the traces of these operators. The asymptotic expansion
of these traces, evaluated in section 6, is used in section 7 to construct the associated ζ - and
η-functions and study their singularities.

Finally, in section 8 we briefly describe similar results one can obtain for a second-
order differential operator with a regular singularity, also admitting a family of self-adjoint
extensions.

2. The operator and its self-adjoint extensions

Let us consider the differential operator

Dx =
(

0 Ãx

Ax 0

)
(2.1)

with

Ax = −∂x +
g

x
= −xg∂xx

−g Ãx = ∂x +
g

x
= x−g∂xx

g (2.2)

and g ∈ R, defined on a domain of (two component) smooth functions with compact support
in a segment, D(Dx) = C∞

0 (0, 1). It can be easily seen that Dx so defined is symmetric.
The adjoint operator D∗

x , which is the maximal extension of Dx , is defined on the domain
D(D∗

x) of functions �(x) = (φ1(x)

φ2(x)

) ∈ L2(0, 1), having a locally summable first derivative and
such that

Dx�(x) =
(

Ãxφ2(x)

Axφ1(x)

)
=
(

f1(x)

f2(x)

)
∈ L2(0, 1). (2.3)

Lemma 2.1. If �(x) ∈ D(D∗
x) and − 1

2 < g < 1
2 , then

|φ1(x) − C1[�]xg| + |φ2(x) − C2[�]x−g| � Kg‖Dx�(x)‖x1/2 (2.4)

for some constants C1[�] and C2[�], where ‖·‖ is the L2-norm.

Indeed, equations (2.3) and (2.2) imply

φ1(x) = C1[�]xg − xg

∫ x

0
y−gf2(y) dy

φ2(x) = C2[�]x−g + x−g

∫ x

0
ygf1(y) dy

(2.5)
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where C1[�] and C2[�] are integration constants which depend on the function �(x). Taking
into account that∣∣∣∣

∫ x

0
ygf1(y) dy

∣∣∣∣ � xg+1/2

√
1 + 2g

‖f1‖∣∣∣∣
∫ x

0
y−gf2(y) dy

∣∣∣∣ � x−g+1/2

√
1 − 2g

‖f2‖
(2.6)

we immediately get equation (2.4) with Kg = (1 − 2g)−1/2 + (1 + 2g)−1/2.

Lemma 2.2. Let �(x) = (φ1(x)

φ2(x)

)
, 
(x) = (ψ1(x)

ψ2(x)

) ∈ D(D∗). Then

(Dx
,�) − (
,Dx�) = {C1[
]∗C2[�] − C2[
]∗C1[�]} + {ψ2(1)∗φ1(1) − ψ1(1)∗φ2(1)}.
(2.7)

In fact, from equation (2.2) one easily obtains

(Dx
,�) − (
,Dx�) = lim
ε→0+

∫ 1

ε

∂x{xgψ2(x)∗x−gφ1(x) − x−gψ1(x)∗xgφ2(x)} dx (2.8)

from which, taking into account the results in lemma 2.1, equation (2.7) follows directly.
Now, if 
(x) in equation (2.7) belongs to the domain of the closure of Dx,Dx = (D∗

x)
∗,


(x) ∈ D(Dx) ⊂ D(D∗
x) (2.9)

then the right-hand side of equation (2.7) must vanish for any �(x) ∈ D(D∗
x). Therefore,

C1[
] = 0 = C2[
] and 
(1) = 0. (2.10)

On the other hand, if 
(x),�(x) belong to the domain of a symmetric extension of Dx

(contained in D(D∗
x)), the right-hand side of equation (2.7) must also vanish.

Thus, the closed extensions of Dx correspond to the subspaces of C
4 under the map

� → (C1[�], C2[�], φ1(1), φ2(1)), and the self-adjoint extensions correspond to those
subspaces S ⊂ C

4 such that S = S⊥, with the orthogonal complement taken in the sense
of the symplectic form on the right-hand side of equation (2.7).

For definiteness, in the following we will consider self-adjoint extensions satisfying the
local boundary condition

φ1(1) = 0. (2.11)

Each such extension is determined by a condition of the form

αC1[�] + βC2[�] = 0 (2.12)

with α, β ∈ R, and α2 + β2 �= 0. We denote this extension by D
(α,β)
x .

3. The spectrum

In order to determine the spectrum of the self-adjoint extensions of Dx , we need the
solutions of

(Dx − λ)�(x) = 0 ⇒
{

Ãxφ2(x) = λφ1(x)

Axφ1(x) = λφ2(x)
(3.1)

satisfying the boundary conditions in equations (2.11) and (2.12).
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The solution of the homogeneous equation for λ = 0 is

�(x) =
(

C1x
g

C2x
−g

)
(3.2)

but the boundary conditions in equations (2.11) and (2.12) imply that C1 = 0 and C2 = 0,
unless β = 0. Consequently, there are no zero modes except for the self-adjoint extension
characterized by β = 0,D(1,0)

x .
Applying Ã to the second line in equation (3.1), and using the first one, one easily gets{

∂2
x − g(g − 1)

x2
+ λ2

}
φ1(x) = 0. (3.3)

Then, for λ �= 0, the solutions are of the form

φ1(x) = K1

√
XJ 1

2 −g(X) + K2

√
XJg− 1

2
(X) (3.4)

with X = λ̃x, where λ̃ = +
√

λ2 and K1,K2 are constants.
This implies for the lower component of �(x)

φ2(x) = σ
{−K1

√
XJ−g− 1

2
(X) + K2

√
XJg+ 1

2
(X)
}

(3.5)

where σ = λ̃/λ.
Taking into account that

Jν(X) = Xν

{
1

2ν�(1 + ν)
+ O(X2)

}
(3.6)

we get

αC1[�] + βC2[�] = αK2λ̃
g

2g− 1
2 �
(

1
2 + g
) − σ

βK1λ̃
−g

2−g− 1
2 �
(

1
2 − g

) = 0. (3.7)

For α = 0, equation (3.7) implies K1 = 0. Therefore, φ1(1) = 0 ⇒ Jg− 1
2
(λ̃) = 0. Thus,

the spectrum of this extension, D(0,1)
x , is non-degenerate and symmetric with respect to the

origin, with the eigenvalues given by

λ±,n = ±jg− 1
2 ,n n = 1, 2, . . . (3.8)

where jν,n is the nth positive zero of the Bessel function Jν(z).5

For α �= 0, from equation (3.7) we can write

K2

K1
= σ λ̃−2g

[
4g�
(

1
2 + g
)

�
(

1
2 − g

)
](

β

α

)
. (3.10)

In this case, the boundary condition at x = 1 determines the eigenvalues as the solutions of
the transcendental equation

λ̃2g
J 1

2 −g(λ̃)

Jg− 1
2
(λ̃)

= σρ(α, β) (3.11)

where we have defined

ρ(α, β) := −4g�
(

1
2 + g
)

�
(

1
2 − g

) (β

α

)
. (3.12)

5 Let us recall that large zeros of Jν(λ) have the asymptotic expansion

jν,n  γ − 4ν2 − 1

8γ
+ O
( 1

γ

)3
(3.9)

with γ = (n + ν
2 − 1

4

)
π .
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Figure 1. Plot for F(λ) := λ2gJ 1
2 −g

(λ)/J
g− 1

2
(λ), with g = 1/3, and ρ(α, β) = 3.

For the positive eigenvalues λ̃ = λ ⇒ σ = 1, and equation (3.11) reduces to

F(λ) := λ2g
J 1

2 −g(λ)

Jg− 1
2
(λ)

= ρ(α, β) (3.13)

the relation plotted in figure 1 for particular values of ρ(α, β) and g.
On the other hand, for negative eigenvalues λ = eiπ λ̃ ⇒ σ = λ̃/λ = e−iπ , and

equation (3.11) reads

F(λ̃) = e−iπρ(α, β) = ρ(α,−β). (3.14)

Therefore, the negative eigenvalues of D
(α,β)
x are eiπ times the positive eigenvalues of D

(α,−β)
x .

Note that the spectrum is always non-degenerate, and there is a positive eigenvalue
between each pair of consecutive zeros of Jg− 1

2
(λ).

Moreover, the spectrum is symmetric with respect to the origin only for the α = 0
extension (which we call the ‘D-extension’ (see equation (3.8)), and for the β = 0 extension
(which we call the ‘N-extension’). Indeed, in this last case, from equations (3.11) and (3.12)
one can see that the eigenvalues of D(1,0)

x are given by

λ0 = 0 λ±,n = ±j 1
2 −g,n n = 1, 2, . . . (3.15)

4. The resolvent

In this section we will construct the resolvent of Dx ,

G(λ) = (Dx − λ)−1 (4.1)

for its different self-adjoint extensions.
We will first consider the two limiting cases in equation (2.12), namely the ‘D-extension’,

for which α = 0 ⇒ C2[�] = 0, and the ‘N-extension’, with β = 0 ⇒ C1[�] = 0. The
resolvent for a general self-adjoint extension will be later evaluated as a linear combination of
those obtained for these two limiting cases.

For the kernel of the resolvent

G(x, y; λ) =
(

G11(x, y; λ) G12(x, y; λ)

G21(x, y; λ) G22(x, y; λ)

)
(4.2)

we have

(Dx − λ)G(x, y; λ) = δ(x, y)12 (4.3)
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from which we straightforwardly get for the diagonal elements{
∂2
x − g(g − 1)

x2
+ λ2

}
G11(x, y; λ) = −λδ(x, y){

∂2
x − g(g + 1)

x2
+ λ2

}
G22(x, y; λ) = −λδ(x, y)

(4.4)

while for the non-diagonal ones we have

G21(x, y; λ) = 1

λ

{
−∂x +

g

x

}
G11(x, y; λ)

(4.5)
G12(x, y; λ) = 1

λ

{
∂x +

g

x

}
G22(x, y; λ)

for λ �= 0.
Since the resolvent is analytic in λ, it is sufficient to evaluate it on the open right half

plane.
In so doing, we will need the upper and lower components of some particular solutions

of the homogeneous equation (3.1).
Then, let us define



LD
1 (X) = √

XJg− 1
2
(X)

LD
2 (X) = √

XJg+ 1
2
(X)

LN
1 (X) = √

XJ 1
2 −g(X)

LN
2 (X) = √

XJ−g− 1
2
(X)

R1(X; λ) = √
X
[
Jg− 1

2
(λ)J 1

2 −g(X) − J 1
2 −g(λ)Jg− 1

2
(X)
]

R2(X; λ) = √
X
[
Jg− 1

2
(λ)J−g− 1

2
(X) + J 1

2 −g(λ)Jg+ 1
2
(X)
]
.

(4.6)

Note that R1(λ; λ) = 0, and ÃxR2(λx; λ)|x=1 = 0.
We will also need the Wronskians



W
[
LD

1 (X), R1(X; λ)
] = − 2

π
cos(gπ)Jg− 1

2
(λ) = 1

γD(λ)

W
[
LD

2 (X), R2(X; λ)
] = 2

π
cos(gπ)Jg− 1

2
(λ) = −1

γD(λ)

W
[
LN

1 (X), R1(X; λ)
] = − 2

π
cos(gπ)J 1

2 −g(λ) = 1

γN(λ)

W
[
LN

2 (X), R2(X; λ)
] = − 2

π
cos(gπ)J 1

2 −g(λ) = 1

γN(λ)

(4.7)

which vanish only at the zeros of Jν(λ), for ν = ±( 1
2 − g

)
.

4.1. The resolvent for the D-extension

In this case, the function

�(x) =
∫ 1

0
GD(x, y; λ)

(
f1(y)

f2(y)

)
dy (4.8)

must satisfy φ1(1) = 0 and C2[�] = 0, for any functions f1(x), f2(x) ∈ L2(0, 1).
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This requires that

GD
11(x, y; λ) = γD(λ) ×

{
LD

1 (X)R1(Y ; λ) for x � y

R1(X; λ)LD
1 (Y ) for x � y

(4.9)

and

GD
22(x, y; λ) = −γD(λ) ×

{
LD

2 (X)R2(Y ; λ) for x � y

R2(X; λ)LD
2 (Y ) for x � y

(4.10)

with the other components, GD
12(x, y; λ) and GD

21(x, y; λ), given as in equation (4.5). The
fact that the boundary conditions are satisfied, as well as (Dx − λ)�(x) = ( f1(x)

f2(x)

)
, can be

straightforwardly verified from equations (4.6) and (4.7).
Indeed, from equations (4.8)–(4.10), (4.5)–(4.7), one gets

φ1(x) = CD
1 [�]xg + O(

√
x) φ2(x) = O(

√
x) (4.11)

with

CD
1 [�] = −πλg+1

2
1
2 +g cos(gπ)Jg− 1

2
(λ)�

(
1
2 + g
) ∫ 1

0
[R1(λy; λ)f1(y)− R2(λy; λ)f2(y)] dy (4.12)

for λ not a zero of Jg− 1
2
(λ).

Note that CD
1 [�] �= 0 if the integral in the right-hand side of equation (4.12) is non-

vanishing.

4.2. The resolvent for the N-extension

In this case, the function

�(x) =
∫ 1

0
GN(x, y; λ)

(
f1(y)

f2(y)

)
dy (4.13)

must satisfy φ1(1) = 0 and C1[�] = 0, for any functions f1(x), f2(x) ∈ L2(0, 1).
This requires that

GN
11(x, y; λ) = γN(λ) ×

{
LN

1 (X)R1(Y ; λ) for x � y

R1(X; λ)LN
1 (Y ) for x � y

(4.14)

and

GN
22(x, y; λ) = γN(λ) ×

{
LN

2 (X)R2(Y ; λ) for x � y

R2(X; λ)LN
2 (Y ) for x � y

(4.15)

with the other components, GN
12(x, y; λ) and GN

21(x, y; λ), given as in equation (4.5). These
boundary conditions, as well as the fact that (Dx −λ)�(x) = ( f1(x)

f2(x)

)
, can be straightforwardly

verified from equations (4.6) and (4.7).
This time, from equations (4.13)–(4.15), (4.5)–(4.7), one gets

φ1(x) = O(
√

x) φ2(x) = CN
2 [�]x−g + O(

√
x) (4.16)
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with

CN
2 [�] = πλ1−g

2
1
2 −g cos(gπ)J 1

2 −g(λ)�
(

1
2 − g

) ∫ 1

0
[R1(λy; λ)f1(y) − R2(λy; λ)f2(y)] dy

(4.17)

for λ not a zero of J 1
2 −g(λ).

Note that CN
2 [�] �= 0 if the integral on the right-hand side of equation (4.17) (the same

integral as the one appearing in the D-extension, equation (4.12)) is non-vanishing.

4.3. The resolvent for a general self-adjoint extension of Dx

For the general case, we can adjust the boundary conditions

φ1(1) = 0 αC1[�] + βC2[�] = 0 α, β �= 0 (4.18)

for

�(x) =
∫ 1

0
G(x, y; λ)

(
f1(y)

f2(y)

)
dy (4.19)

for any f1(x), f2(x) ∈ L2(0, 1), by taking a linear combination of the resolvent for the limiting
cases,

G(x, y; λ) = [1 − τ(λ)]GD(x, y; λ) + τ(λ)GN(x, y; λ). (4.20)

Since the boundary condition at x = 1 is automatically fulfilled, one must just impose

α[1 − τ(λ)]CD
1 [�] + βτ(λ)CN

2 [�] = 0. (4.21)

Note that, in view of equations (4.12), (4.17) and (3.13),

αCD
1 [�] − βCN

2 [�] = 0 (4.22)

precisely when λ is an eigenvalue of D
(α,β)
x . Therefore, from equation (4.21) we get the

resolvent of D
(α,β)
x by setting

τ(λ) = αCD
1 [�]

αCD
1 [�] − βCN

2 [�]
= 1

1 − ρ(α,β)

F (λ)

= 1 − 1

1 − λ2g

ρ(α,β)

J 1
2 −g

(λ)

J
g− 1

2
(λ)

(4.23)

for λ not a zero of Jg− 1
2
(λ).

5. The trace of the resolvent

It follows from equation (4.20) that the resolvent of a general self-adjoint extension of Dx

can be expressed in terms of the resolvents of the two limiting cases, GD(λ) and GN(λ).
Moreover, since the eigenvalues of any extension grow linearly with n (see section 3), these
resolvents are Hilbert–Schmidt operators and their λ-derivatives are trace class.

So, let us consider the relation

G2(λ) = ∂λG(λ) = ∂λGD(λ) − τ ′(λ)[GD(λ) − GN(λ)] − τ(λ)[∂λGD(λ) − ∂λGN(λ)]

(5.1)

from which it follows that the difference GD(λ) − GN(λ) is a strongly analytic function of λ

(except at the zeros of τ ′(λ)) taking values in the trace class operators ideal.
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Since we have explicitly constructed GD(λ) and GN(λ) in the previous section (see
equations (4.9), (4.10), (4.14) and (4.15)), we straightforwardly get (see appendix A for the
details)

Tr{∂λGD(λ)} =
∫ 1

0
Tr{∂λGD(x, x; λ)} dx

= ∂λ

{
Jg+ 1

2
(λ)

Jg− 1
2
(λ)

}
= 1 − 2g

λ

Jg+ 1
2
(λ)

Jg− 1
2
(λ)

+
J 2

g+ 1
2
(λ)

J 2
g− 1

2
(λ)

= 1 − g2

λ2
+

(
1

2λ
+

J ′
g− 1

2
(λ)

Jg− 1
2
(λ)

)2

(5.2)

where, in the last step, we have taken into account that

Jν±1(z) = ν

z
Jν(z) ∓ J ′

ν(z). (5.3)

Similarly,

Tr{GD(λ) − GN(λ)} = 2g

λ
+

Jg+ 1
2
(λ)

Jg− 1
2
(λ)

+
J−g− 1

2
(λ)

J−g+ 1
2
(λ)

= −2g

λ
−

J ′
1
2 −g

(λ)

J 1
2 −g(λ)

+
J ′

g− 1
2
(λ)

Jg− 1
2
(λ)

. (5.4)

Moreover, since

∂λ Tr{GD(λ) − GN(λ)} = Tr{∂λGD(λ) − ∂λGN(λ)} (5.5)

we get

Tr{∂λGD(λ) − ∂λGN(λ)}

= −2g

λ2
− 2g

λ

[
Jg+ 1

2
(λ)

Jg− 1
2
(λ)

+
J−g− 1

2
(λ)

J−g+ 1
2
(λ)

]
+


 J 2

g+ 1
2
(λ)

J 2
g− 1

2
(λ)

−
J 2

−g− 1
2
(λ)

J 2
−g+ 1

2
(λ)




= 2g

λ2
+

(
1

2λ
+

J ′
1
2 −g

(λ)

J 1
2 −g(λ)

)2

−
(

1

2λ
+

J ′
g− 1

2
(λ)

Jg− 1
2
(λ)

)2

. (5.6)

Finally, we can also write

Tr{G2(λ)} = Tr{∂λGD(λ)} − ∂λ[τ(λ) Tr{GD(λ) − GN(λ)}]. (5.7)

6. Asymptotic expansion for the trace of the resolvent

Using the Hankel asymptotic expansion for Bessel functions [32] (see appendix B), we get for
the first term on the right-hand side of equation (5.7)

Tr{∂λGD(λ)} ∼
∞∑

k=2

Ak(g, σ )

λk
= − g

λ2
+ iσ

g(g − 1)

λ3
− 3

2

g(g − 1)

λ4

+ iσ
(g − 3)(g − 1)g(g + 2)

2λ5
+ O

(
1

λ

)6

(6.1)
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where σ = 1 for Im(λ) > 0, and σ = −1 for Im(λ) < 0. The coefficients in this series
can be straightforwardly evaluated from equations (B.7) and (B.17). Note that Ak(g,−1) =
Ak(g, 1)∗, since A2k(g, 1) is real and A2k+1(g, 1) is pure imaginary.

Similarly, from equations (5.4), (5.6) and (B.20) we simply get

Tr{GD(λ) − GN(λ)} ∼ −2g

λ
(6.2)

and

Tr{∂λGD(λ) − ∂λGN(λ)} ∼ 2g

λ2
. (6.3)

On the other hand, taking into account equation (B.9), we have

τ(λ) ∼ 1 − 1

1 − exp
(
σ iπ
(

1
2 −g

))
λ2g

ρ(α,β)

∼




−∑∞
k=1

(
exp
(
σ iπ
(

1
2 −g

))
λ2g

ρ(α,β)

)k

for − 1
2 < g < 0

∑∞
k=0

(
ρ(α, β) exp

(−σ iπ
(

1
2 − g

))
λ−2g
)k

for 0 < g < 1
2

(6.4)

where σ = 1 (σ = −1) corresponds to Im(λ) > 0 (Im(λ) < 0). Note the appearance of
non-integer, g-dependent, powers of λ in this asymptotic expansion.

Similarly

τ ′(λ) ∼ −
(

1 − exp
(
σ iπ
(

1
2 − g

))
λ2g

ρ(α, β)

)−2
exp
(
σ iπ
(

1
2 − g

))
2gλ2g−1

ρ(α, β)

∼




− 2g

λ

∑∞
k=1 k

(
exp
(
σ iπ
(

1
2 −g

))
λ2g

ρ(α,β)

)k

for − 1
2 < g < 0

− 2g

λ

∑∞
k=1 k
(
ρ(α, β) exp

(−σ iπ
(

1
2 − g

))
λ−2g
)k

for 0 < g < 1
2

(6.5)

which are the term by term derivatives of the corresponding asymptotic series in
equation (6.4).

Therefore, we have

∂λ[τ(λ) Tr{GD(λ) − GN(λ)}]

∼




2g
∑∞

k=1

(
exp
(
σ iπ
(

1
2 −g

))
ρ(α,β)

)k

(2gk − 1)λ2gk−2 for − 1
2 < g < 0

2g
∑∞

k=0

(
ρ(α, β) exp

(−σ iπ
(

1
2 − g

))k
(2gk + 1)λ−2gk−2 for 0 < g < 1

2 .

(6.6)

Note the g-dependent powers of λ appearing in these asymptotic expansions.

7. The ζ- and η-functions

The ζ -function for a general self-adjoint extension of Dx is defined, for Re(s) > 1, as [8]

ζ(s) = − 1

2π i

∮
C

λ1−s

s − 1
Tr{G2(λ)} dλ (7.1)

where the curve C encircles counterclockwise the spectrum of the operator, keeping to the left
of the origin. According to equation (5.7), we have

ζ(s) = ζD(s) +
1

2π i

∮
C

λ1−s

s − 1
∂λ[τ(λ) Tr{GD(λ) − GN(λ)}] dλ (7.2)

where ζD(s) is the ζ -function for the D-extension.
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Since the negative eigenvalues of the self-adjoint extension of Dx characterized by the pair
(α, β), D

(α,β)
x , are minus the positive eigenvalues corresponding to the extension D

(α,−β)
x (as

discussed in section 3), we define a partial ζ -function through a path of integration encircling
the positive eigenvalues only,

ζ (α,β)
+ (s) = 1

2π i

∫ i∞+0

−i∞+0

λ1−s

s − 1
Tr{G2(λ)} dλ

= ζD
+ (s) − 1

2π i

∫ i∞+0

−i∞+0

λ1−s

s − 1
∂λ[τ(λ) Tr{GD(λ) − GN(λ)}] dλ (7.3)

where ζD
+ (s) is the partial ζ -function for the D-extension.

We can also write

ζ (α,β)
+ (s) = 1

2π

∫ ∞

1
ei π

2 (1−s) µ1−s

s − 1
Tr
{
G2
(
ei π

2 µ
)}

dµ

+
1

2π

∫ ∞

1
exp
(
−i

π

2
(1 − s)

) µ1−s

s − 1
Tr
{
G2
(

exp
(
−i

π

2
µ
))}

dµ +
h1(s)

s − 1
(7.4)

where h1(s) is an entire function. Therefore, in order to determine the poles of ζ
(α,β)
+ (s), we

can subtract and add a partial sum of the asymptotic expansion obtained in the previous section
to Tr{G2(λ)} in the integrands on the right-hand side of equation (7.4).

In so doing, we get for the D-extension and for a real s > 1

ζD
+ (s) = 1

2π(s − 1)

∫ ∞

1
exp
(

i
π

2
(1 − s)

)
µ1−s

{
N∑

k=2

exp
(
−i

π

2
k
)

Ak(g, 1)µ−k

}
dµ

+
1

2π(s − 1)

∫ ∞

1
exp
(
−i

π

2
(1 − s)

)
µ1−s

{
N∑

k=2

exp
(

i
π

2
k
)

Ak(g, 1)∗µ−k

}
dµ

+
h2(s)

s−1
= 1

π(s−1)

N∑
k=2

1

s−(2−k)
Re
{
exp
(

i
π

2
(1−s−k)

)
Ak(g, 1)

}
+

h2(s)

s − 1

(7.5)

where h2(s) is an analytic function in the open half plane Re(s) > 1 − N .
Consequently, the meromorphic extension of ζD

+ (s) presents a simple pole at s = 1 (see
equation (7.3)), with a residue given by (see equation (5.2))

Res ζD
+ (s)|s=1 = 1

2π i

∫ i∞+0

−i∞+0
λ0∂λ

{
Jg+ 1

2
(λ)

Jg− 1
2
(λ)

}
dλ = 1

π
(7.6)

where we have used equations (B.10) and (B.11).
It also presents simple poles at s = 2 − k, for k = 2, 3, . . . , with residues given by

Res ζD
+ (s)|s=2−k = Re{iAk(g, 1)}

(k − 1)π
(7.7)

with the coefficients Ak(g, 1) given in equation (6.1). In particular, note that these residues
vanish for even k.

For a general self-adjoint extension D
(α,β)
x , we must also consider the singularities coming

from the asymptotic expansion of ∂λ[τ(λ) Tr{GD(λ) − GN(λ)}] in equation (6.6). For
definiteness, let us consider in the following the case − 1

2 < g < 0 (the case 0 < g < 1
2

leads to similar results).
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From equation (7.3), and taking into account equation (7.4), for real s > 1 we can write

ζ (α,β)
+ (s) − ζD

+ (s) = h3(s)

s − 1
− g

π(s − 1)

∫ ∞

1
exp
(

i
π

2
(−s − 1)

)
µ1−s

×



N∑
k=1

(
exp
(
iπ

2

)
ρ(α, β)

)k

(2gk − 1)µ2gk−2


 dµ − g

π(s − 1)

×
∫ ∞

1
exp
(
−i

π

2
(−s − 1)

)
µ1−s




N∑
k=1

(
exp
(− iπ

2

)
ρ(α, β)

)k

(2gk − 1)µ2gk−2


 dµ

= −2g

π(s − 1)

N∑
k=1

(
2gk − 1

s − 2gk

)
Re

{
exp
(
iπ

2 (k − s − 1)
)

ρ(α, β)k

}
+

h3(s)

s − 1
(7.8)

where h3(s) is holomorphic for Re(s) > 2g(N + 1).
Therefore,

(
ζ

(α,β)
+ (s)−ζD

+ (s)
)

has a meromorphic extension which presents a simple pole
at s = 1, with a vanishing residue,

Res
(
ζ (α,β)

+ (s) − ζD
+ (s)
)∣∣

s=1 = − 1

2π i

∫ i∞+0

−i∞+0
λ0∂λ[τ(λ) Tr{GD(λ) − GN(λ)}] dλ = 0

(7.9)

as follows from equations (6.2) and (6.4).
Note also the presence of simple poles located at negative non-integer, g-dependent

positions, s = 2gk = −2|g|k, for k = 1, 2, . . . , with residues which also depend on the
self-adjoint extension, given by

Res
{
ζ (α,β)

+ (s) − ζD
+ (s)
}∣∣

s=2gk
= −2g

πρ(α, β)k
sin

[(
1

2
− g

)
kπ

]
. (7.10)

Now, taking into account our comment after equation (3.14), we get for the complete
ζ -function

ζ (α,β)(s) = ζ (α,β)
+ (s) + e−iπsζ (α,−β)

+ (s). (7.11)

In particular, for the α = 0 extension we get

ζD(s) = (1 + e−iπs)ζD
+ (s) (7.12)

since the spectrum of D(0,1)
x is symmetric with respect to the origin (see equation (3.8)). Then

one concludes that ζD(s) has vanishing residues. Indeed, from equation (7.7), the residue at
s = 2 − k vanishes for k even, and for k = 2l + 1, with l = 0, 1, 2, . . . , we have

Res{ζD(s)}|s=1−2l = (1 + e−iπ(1−2l)) Res
{
ζD

+ (s)
}∣∣

s=1−2l
= 0. (7.13)

On the other hand, for a general self-adjoint extension, the singularities of ζ (α,β)(s) are
simple poles located at s = 2gk < 0, for k = 1, 2, . . . , with residues

Res{ζ (α,β)(s) − ζD(s)}|s=2gk

= Res
{[

ζ (α,β)
+ (s) − ζD

+ (s)
]

+ e−iπs
[
ζ (α,−β)

+ (s) − ζD
+ (s)
]}∣∣

s=2gk

= (−1)k
2g

π

sin(2gkπ)

ρ(α, β)k
exp

(
iπ

(
1

2
− g

)
k

)
(7.14)

where we have used ρ(α,−β) = −ρ(α, β), from equation (3.12).
Similarly, for the spectral asymmetry [31] we have

η(α,β)(s) = ζ (α,β)
+ (s) − ζ (α,−β)

+ (s). (7.15)
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In particular, η(0,1)(s) ≡ 0 ≡ η(1,0)(s), since these spectra are symmetric (see equations (3.8)
and (3.15)).

For a general self-adjoint extension and − 1
2 < g < 0, η(α,β)(s) presents simple poles at

s = 2gk, for k = 1, 2, . . . , with residues given by

Res{η(α,β)(s)}|s=2gk = [(−1)k − 1]
2g

π

sin
[(

1
2 − g

)
kπ
]

ρ(α, β)k
(7.16)

which vanish for even k.
For the case 0 < g < 1

2 , an entirely similar calculation shows that
(
ζ

(α,β)
+ (s)− ζD

+ (s)
)

has
a meromorphic extension which presents simple poles at negative non-integer, g-dependent
positions, s = −2gk, for k = 1, 2, . . . , with residues depending on the self-adjoint extension,
given by

Res
{
ζ (α,β)

+ (s) − ζD
+ (s)
}∣∣

s=−2gk
= −2g

π
ρ(α, β)k sin

[(
1

2
− g

)
kπ

]
. (7.17)

From this result, one can immediately get the residues for the η- and ζ -functions. One gets
the same expressions as on the right-hand sides of equations (7.14) and (7.16), with ρ(α, β)

and exp
(
iπ
(

1
2 − g

)
k
)

replaced by their inverses.

Let us remark that when neither α nor β is 0, the residue of ζ
(α,β)
+ at s = −2|g|k is a

constant times (β/α)k sign(g). This is consistent with the behaviour of Dx under the scaling
isometry T u(x) = c1/2u(cx) taking L2(0, 1) → L2(0, 1/c). The extension D

(α,β)
x is unitarily

equivalent to the operator (1/c)Ḋ
(α′,β ′)
x similarly defined on L2(0, 1/c), with α′ = c−gα and

β ′ = cgβ:

T D(α,β)
x = 1

c
Ḋ(α′,β ′)

x T . (7.18)

Note that only for the extensions with α = 0 or β = 0 the boundary condition at the singular
point x = 0, equation (2.12), is left invariant by this scaling.

Therefore, we have for the partial ζ -function of the scaled problem

ζ̇ (α′,β ′)
+ (s) = c−sζ (α,β)

+ (s) (7.19)

and for the residues

Res
{
ζ̇ (α′,β ′)

+ (s)
}∣∣

s=−2|g|k = c2|g|k Res
{
ζ (α,β)

+ (s)
}∣∣

s=−2|g|k. (7.20)

The factor c2|g|k exactly cancels the effect the change in the boundary condition at the
singularity has on ρ(α, β),

ρ(α, β)k sign(g) = c−2|g|kρ(α′, β ′)k sign(g). (7.21)

Thus the difference between the intervals (0, 1) and (0, 1/c) has no effect on the structure of
these residues, which presumably are determined locally in a neighbourhood of x = 0.

Finally, let us point out that these anomalous poles are not present in the g = 0 case.
Indeed, in this case τ(λ) in equation (4.23) has a constant asymptotic expansion, while
Tr{GD(λ) − GN(λ)} ∼ 0 (see equation (6.2)). Moreover, the residues of the poles coming
from ζD

+ (s) are all zero (see equations (7.7) and (6.1)), except for the one at s = 1, with
residue 1/π (see equation (7.6)).

Consequently, the presence of poles in the spectral functions located at non-integer
positions is a consequence of the singular behaviour of the zeroth-order term in Dx near
the origin, together with a boundary condition which is not invariant under scaling.
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8. Comments on the second-order case

In this section we briefly describe similar results one can obtain for the self-adjoint extensions
of the second-order differential operator

�x = −∂2
x +

g(g − 1)

x2
(8.1)

with − 1
2 < g < 1

2 , defined on a set of functions satisfying φ(1) = 0 and behaving as

φ(x) = C1x
g + C2x

1−g + O(x3/2) (8.2)

where the coefficients C1,2 are constrained as in equation (2.12).
It can be shown that the spectrum of the self-adjoint extension �

(α,β)
x is determined by a

relation similar to equation (3.13):

F(µ) := 1

µ
F(µ) = �(α, β) (8.3)

where the constant

�(α, β) :=
(

β

α

)
22g−1 �

(
1
2 + g
)

�
(

3
2 − g

) . (8.4)

Also in this case, α = 0 and β = 0 correspond to two scale invariant boundary conditions
at the singularity. For these two limiting extensions, it is easily seen from equations (4.4),
(4.11) and (4.16) that the entry G11(x, y;µ) in the resolvent of our first-order operator D

(α,β)
x

is µ times the corresponding resolvent of �
(α,β)
x at λ = µ2,

GD,N(x, y;µ2) = 1

µ
G

D,N
11 (x, y;µ). (8.5)

The resolvent for a general self-adjoint extension �
(α,β)
x is constructed as a convex linear

combination of GD(µ2) and GN(µ2) as in (4.20), with a coefficient

τ(µ) = 1

1 − �(α,β)

F(µ)

. (8.6)

Following the methods employed for the first-order case, one can show that the ζ -
function associated with �

(α,β)
x also displays anomalous poles located at s = −( 1

2 − g
)
k,

with k = 1, 2, . . . , which implies the presence of anomalous powers t (
1
2 −g)k in the heat

trace small-t asymptotic expansion. The residues at these poles, and the corresponding heat
trace coefficients are similarly evaluated. More details on this calculation will be reported
elsewhere.

Note added in Proof. It has come belatedly to our attention that the article by Edith A Mooers, 1999 Heat kernel
asymptotics on manifolds with conic singularities, J. Anal. Math. 78 1–36, gives the first ‘unusual’ term in the
expansion of the Laplacian on the half line with a domain which is not scaling invariant. That article also gives
a construction which in principle would give the complete expansion in the case of a manifold with isolated conic
singularities, for an arbitrary self-adjoint realization of the Laplacian. For the case considered here, by contrast, the
present results are simpler and more complete, as they treat the first-order case and the eta invariant, and give more
explicit coefficients.
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Appendix A. Evaluation of the traces

In this appendix, we briefly describe the evaluation of the traces appearing in section 5.
We need to compute

Tr{GD(λ) − GN(λ)} =
∫ 1

0
[Tr{GD(x, x; λ)} − Tr{GN(x, x; λ)}] dx. (A.1)

Let us first consider the contribution of GN(λ) to this integral. From equations (4.14) and
(4.15) we get for the matrix trace of GN(λ) on the diagonal

Tr{GN(x, x; λ)} = −πxλ sec(gπ)

2J 1
2 −g(λ)

{
J− 1

2 −g(xλ)2J− 1
2 +g(λ)

+ J 1
2 −g(xλ)

[
J 1

2 −g(xλ)J− 1
2 +g(λ) − J 1

2 −g(λ)J− 1
2 +g(xλ)

]
+ J− 1

2 −g(xλ)J 1
2 −g(λ)J 1

2 +g(xλ)
}

(A.2)

an integrable expression behaving as

Tr{GN(x, x; λ)} = x−2g


−

 4gπ sec(gπ)Jg− 1

2
(λ)

λ2g�
(

1
2 − g

)2
J 1

2 −g(λ)


 + O(x)


 + O(x) (A.3)

near the origin.
Therefore, it is sufficient to know the primitives [33]∫

xJ 2
ν (λx) dx = x2

2
{Jν(xλ)2 − Jν−1(xλ)Jν+1(xλ)} (A.4)

and∫
xJν(λx)J−ν(λx) dx = −ν2

λ2�(1 − ν)�(1 + ν)
[1F2({−1/2}, {−ν, ν},−x2λ2) − 1] (A.5)

where

1F2({−1/2}, {−ν, ν},−x2λ2) = −πx2λ2 cosec(πν)

4ν
{J−1−ν(xλ)J−1+ν(xλ)

+ 2J−ν(xλ)Jν(xλ) + J1−ν(xλ)J1+ν(xλ)}. (A.6)

These primitives, together with the relation

Jν−1(z) + Jν+1(z) = 2ν

z
Jν(z) (A.7)

necessary to simplify the intermediate results, eventually lead to

IN(λ) :=
∫ 1

0
Tr{GN(x, x; λ)} dx = −2g

λ
−

J−g− 1
2
(λ)

J−g+ 1
2
(λ)

. (A.8)

Similarly, for the matrix trace of GD(λ) on the diagonal we have

Tr{GD(x, x; λ)} = πxλ sec(gπ)

2J− 1
2 +g(λ)

{−J 1
2 −g(xλ)J− 1

2 +g(λ)J− 1
2 +g(xλ)

+ J− 1
2 −g(xλ)J− 1

2 +g(λ)J 1
2 +g(xλ) + J 1

2 −g(λ)
(
J− 1

2 +g(xλ)2 + J 1
2 +g(xλ)2)} (A.9)
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which behaves as

Tr{GD(x, x; λ)} = x2g




πλ2g sec(gπ)J 1
2 −g(λ)

4g�
(

1
2 + g
)2

Jg− 1
2
(λ)

+ O(x)


 + O(x). (A.10)

The same argument as before leads to

ID(λ) :=
∫ 1

0
Tr{GD(x, x; λ)} dx =

Jg+ 1
2
(λ)

Jg− 1
2
(λ)

. (A.11)

Therefore, we get

Tr{GD(λ) − GN(λ)} = ID(λ) − IN(λ) (A.12)

as in equation (5.4).
On the other hand, we have

∂λTr {GD(x, x; λ)} = O(x) + x2g




21−2gλ−1+2g
[
1 + gπJ 1

2 −g(λ)Jg− 1
2
(λ) sec(gπ)

]
Jg− 1

2
(λ)2�( 1

2 + g)
2 + O(x)


 .

(A.13)

Then,

Tr{∂λGD(λ)} =
∫ 1

0
∂λ Tr{GD(x, x; λ)} dx = ∂λID(λ) (A.14)

in agreement with equation (5.2).

Appendix B. The Hankel expansion

In order to develop an asymptotic expansion for the trace of the resolvent, we use the Hankel
asymptotic expansion for the Bessel functions: for |z| → ∞, with ν fixed and |arg z| < π , we
have [32]

Jν(z) ∼
(

2

πz

) 1
2

{P(ν, z) cos χ(ν, z) − Q(ν, z) sin χ(ν, z)} (B.1)

where

χ(ν, z) = z −
(

ν

2
+

1

4

)
π (B.2)

P(ν, z) ∼
∞∑

k=0

(−1)k�
(

1
2 + ν + 2k

)
(2k)!�

(
1
2 + ν − 2k

) 1

(2z)2k
(B.3)

and

Q(ν, z) ∼
∞∑

k=0

(−1)k�
(

1
2 + ν + 2k + 1

)
(2k + 1)!�

(
1
2 + ν − 2k − 1

) 1

(2z)2k+1
. (B.4)

Moreover, P(−ν, z) = P(ν, z) and Q(−ν, z) = Q(ν, z), since these functions depend
only on ν2 (see [32], p 364).

Therefore, for z in the upper open half plane,

Jν(z) ∼ e−iz eiπ( ν
2 + 1

4 )

√
2πz

{P(ν, z) − iQ(ν, z)} (B.5)
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while for z in the lower open half plane we get

Jν(z) ∼ eiz e−iπ( ν
2 + 1

4 )

√
2πz

{P(ν, z) + iQ(ν, z)}. (B.6)

In these equations,

P(ν, z) ± iQ(ν, z) ∼
∞∑

k=0

〈ν, k〉
(±i

2z

)k

(B.7)

where the coefficients

〈ν, k〉 = �
(

1
2 + ν + k

)
k!�
(

1
2 + ν − k

) = 〈−ν, k〉 (B.8)

are the Hankel symbols.
In particular, the quotient

J 1
2 −g(λ)

Jg− 1
2
(λ)

∼ e±iπ( 1
2 −g)

P
(

1
2 − g, λ

)∓ iQ
(

1
2 − g, λ

)
P
(
g − 1

2 , λ
)∓ iQ(g − 1

2 , λ)
= e±iπ( 1

2 −g) (B.9)

for Im(λ) > 0 and Im(λ) < 0, respectively, since P(ν, z) and Q(ν, z) are even in ν.
For the quotient of two Bessel functions we have

Jν1(z)

Jν2(z)
∼ e±i π

2 (ν1−ν2)
P (ν1, z) ∓ iQ(ν1, z)

P (ν2, z) ∓ iQ(ν2, z)
(B.10)

where the upper sign is valid for Im(λ) > 0, and the lower one for Im(λ) < 0. The coefficients
of these asymptotic expansions can be easily obtained, to any order, from equation (B.7),

P(ν1, z) ± iQ(ν1, z)

P (ν2, z) ± iQ(ν2, z)
∼ 1 + (〈ν1, 1〉 − 〈ν2, 1〉)

(±i

2z

)
+ O

(
1

z2

)
. (B.11)

Similarly, the derivative of the Bessel function has the following asymptotic expansion
[32] for |arg z| < π :

J ′
ν(z) ∼ − 2√

2πz
{R(ν, z) sin χ(ν, z) + S(ν, z) cos χ(ν, z)} (B.12)

where

R(ν, z) ∼
∞∑

k=0

(−1)k
ν2 + (2k)2 − 1/4

ν2 − (2k − 1/2)2

〈ν, 2k〉
(2z)2k

(B.13)

and

S(ν, z) ∼
∞∑

k=0

(−1)k
ν2 + (2k + 1)2 − 1/4

ν2 − (2k + 1 − 1/2)2

〈ν, 2k + 1〉
(2z)2k+1 . (B.14)

Then,

J ′
ν(z) ∼ ∓i

e∓iz e±iπ( ν
2 + 1

4 )

√
2πz

{R(ν, z) ∓ iS(ν, z)} (B.15)

where the upper sign is valid for Im(λ) > 0, and the lower one for Im(λ) < 0. We have also

R(ν, z) ± iS(ν, z) = P(ν, z) ± iQ(ν, z) + T±(ν, z) (B.16)

with

T±(ν, z) ∼
∞∑

k=1

(2k − 1)〈ν, k − 1〉
(±i

2z

)k

. (B.17)
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Therefore, we get

J ′
ν(z)

Jν(z)
∼ ∓i

{
1 +

T∓(ν, z)

P (ν, z) ∓ iQ(ν, z)

}
(B.18)

where the upper sign is valid for Im(λ) > 0, and the lower one for Im(λ) < 0. The coefficients
of the asymptotic expansion in the right-hand side of equation (B.18) can be easily obtained
from equations (B.7) and (B.17),

T±(ν, z)

P (ν, z) ± iQ(ν, z)
=
(±i

2z

)
+ O

(
1

z2

)
. (B.19)

Finally, since the Hankel symbols are even in ν (see equation (B.8)), from equations (B.7),
(B.17) and (B.18) we have

J ′
ν(z)

Jν(z)
∼ J ′

−ν(z)

J−ν(z)
. (B.20)
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