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a b s t r a c t

This paper presents a simple and general variational approach for the study of the free vibration behav-
iour of polygonal isotropic plates with variable thickness. The Reissner–Mindlin plate theory is used to
take into account the effects of shear deformation and rotary inertia in the analysis. Moreover, this theory
allows obtaining greater accuracy of frequency coefficients corresponding to vibration higher modes,
even for the thin plates.

The governing eigenvalue equation is obtained employing the Ritz method. The plate geometry is
approximated by using non-orthogonal triangular co-ordinates, while sets of independent polynomials,
expressed in these co-ordinates, are employed to approximate the displacement and rotation fields.
The developed algorithm allows obtaining approximated analytical solutions for plates with different
aspect ratios, thickness variation and boundary conditions, including edges elastically restrained by both
translational and rotational springs. Therefore, a unified program has been easily implemented. Conver-
gence and comparison analyzes are carried out to verify the reliability and accuracy of the numerical
solutions. Finally, sets of parametric studies are performed and the results are given in graphical and tab-
ular form.

Published by Elsevier Ltd.
1. Introduction

Polygonal tapered plates are commonly used in aerospace, civil
and ocean engineering systems, electronic and optical equipment,
mechanical elements, etc. In many cases, the design requirements
include natural frequency constraints, so an accurate determina-
tion of the dynamical response is necessary as well as a realistic
consideration of the involved geometric and mechanic parameters.

The references on this topic are very limited, especially when
the boundary conditions are not the classical ones. Most of these
publications deal with thin plates, as shown in Leissa’s series of re-
views [1–8]. However, the Classical Plate Theory which ignores the
effect of transverse shear deformation becomes inadequate for the
analysis of thick plates, resulting in an over-estimation of the free
vibration frequencies. The First Order Theory based on Reissner [9]
and Mindlin [10] assumes that the transverse shear strain distribu-
tion is constant through the plate thickness. For this reason a shear
correction factor k, is needed to rectify the unrealistic variation of
the shear strain/stress through the thickness and which ultimately
define its corresponding shear strain energy.
Ltd.

(M.V. Quintana), lnallim@
As far as the literature about vibration of thick plates is con-
cerned, Liew et al. [11] presented a very interesting review of the
existing literature. Attention is mainly devoted to studies based
on First Order Theory. In general, analytical studies on thick plates
with shape different from rectangular are rather limited. This may
be due to the difficulty in forming a simple and adequate deflection
function which can be applied to the entire plate domain and sat-
isfy the boundary conditions. To overcome this difficulty different
techniques were developed and perfected. For instance, Karuna-
sena et al. [12] used the Rayleigh–Ritz method based on two-
dimensional polynomials and a set of basic functions that satisfy
various boundary conditions to analyze the free vibration of thick
cantilevered triangular plates based on the Mindlin shear deforma-
tion theory. Later on, Karunasena and Kitipornchai [13] extended
the previous method to plate with any classical boundary condi-
tions. Wu and Liu [14] applied the differential cubature method
to solve the free vibration problems of arbitrary shaped thick
plates. Zhong [15] used the triangular differential quadrature
method to analyze the free flexural vibration of isosceles triangular
Mindlin plates.

Often, the restraint along the boundaries of a real system cannot
be actually represented by classical edge conditions such as simply
supported, clamped and free. Therefore, it is of great importance to
study the vibration characteristics of elastically restrained variable
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thickness plates. Compared to the large amount of researches on
vibrating plates with classical boundary conditions the published
works on thick plates with elastically restrained edge are limited
to rectangular plate [16–19].

However, the more general problem of free vibration of
polygonal tapered thick plates with edge elastically restrained
against rotation and translation has received less attention, so
the aim of this paper is to provide an approximated analytical
solution to this problem based on first order shear deformation
theory.

In a previous paper Nallim et al. [20], developed a general algo-
rithm based on the Ritz method in conjunction with non-orthogo-
nal triangular co-ordinates to express the geometry of
quadrilateral plates in a simple form. That methodology was lim-
ited to the analysis of thin plates, since the Kirchhoff assumptions
were used. The present work has been undertaken to extend and to
generalize the mentioned algorithm to embrace thick plate includ-
ing the effects of the shear deformation, the rotary inertia and no
classical boundary conditions. The developed methodology is
based on the Ritz method, where the transverse deflection and
the rotations are approximated by sets of simple polynomials gen-
erated automatically.

Finally, it is clear that the use of triangular co-ordinates to
approximate the geometry of the plate, makes the formulation ob-
tained is limited to plates of trapezoidal shape (symmetrical or not
symmetrical), allowing to obtain, as a special case, triangular
plates. At the same time, analysis of plates with linearly varying
thickness is included in this work. Other types of thickness varia-
tion could be considered without difficulty by means of the ade-
quate incorporation of the functions that define these variations.
Also, plates with discontinuous thickness can be treated simply
by dividing the integration domain according of the discontinuities
in the rigidities (see for instance Ref. [21]).
2. Analysis

The analyzed plate is shown in Fig. 1. Take into account the
hypotheses of the first order shear deformation plate theory
[9,10] the maximum kinetic energy of a freely vibrating plate
expressed in a rectangular cartesian co-ordinate system is given
by:

Tmax ¼
1
2
qx2

Z
A

hðxÞ½W2 þ h2ðxÞ
12
ð/2

x þ /2
yÞ�dA; ð1Þ

where q is the mass density of the plate material, h(x) is the
non-uniform plate thickness, x is the radian frequency, W(x, y)
is the transverse deflection amplitude, /y(x, y) and /x(x, y) are
the rotation about the x-axis and y-axis, respectively, and the
integration is carried out over the entire plate domain A. In the
present study the plate thickness varies in linear fashion as:

hðxÞ ¼ hð1Þf ðxÞ; ð2Þ

f ðxÞ ¼ 1þ ch
x
l
� cl

� �h i
; ð3Þ

where h(1) is the value of h referred to edge 1, h(2) = h(1)

[1 + ch(1 � cl)] is the value of h referred to edge 2, cl ¼ c=l and ch

is the taper parameter (see Fig. 1).
The maximum strain energy of the mechanical system is given

by:

Umax ¼ UP;max þ UR;max þ UT;max; ð4Þ

where UP,max is the maximum strain energy due to plate bending,
which in rectangular co-ordinates is given by:
UP;max ¼
1
2
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where k is the shear correction factor, D(x) is the flexural rigidity
and it is given by DðxÞ ¼ Dð1Þf 3ðxÞ; Dð1Þ ¼ Eðhð1ÞÞ3

.
12ð1� l2Þ, in

which E is the Young’s modulus, l is the Poisson’s ratio and G is
the shear modulus.

The maximum strain energies stored in the translational and
rotational springs at the plate edges are, respectively, given by:

UT;max ¼
1
2

I
@A

cTðsÞW2ds ¼ 1
2

X4

i¼1

Z li

0
cTi

W2ds; ð6Þ

UR;max ¼
1
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I
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cRðsÞ/2
nds ¼ 1

2

X4

i¼1

Z li

0
cRi

/2
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where /n denote the rotation about the corresponding co-ordinate
and li is the length of side oAi (i = 1, . . ., 4).

2.1. The non-orthogonal right triangular co-ordinates

Let us introduce non-orthogonal right triangular co-ordinates u,
v. They are related to the x, y co-ordinates by

u ¼ x
l
; v ¼ y

x
cot a1; ð8Þ

where tana1 is the slope of the upper side plate (see Fig. 1). After
this co-ordinate transformation the two dimensional plate domain
A is transformed into ~A ¼ fðu;vÞ; cl 6 u 6 1; tan a2 cota1 6 v 6 1g.

Applying the chain rule of differentiation, the first derivative of
any function f = f(x, y) in the two co-ordinate systems are related
by

@f
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" #
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Substituting dxdy ¼ ul2 tan a1 dudv into Eq. (1) the maximum
kinetic energy becomes

Tmax¼
qhð1Þl4 tana1

2
x2
Z 1

cl

Z 1

v0

f ðuÞuW2þ f 3ðuÞ
12

uh2
l /2

x þ/2
y
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dudv;

ð10Þ

where v0 = tan a2 cot a1, W ¼Wðu;vÞ ¼ Wðx;yÞ
l , f(u) = [1 + ch(u � cl)]

and hl ¼ hð1Þ

l .
Substituting Eq. (9) and dxdy ¼ ul2 tan a1 dudv into Eq. (5) the

maximum strain energy expression becomes
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where c ¼ kGhð1Þ l2

Dð1Þ
¼ 6kð1�lÞ

h2
l

.
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Fig. 1. Geometry of the trapezoidal plate.
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Substituting the change of variables (9) into Eq. (6) the maxi-
mum strain energy stored in the translational springs at the plate
edges becomes
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Dð1Þ tan a1
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u¼cl

dv þ T2

Z 1

v0

W2
			
u¼1

dv
�

þ T3

tan a1 cos a2

Z 1

cl

W2
			
v¼v0

duþ T4

sin a1

Z 1

cl

W2
			
v¼1

du

!
;

ð12Þ

where Ti ¼
cTi

l3

Dð1Þ
.

Finally, using the mentioned change of variables in Eq. (7) the
maximum strain energy stored in the rotational springs at the plate
edges becomes
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where Ri ¼
cRi

l

Dð1Þ
.

2.2. Trial functions

The plate transverse deflections W(u, v) and the rotations
/y(u, v) and /x(u, v) can be represented by means of simple polyno-
mials as

Wðu;vÞ ¼
XM
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where the cðWÞij , cð/xÞ
ij and c

ð/yÞ
ij are the unknown coefficients to be

determined by the application of the Ritz method. It is sufficient
that the trial functions satisfy the geometric boundary conditions
since the natural boundary conditions will be exactly satisfied as
the number of functions approaches infinity [22]. In consequence,

the first members of the sets of polynomials fpðuÞðWÞi g, fqðvÞ
ðWÞ
j g,

fpðuÞð/xÞ
i g, fqðvÞð/xÞ

j g, fpðuÞð/yÞ
i g and fqðvÞð/yÞ

j g are obtained as the
simplest polynomials that satisfy all the geometric boundary
conditions.

The polynomials of higher order are generated using the follow-
ing simple procedure, i.e.

pðuÞðWÞi ¼ pðuÞðWÞ1 ui�1; i ¼ 2; . . . ;M;

pðuÞð/xÞ
i ¼ pðuÞð/xÞ

1 ui�1; i ¼ 2; . . . ;M;

pðuÞð/yÞ
i ¼ pðuÞð/yÞ

1 ui�1; i ¼ 2; . . . ;M;

The polynomial sets along the v direction are generated by using the
same procedure.

Let us introduce the terminology to be used throughout the
remainder of the paper for describing the boundary conditions of
the polygonal plates considered. The symbolism CSFE, for example,
identifies a polygonal plate with edges: (1) clamped (2) simply
supported (3) free and (4) elastically restrained (see Fig. 1). In
the particular case when the plate has a triangular shape, the edge
1 disappears.



Table 1
Convergence study of the first four values of the frequency parameters

X=p2 ¼ x=p2l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
for FCF triangular plates (tana1 ¼ 0:5, tan a2 ¼ 0; cl ¼ 0)

with uniform thickness (ch = 0) and for two different thickness ratios hl ¼ 0:05; 0:1.

hl M � N X1/p2 X2/p2 X3/p2 X4/p2

0.05 5 � 5 2.200 6.657 10.867 15.673
6 � 6 2.192 5.888 10.730 14.319
7 � 7 2.184 5.867 10.676 11.609
8 � 8 2.181 5.791 10.663 11.503
9 � 9 2.180 5.782 10.636 11.193
10 � 10 2.180 5.778 10.629 11.178
FEM 2.176 5.757 10.544 11.185

0.1 5 � 5 2.098 5.702 9.104 12.552
6 � 6 2.093 5.245 9.005 11.135
7 � 7 2.088 5.223 8.979 9.806
8 � 8 2.087 5.188 8.971 9.703
9 � 9 2.086 5.183 8.965 9.575
10 � 10 2.086 5.182 8.962 9.565
FEM 2.119 5.456 9.461 10.099
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In the present paper, plates having a variety of boundary condi-
tions are considered and the starting trial functions used are given
in Appendix A.

3. The Ritz method

The Ritz method require the minimization of the following en-
ergy functional

P ¼ Umax � Tmax; ð17Þ

where Tmax and Umax are given by the expressions (10)–(13),
respectively.

Substituting Eqs. (14)–(16) into Eq. (17) and minimizing with
respect to the unknown coefficients cðWÞij , cð/xÞ

ij and c
ð/yÞ
ij by means

of the necessary conditions
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the following governing eigenvalue equation is obtained:

ð½K� �X2½M�Þf�cg ¼ f0g; ð19Þ

where X ¼ xl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
is the non-dimensional frequency

parameter, [K] is the stiffness matrix of the plate, [M] is the mass
matrix of the plate and f�cg is the column matrix of the unknown
constants. The stiffness and the mass matrices are, respectively, gi-
ven by
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where:
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4. Numerical results

In order to establish the accuracy and applicability of the de-
scribed approach, numerical results were computed for a number



Table 2
Comparison study of the values of the frequency parameter X=p2 ¼ x=p2 l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
for triangular plates ðcl ¼ 0; tan a2 ¼ 0; ch ¼ 0Þ with different boundary conditions.

Boundary conditions tan a1 hl X1/p2 X2/p2 X3/p2 X4/p2

CCC 1 0.001 Present 9.504 16.033 19.788 24.955
Karunasena and Kitipornchai [13] 9.503 15.988 19.741 24.655

2 0.001 Present 5.416 8.386 11.639 12.478
Karunasena and Kitipornchai [13] 5.415 8.355 11.518 12.357

SSS 1 0.001 Present 5.000 10.012 13.025 17.036
Karunasena and Kitipornchai [13] 5.000 9.999 13.000 17.005

2 0.001 Present 2.813 5.064 7.760 8.374
Karunasena and Kitipornchai [13] 2.813 5.054 7.569 8.241

FSC 0.5 0.001 Present 9.217 18.284 26.703 30.564
Karunasena and Kitipornchai [13] 9.214 18.156 26.490 29.184

0.2 Present 5.286 8.402 11.243 11.810
Karunasena and Kitipornchai [13] 5.285 8.400 11.236 11.746

1 0.001 Present 3.220 7.379 9.575 13.600
Karunasena and Kitipornchai [13] 3.220 7.376 9.559 13.486

0.2 Present 2.428 4.813 5.562 7.527
Karunasena and Kitipornchai [13] 2.428 4.812 5.561 7.523

FCF 0.5 0.05 Present 2.180 5.783 10.636 11.193
Karunasena and Kitipornchai [13] 2.179 5.773 10.621 11.164

0.2 Present 1.840 3.972 6.073 6.890
Karunasena and Kitipornchai [13] 1.840 3.972 6.072 6.882

2 0.05 Present 0.167 0.715 1.218 1.740
Karunasena and Kitipornchai [13] 0.167 0.715 1.216 1.739

0.2 Present 0.164 0.670 1.000 1.530
Karunasena and Kitipornchai [13] 0.164 0.670 1.000 1.530

Table 4
The first four values of the frequency parameter k ¼ x=ð2pÞa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
for

trapezoidal plates (ch = 0) with two different boundary conditions.

tan a1 tan a2 hl cl k1 k2 k3 k4

Boundary conditions: FFFF
0.2 31.632 34.167 34.758 76.131
0.4 33.890 45.587 56.747 85.205

0.05 0 26.129 30.431 33.440 63.944
0.2 30.652 33.442 33.837 72.403
0.4 32.795 33.095 55.172 80.176

0.2 0 22.346 24.652 27.559 47.540
0.2 25.016 27.237 28.375 50.327
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of plate problems for which comparison values were available in
the literature. Additionally, new numerical results were generated
for several problems which also can serve as supplement database
for variable thickness thick plates. The frequency coefficients X
were computed varying the parameters involved, such as the taper
parameter, aspect ratio that defines the shape of the trapezoidal
plate as well as different boundary conditions. All calculations have
been performed taking the Poisson’s ratio l = 0.3 and the shear
correction factor k = 5/6.

The computations in this paper were performed by using Maple
(TM). The routine computes in exact way the definite integral over
the straight line from a to b. The eigenvalues are computed by the
QR method. The matrix is first balanced and transformed into
upper Hessenberg form. Then the eigenvalues are computed. If
the matrix is symmetric then the routine will handle the matrix
specially (using a faster algorithm) [23].
0.4 26.631 27.390 42.702 55.199
0.2 36.871 76.240 112.509 148.754
0.4 35.324 76.153 118.542 152.423

0.05 0 36.691 75.710 109.885 142.282
0.2 36.695 75.540 110.617 145.865
0.4 35.169 74.657 115.049 148.530

0.2 0 35.384 70.175 97.425 123.771
4.1. Validation and convergence studies

Simple polynomials were proposed in the previous section as
trial functions for analyzing the free vibration of thick plates using
Table 3
Comparison study of the values of the frequency parameter k ¼ x=ð2pÞa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
for uniform trapezoidal plates ðhl ¼ 0:001; ch ¼ 0Þ with different boundary
conditions.

tan a1 tan a2 cl k1 k2 k3 k4

Boundary conditions: FCFF
Nallim et. al. [20] 1.07 4.64 4.65 11.12
Nallim et. al. [20] 0.82 3.53 3.88 9.18
Nallim et. al. [20] 0.70 2.65 3.67 7.30

Boundary conditions: CFCC
Nallim et. al. [20] 6.54 13.80 17.36 24.21

0.2 Present 6.54 13.80 17.37 24.25
Nallim et. al. [20] 6.54 13.80 17.35 24.18
Nallim et. al. [20] 9.26 20.23 28.71 37.32

0.2 Present 9.29 20.23 29.28 37.39
Nallim et. al. [20] 9.29 20.23 29.41 37.71
the Ritz method. In order to establish the accuracy of the present
method and the trial functions proposed, comparison and conver-
gence studies are carried out in this section.
0.2 35.379 70.336 97.656 126.420
0.4 33.987 69.891 98.664 131.238

Boundary conditions: SFCF
0.2 8.318 32.168 36.270 83.749
0.4 9.008 35.811 46.197 87.945

0.05 0 8.200 29.779 35.129 72.384
0.2 8.200 30.903 35.176 79.033
0.4 8.806 34.595 44.236 83.029

0.2 0 7.593 23.176 27.346 49.570
0.2 7.529 23.876 27.399 53.223
0.4 7.882 26.551 33.392 54.770
0.2 13.338 45.951 95.118 145.578
0.4 19.288 49.340 113.784 185.325

0.05 0 10.870 44.746 76.554 112.567
0.2 12.927 45.423 92.050 137.552
0.4 18.439 48.354 109.962 177.350

0.2 0 10.673 42.504 66.209 99.875
0.2 12.340 42.720 80.948 111.897
0.4 17.397 44.651 99.359 141.996
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The convergence studies have been undertaken for uniform
thickness FCF ðtan a1 ¼ 0:5; tan a2 ¼ 0Þ triangular plates for two
different thickness ratios hl ¼ 0:05; 0:1. Results of the first four

values of the frequency parameter X=p2 ¼ x=p2l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
are
λ

h
c

Fig. 3. Variation of frequency parameters k ¼ x=ð2pÞa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
with respect to the t

ðtan a1 ¼ 2; tan a2 ¼ �0:5; cl ¼ 0:2; hl ¼ 0:2Þ. The boundary conditions are SFFC.

λ

h
c

Fig. 2. Variation of frequency parameters k ¼ x=ð2pÞa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
with respect to the t

ðtan a1 ¼ 2; tan a2 ¼ �0:5; cl ¼ 0:2; hl ¼ 0:001Þ. The boundary conditions are SFFC.
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Fig. 4. Mode shapes and nodal patterns of a CSSF polygonal uniform
given in Table 1. It can be seen that eigenvalue converge mono-
tonically from above as the increase of the number of the terms
in the trial functions. The rate of convergence is faster for plates
with a higher thickness ratio. Besides, results obtained using a
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Fig. 5. Mode shapes and nodal patterns of a CSSF trapezoidal uniform plate with tana1 ¼ 1; tan a2 ¼ 0; cl ¼ 0:2; hl ¼ 0:2 and ch = 0.
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FEM package SAP 2000 advanced 9.0.3 [24] have been included
en Table 1. In this case, 100 thick plate elements have been
used. The agreement with FEM is good from an engineering
viewpoint.

The accuracy of the results obtained with the present method is
next demonstrated by comparing them with some selected values
published by other researchers. Table 2 depicts the first four values
of frequency parameter X/p2 for triangular plates subjected to four
types of combinations of edge conditions, uniform thickness
(ch = 0) and different thickness ratios. The comparison with the re-
sults of Karunasena and Kitipornchai [13] shows a very close
agreement.

The second set of results, available for comparison, corresponds
to the case of trapezoidal plate ðhl ¼ 0:001; ch ¼ 0Þ with different
combinations of classical edge conditions. The non-dimensional
frequency coefficients
Table 5
The first five values of the frequency parameter X ¼ xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
of an isosceles

triangular plate (h1 = � h2 = 15�, ch = 0) and edges 1–3 elastically restrained against
rotation (R = R1 = R2 = R3) and translation (T = T1 = T2 = T3) for thickness ratio hl = 0.1.

T R X1 X2 X3 X4 X5

1 0 81.142 138.823 192.326 201.481 269.797
1 84.315 141.451 194.531 203.690 271.575

10 100.085 155.445 206.559 216.032 281.386
50 115.392 170.387 219.853 230.269 292.478

100 119.280 174.379 223.467 234.254 295.539
1 124.184 179.523 228.152 239.499 299.539

100 0 26.694 37.164 41.731 55.201 68.119
1 26.896 37.639 45.770 56.289 76.793

10 27.510 38.707 55.660 59.233 88.253
50 27.821 39.124 60.577 61.016 90.991

100 27.878 39.196 60.819 62.074 91.526
1 27.942 39.275 61.087 63.286 92.136

50 0 19.726 27.636 29.824 44.482 59.569
1 19.812 28.384 35.507 45.669 69.788

10 20.030 29.930 48.215 48.899 79.829
50 20.127 30.481 50.368 54.827 83.005

100 20.144 30.573 50.630 56.118 83.626
1 20.163 30.672 50.921 57.592 84.336

10 0 9.323 13.456 13.511 30.683 51.559
1 9.331 14.664 23.768 32.367 63.538

10 9.342 16.579 36.810 41.017 72.673
50 9.346 17.147 38.768 49.141 76.341

100 9.346 17.236 39.117 50.693 77.057
1 9.347 17.332 39.504 52.452 77.877
k ¼ xl2

2p
ðtana1 � tan a2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
¼ xa2

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
;

computed with the present approach are tabulated in Table 3. The
comparison with those of Ref. [20] shows an excellent agreement.
This comparison also authenticates the validity of the present
method for thin trapezoidal plates.
4.2. Numerical results and discussion

In this section, numerical results of frequency parameters are
obtained for a range of trapezoidal and triangular plates and for
different combination of edge support conditions. A great number
of problems were solved and since the number of cases is extre-
mely large, results are presented for only a few representative
cases.
Table 6
The first five values of the frequency parameter X ¼ xl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
of an isosceles

triangular plate (h1 = � h2 = 15�, ch = 0) and edges 1–3 elastically restrained against
rotation (R = R1 = R2 = R3) and translation (T = T1 = T2 = T3) for thickness ratio hl = 0.05.

T R X1 X2 X3 X4 X5

1 0 91.701 166.692 241.028 256.057 359.283
1 95.726 170.576 244.575 259.829 362.620

10 117.711 193.693 266.644 283.722 384.300
50 143.427 224.669 298.472 319.690 418.483

100 150.937 234.528 309.055 332.144 430.659
1 161.152 248.560 324.425 350.792 449.110

100 0 26.907 37.741 42.975 56.982 74.473
1 27.112 38.212 47.103 58.111 83.455

10 27.744 39.316 57.846 61.320 94.792
50 28.068 39.768 62.869 64.181 97.032

100 28.128 39.847 63.154 65.492 99.014
1 28.195 39.935 63.473 67.023 99.841

50 0 19.815 27.984 30.649 45.757 65.760
1 19.902 28.731 36.545 47.004 76.365

10 20.124 30.322 50.341 50.544 86.262
50 20.224 30.904 52.230 58.075 90.277

100 20.241 31.002 52.538 59.651 91.091
1 20.260 31.109 52.883 61.482 92.035

10 0 9.335 13.617 13.804 31.662 57.712
1 9.343 14.774 24.624 33.447 70.110

10 9.354 16.730 38.303 43.210 79.156
50 9.358 17.318 40.524 52.575 83.708

100 9.359 17.411 40.927 54.437 84.626
1 9.360 17.511 41.377 56.585 85.693
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Table 4 presents the first four values of the frequency parameter
k for trapezoidal plates with different values of the angles a1 and
a2. Two different boundary conditions were considered: FFFF and
SFCF and three values of the geometrical parameters hl = 0.001,
0.05, 0.2. Figs. 2 and 3 show the variation of the frequency param-
eters k with the taper parameter ch for the first four modes of free
vibration of polygonal plates ðtan a1 ¼ 2; tan a2 ¼ �0:5Þ. The
boundary conditions are SFFC and the geometrical parameter is
cl = 0.2. From these figures, it appears that the variation of the fre-
quency with the taper parameter is linear for the modes one to
four. It is interesting to point out that the curve slope increases
as the mode of vibration increases in both cases.

The first four mode shapes and nodal patterns, for a CSSF trap-
ezoidal uniform plate with different thickness ratios hl = 0.001, 0.2,
are showed in Figs. 4 and 5. It can be observed that the thickness
ratios have not a significant effect on the first four mode shapes.

Results that show the influence of the rotational and transla-
tional restrain parameters on the vibration behaviour of triangular
plates are presented in two ways. In tabular form, this can be use-
ful for benchmark comparison purposes and in graph form for a
better understanding of the effect of the elastic restraints. The first

five values of the frequency parameter X ¼ xl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhð1Þ=Dð1Þ

q
of an

isosceles triangular plate with three edges elastically restrained
against rotation (R = R2 = R3 = R4) and translation (T = T2 = T3 = T4)
for two different thickness rations hl = 0.1 and hl = 0.05 are de-
picted in Tables 5 and 6, respectively. Figs. 6 and 7 show the vari-
ation of the first four frequency parameter X/p2 for triangular and
trapezoidal plates with different boundary conditions for various
values of the elastic restraints. It can be observed that the major in-
crease of frequency occurs when the translational elastic restrain
values are in the interval (10–1000). The plate fundamental fre-
quency is much less sensitive to such change. In general it is ob-
served that the frequency parameter beyond a certain large value
(say 104) the rate at which the frequency parameters approach
the upper limit is relatively slow. This is almost certainly due to
the nature of the stiff elastic restraints which are approaching
the classical supporting edge conditions of the plate.
5. Conclusions

A simple, computationally efficient and accurate approximate
approach has been developed for the determination of frequencies
and modal shapes of free vibration of trapezoidal and triangular ta-
pered thick plates. The methodology is based on the Ritz method
and on the Reissner–Mindlin plate theory, and uses triangular co-
ordinates to express the geometry of plate in a unified form. The
transverse deflection and the rotations are approximated by sets
of simple polynomials generated automatically.

The algorithm developed is very genera, functions extremely
well and allows us to take into account a great variety of triangular
and trapezoidal plates with any combination of boundary



Edge supports Boundary conditions
Free edge: W – 0; /n – 0; /s – 0
Simply supported edge: W – 0; /n – 0; /s – 0a

Clamped edge: W – 0; /n – 0; /s – 0

u = 0
v = v_0

u = 1
v = 1

pðuÞðWÞ1 qðvÞðWÞ1 pðuÞð/Þx1 qðvÞð/Þx1 pðuÞð/Þy1 qðvÞð/Þy1

S F u v � v_0 1 v � v_0 u 1
C F u v � v_0 u v � v_0 u v � v_0
S S u(u � 1) (v � v_0)(v � 1) 1 (v � v_0)(v � 1) u(u � 1) 1
S C u(u � 1) (v � v_0)(v � 1) u � 1 (v � v_0)(v � 1) u(u � 1) v � 1
C C u(u � 1) (v � v_0)(v � 1) u(u � 1) (v � v_0)(v � 1) u(u � 1) (v � v_0)(v � 1)
F F 1 1 1 1 1 1
F S u � 1 v � 1 1 v � 1 u � 1 1
F C u � 1 v � 1 u � 1 v � 1 u � 1 v � 1
C S u(u � 1) (v � v_0)(v � 1) u (v � v_0)(v � 1) u(u � 1) v � v_0

aus denote the rotation about the normal direction n.
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conditions including edges elastically restrained against rotation
and translation and non-uniform cross sections.

Sets of parametric studies have been performed and the results
have shown that the variation of the frequency with the taper
parameter is linear for the first four modes and increases as the
mode of vibration increases and the thickness ratios have not a sig-
nificant effect on the first four mode shapes. On the other hand,
when the translational elastic restrain values are in the interval
(10–1000) it has been observed the major increase of frequency.

The authors believe that the approach should be well suited for
optimisation problems of thick tapered isotropic plates due to its
relative simplicity, both analytically and computationally, of vary-
ing the parameters involved.

Finally, it is important to point out that the method presented
can be easily modified to be applied to static deflection problems
and buckling analysis. On the other hand, the method can be gen-
eralized for analyzing anisotropic thick plates.
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Appendix A

Starting polynomials in the u and v co-ordinates for different
combinations of classical boundary conditions.
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