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This  paper  outlines  and  compares  mathematical  models  to predict  the  temporal  variation  of  concen-
tration  and  current  in  an  electrochemical  reactor  coupled  with  a reservoir  operating  with  continuous
recirculation  of  the  electrolyte.  The  reservoir  is  considered  as  a  well  mixed  tank  while  the  disper-
sion  model  is used  for the  reactor.  The  performances  according  to  the  idealized  models  to represent
a  reactor,  stirred  tank  and  plug  flow,  are  also  deduced  as  limiting  cases.  Applied  studies  carried
out  in  rotating  cylinder  electrodes  using  the  removal  of  copper  from  dilute  solutions  as  test  reac-
tion  are  reported.  The  experimental  data  are  correlated  with  the  theoretical  model,  numerically
solved,  using  a dimensionless  number  ˇ,  proportional  to the  kinetic  constant,  as  fitting  parameter.
ass-transfer coefficient
on-ideal behaviour
otating cylinder electrode

The  results  in  accordance  with  this  rigorous  model  are  compared  with  those  of  the  conventional
equations  based  on  the  stirred  tank  model  and  the  error  in  the  evaluation  of  the  kinetic  constant
can  be  as  high  as  26%.  From  an  engineering  point  of  view,  a generalized  plot  to  estimate  the  error
is  reported,  which  requires  as  inputs  the  experimental  slope  of the  temporal  variation  of  concen-
tration  in  the  reservoir,  the  Peclet  number  and  the  ratio  between  the  reservoir  and  reactor  space
times.

© 2011 Elsevier Ltd. All rights reserved.
. Introduction

The use of an electrochemical reactor coupled with a reservoir
s a common arrangement in industrial practice. The reser-
oir allows extraction of products or input of reactants, heat
xchange, additive addition, control operations and the treat-
ent of a large volume of effluent in a small reactor. Several

uthors have treated the mathematical modelling of this elec-
rochemical system. Pickett [1] analyzed a batch electrochemical
eactor with continuously recirculating electrolyte in which a
ass-transfer controlled reaction and perfect mixing in the reac-

or were assumed. Walker and Wragg [2] developed approximate
nd rigorous models considering the reservoir as a well-mixed
ank while the reactor was considered both as a plug flow and
s a perfectly back-mixed item. Mustoe and Wragg [3] took into
ccount axial dispersion in the reactor in the prediction of the

emporal behaviour for a large reservoir to reactor volume ratio.
challer and Kreysa [4] presented a rigorous treatment assuming
lug flow in the reactor with a constant inlet concentration and

∗ Corresponding author.
E-mail address: jbisang@fiq.unl.edu.ar (J.M. Bisang).

013-4686/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.electacta.2011.09.058
Thomas and Sora [5] reported an alternative expression to that
proposed in [2] for a plug flow reactor coupled with a well-mixed
reservoir.

Recently the arrangement of continuous recirculation from a
large storage tank to a small electrochemical reactor has received
considerable attention in the processing of effluents. Thus, the
reduction of Cr(VI) to Cr(III) was achieved in a flow-by parallel-plate
reactor with recirculation, equipped with a reticulated vitreous car-
bon electrode [6].  A similar arrangement was  used [7] to study
the removal of copper under different hydrodynamic and kinetic
conditions. Lanza and Bertazzoli [8] designed a reactor with a
Ti/70TiO2/30RuO2 DSA-type anode for cyanide electrooxidation in
batch recirculating mode. The device performance was evaluated
in terms of the decay of the cyanide concentration as a function of
the current density, flow rate and initial pollutant concentration.

The main objective of this work is to present a rigor-
ous model for a recirculating electrochemical system assuming
the dispersion model for the reactor. The rigorous model is
compared to the conventional equations for this system to

determine their validity ranges. The theoretical data are com-
pared with experimental results using copper deposition as test
reaction in an electrochemical reactor with rotating cylinder
electrodes.

dx.doi.org/10.1016/j.electacta.2011.09.058
http://www.sciencedirect.com/science/journal/00134686
http://www.elsevier.com/locate/electacta
mailto:jbisang@fiq.unl.edu.ar
dx.doi.org/10.1016/j.electacta.2011.09.058
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. Models for a recirculating electrochemical reactor
ystem

.1. Concentration as a function of time

.1.1. Dispersion model, DM
The temporal behaviour of an electrochemical reactor according

o the dispersion model is given by

R
∂c(t, y)

∂t
= 1

Pe
∂2c(t, y)

∂y2
− ∂c(t, y)

∂y
− j(t, y) ae�R

�eFε
(1)

here

R = εL

u
(2)

e = uL

εDL
(3)

nd y = x

L
(4)

 (mol m−3) being the concentration, Pe the Peclet number, t (s)
he time, �R (s) the reactor space time, L (m)  the electrode length,

 (m s−1) the mean superficial fluid velocity, ε the porosity, DL
m2 s−1) the dispersion coefficient, x (m)  the axial coordinate and

 the normalized axial coordinate.
Under potentiostatic operation the kinetics of a first order reac-

ion at high electrode potentials is given by [9]

(t, y) = �eFkc(t, y) (5)

ere j (A m−2) is the current density, �e is the number of elec-
rons interchanged, F (96,485 C mol−1) is the Faraday constant and

 (m s−1) is a kinetic constant given by:

 = kf

1 + Da
(6)

f (m s−1) being the rate constant and Da the Damköhler number
efined as kf/km, where km (m s−1) is the mass-transfer coefficient.

Usually the reactor volume is lower than the reservoir volume.
hen, the temporal behaviour of the system is determined by the
eservoir volume. Thus, it is convenient to define a dimensionless
ime, T, as

 = t

�M
(7)

ere �M (s) is the reservoir space time. Introducing Eqs. (5)–(7) into
q. (1) and rearranging results in

1
R

∂C(T, y)
∂T

= 1
Pe

∂2C(T, y)
∂y2

− ∂C(T, y)
∂y

−  ˇC(T, y) (8)

ith the following initial and boundary conditions, valid for a
losed system at the inlet, Eq. (10), and at the outlet, Eq. (11)

 = 0 C(0, y) = 1 (9)

 = 0 and T > 0 C(T, 0) − 1
Pe

∂C(T, y)
∂y

∣∣∣∣
y=0

= Ci(T) (10)

 = 1
∂C(T, y)

∂y

∣∣∣∣
y=1

= 0 (11)

where

(T, y) = c(T, y)
c0

(12)
ere c0 (mol m−3) is the initial concentration,

 = �M

�R
(13)
ica Acta 58 (2011) 406– 416 407

and  ̌ = kae�R

ε
(14)

Thus,  ̌ is a useful dimensionless number which lumps the elec-
trochemical kinetics, k, geometrical aspects of the electrode such
as the specific surface area, ae (m−1), and ε, with the reactor space
time.

The mass-balance in the reservoir gives

dCi(T)
dT

= Co(T) − Ci(T) (15)

where the subscripts “i” and “o” denote the dimensionless concen-
tration at the inlet and at the outlet of the reactor, respectively.

Applying Laplace transformation to Eq. (8) yields

C̄o(s) = (s + ˇR)−1 + 4�ePe/2 C̄i(s) − (s + ˇR)−1

(� + 1)2e�Pe/2 − (� − 1)2e−�Pe/2
(16)

where

� =
√

1 + 4(ˇR + s)(RPe)−1 (17)

Applying Laplace transformation to Eq. (15) and combining with
Eq. (16) results in

C̄i(s) = 1 + (s + ˇR)−1[1 − 4�ePe/2/((� + 1)2e�Pe/2 − (� − 1)2e−�Pe/2)]

s + 1 − 4�ePe/2/((� + 1)2e�Pe/2 − (� − 1)2e−�Pe/2)
(18)

The inversion of Eq. (18) from the complex s plane to the T
time plane was made by a numerical Laplace transform inversion
method [10], using a Fourier series approximation with a Matlab
subroutine [11].

2.1.2. Dispersion model at high R values
For R � 1 Eq. (8) is simplified to

1
Pe

d2C(y)
dy2

− dC(y)
dy

− ˇC(y) = 0 (19)

Solving Eq. (19) taking into account the boundary conditions of Eqs.
(10) and (11), yields [12]

C(T, y) = 2
(  ̨ + 1)e(1−y)˛Pe/2 + (  ̨ − 1)e−(1−y)˛Pe/2

(  ̨ + 1)2e˛Pe/2 − (  ̨ − 1)2e−˛Pe/2
eyPe/2Ci(T) (20)

where  ̨ =
√

1 + 4ˇ

Pe
(21)

Evaluating Eq. (20) at y = 1 and combining with Eq. (15) gives

dCi(T)
dT

= −Ci(T)

[
1 − 4˛ePe/2

(  ̨ + 1)2e˛Pe/2 − (  ̨ − 1)2e−˛Pe/2

]
(22)

Integrating Eq. (22) with the initial condition, Eq. (9),  results in

Ci(T)
∣∣
DM,R→∞ = exp

{
−

[
1 − 4˛ePe/2

(  ̨ + 1)2e˛Pe/2 − (  ̨ − 1)2e−˛Pe/2

]
T

}
(23)

Eq. (23) was  previously reported by Mustoe and Wragg [3].

2.1.3. Stirred tank model (Pe → 0), ST
The mass-balance for the reactor yields

1
R

dCo(T)
dT

= Ci(T) − (1 + ˇ)Co(T) (24)

Combining Eqs. (15) and (24), results in

d2Ci(T) dCi(T)

dT2

+ [1 + R(1 + ˇ)]
dT

+ RˇCi(T) = 0 (25)

With the following initial conditions

T = 0 Ci(0) = 1 (26)
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Fig. 1. Dimensionless concentration in the reservoir as a function of time for a stirred
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ank electrochemical reactor coupled with a reservoir according to Eq. (28) for dif-
erent values of  ̌ and R.  ̌ values: 0.5, 1, 2, and 4. R values: 5, 8, 12, 20, and 100. Full
ines: behaviour according to Eq. (30). Inset: exploded view at low T values.

nd from Eq. (15)

dCi(T)
dT

∣∣∣
T=0

= 0 (27)

olving Eq. (25) yields

i(T)|ST = 1
r2 − r1

(r2er1T − r1er2T ) (28)

here

1,2 = −1 + R(1 + ˇ)
2

±
√

[1 + R(1 + ˇ)]2 − 4ˇR

2
(29)

ickett [1] proposed a similar equation valid when the mixer vol-
me  is negligible.

.1.4. Stirred tank model at high R values
When the Pe number approaches zero, Eq. (23) yields

i(T)|ST,R→∞ = e−[ˇ/(1+ˇ)]T (30)

Fig. 1 shows the dimensionless concentration in the reservoir
s a function of the dimensionless time at different values of  ̌ and

 for the model of a stirred tank electrochemical reactor coupled
ith a reservoir, Eq. (28). The inset corresponds to the behaviour

t the beginning of the experiment. The behaviour according to Eq.
30), assuming that the reservoir volume is higher than the reactor
olume, is also plotted as full lines. As expected the increase of ˇ
nlarges the efficiency of the reactor and for a given value of  ̌ the
ehaviour predicted for the rigorous model approaches that of Eq.
30) when R increases. The more pronounced difference between
oth equations is detected in the middle range of T. Likewise, the
ehaviour predicted by Eq. (30) is more efficient than that of the
igorous model, because the model according to Eq. (30) assumes
hat the electrochemical reactor is in steady state, which represents
he maximal value of conversion per pass in the reactor.

Fig. 2 summarizes the behaviour of a stirred tank electrochemi-
al reactor coupled with a reservoir according to Eqs. (28) and (30).
he results are presented by using a contour plotting routine to

roduce iso-� profiles, where

 = Ci,Eq.(28)(T) − Ci,Eq.(30)(T)
Ci,Eq.(28)(T)

× 100 (31)
Fig. 2. Contour plots of �, Eq. (31), for a stirred tank electrochemical reactor coupled
with a reservoir as a function of  ̌ and R. Contour height numbers are � values.

T was evaluated according to Eq. (30) for a conversion factor of 0.5
in the reservoir. It is observed that the difference in the predictive
behaviour between the two equations is significant at low values
of  ̌ and R. Likewise, the � values are always positive, which cor-
roborates the more efficient performance predicted by Eq. (30) as
observed in the previous figure.

2.1.5. Plug flow model (Pe → ∞),  PF
When Pe → ∞,  Eq. (8) becomes

1
R

∂C(T, y)
∂T

= −∂C(T, y)
∂y

− ˇC(T, y) (32)

Walker and Wragg [2] assumed as initial condition a steady state
concentration distribution according to

T = 0 C(0, y) = e−ˇy (33)

Thus, the rigorous solution of Eqs. (15) and (32) yields for the con-
centration in the reservoir:

Ci(T)|PF = 1 + (1 − eˇ)

T∫
0

∞∑
n=0

(z − n/R)n

n!(eˇ)n+1
e(−z+n/R)dz (34)

Schaller and Kreysa [4] suggested that a more realistic model is to
consider a constant initial concentration in all the system. Thus,
changing the initial condition Eq. (33) by Eq. (9),  the concentration
in the reservoir is given by

Ci(T)|PF = e−ˇRT

⎡
⎣1 + ˇReˇ

T∫
0

eˇRz

∞∑
n=0

(z − n/R)n

n!(eˇ)n+1
e(−z+n/R)dz

⎤
⎦ (35)

The derivation of Eq. (35) is given in Appendix A.

2.1.6. Plug flow model at high R values
At high Pe number Eq. (23) is simplified to

Ci(T)|PF,R→∞ = e−(1−e−ˇ)T (36)

For small  ̌ values the exponential function can be expressed as
eˇ ≈ 1 +  ̌ (37)

Introducing Eq. (37) into Eq. (36) gives Eq. (30) as a limiting case of
Eq. (36).
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ig. 3. Comparison of the concentration in the reservoir for a plug flow reactor
oupled with a reservoir. Full line: Eq. (35); dotted line: Eq. (34); and dashed line:
q. (36). R = 10. Inset: exploded view at low T values.

For  ̌ � 1 Eq. (30) is simplified to

i(T) = e−ˇT (38)

aking into account Eq. (14) and assuming that the reservoir vol-
me  is approximately the total volume of electrolyte, Eq. (38) yields

i(t)|BR = e−kaet (39)

alid for a batch reactor, BR.
Fig. 3 shows the temporal behaviour of an electrochemical reac-

or according to the plug flow model coupled with a reservoir.
he behaviours predicted by the more accurate models, Eqs. (34)
nd (35), and the simplified model Eq. (36) are reported. It can be
bserved that both accurate models give similar performance and
ll the calculation procedures present the same performance when
 is very high.
Fig. 4 shows the dimensionless concentration in reservoir as a

unction of dimensionless time at different values of  ̌ and R for
n electrochemical plug flow reactor coupled with a reservoir, Eq.

43210
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ig. 4. Dimensionless reservoir concentration as a function of time for a plug flow
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alues of  ̌ and R.  ̌ values: 0.5, 1, 2, and 10. R values: 5, 8, 12, 20, and 100. Full lines:
ehaviour according to Eq. (36). Inset: exploded view at low T values.
Fig. 5. Contour plots of �, according to Eqs. (35) and (36), for a plug flow electro-
chemical reactor coupled with a reservoir as a function of R and ˇ. Contour height
numbers are � values.

(35). The inset corresponds to the behaviour at the beginning of
the experiment. The performance according to Eq. (36), assum-
ing that the reservoir volume is higher than the reactor volume,
is also plotted as full lines. Fig. 5 summarizes the iso-� profiles
for a plug flow electrochemical reactor coupled with a reservoir
according to Eqs. (35) and (36). Figs. 4 and 5 show a similar perfor-
mance to those of Figs. 1 and 2, which are valid for the stirred tank
model.

Fig. 6 compares the concentration in the reservoir for recircu-
lating electrochemical systems according to the axial dispersion
model, numerical solution of Eq. (18), with those of the simplified
treatments given by Eqs. (30) and (36). As expected Eq. (36) shows
a reactor with the best performance and the temporal behaviour
of the system is strongly dependent on the set of parameters ˇ, R

and Pe. To obtain the admissibility of application of the simplified
models, Fig. 7 reports �, used as a criterion of error estimation, for
different values of the dimensionless parameters ˇ, R and Pe.

43210
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Eq.  (36 )
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Fig. 6. Comparison of the dimensionless concentration in the reservoir as a function
of time for the dispersion model, numerical solution of Eq. (18), with the simplified
models given by Eqs. (30) and (36) for different values of ˇ, R and Pe.
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olution of Eq. (18) and Eq. (36). Full lines: R = 5; dotted lines: R = 15; and dashed
ines: R = 100. Contour height numbers are � values.

Laboratory studies with recirculating electrochemical reactor
ystems are also frequently used to evaluate the kinetic constant.
hus, the error in the calculation of  ̌ defined as:

rror = ˇEq.(18) − ˇEq.(30) or Eq.(36)

ˇEq.(18)
× 100 (40)

s shown in Fig. 8 as iso-error profiles in terms of the Peclet number
nd  ̌ for different R values. The results of Eq. (18) are compared
ith those according to Eq. (30), valid for the stirred tank model

t high R values, in Fig. 8(a) and with those of Eq. (36), plug flow
odel at high R values, in Fig. 8(b). It must be recognized that Eq.

18) takes into account two factors which are disregarded in Eqs.
30) and (36), i.e. (i) the temporal behaviour of the electrochemical
eactor and (ii) the presence of dispersion. According to the first
actor, the electrochemical reactor in Eqs. (30) and (36) is in steady
tate. Then, the correlation of experimental results with these equa-
ions requires  ̌ values lower than those of Eq. (18) and the error
n the calculation of  ̌ must be positive for both simplified mod-

ls. However, taking into account the presence of dispersion, the
lug flow model is more efficient than the dispersion model, which
equires that the  ̌ calculated with Eq. (36) must be lower than the
alue given by Eq. (18) and the error is also positive. In contrast,
numerical solution of Eq. (18) with Eq. (30). Part (b) Comparison between numerical
solution of Eq. (18) with Eq. (36). Full lines: R = 5; dotted lines: R = 15; and dashed
lines: R = 100. Contour height numbers are error values.

the behaviour of the stirred tank model is less efficient than the
dispersion model and Eq. (30) yields  ̌ values higher than for Eq.
(18), which produces negative errors. In conclusion, both factors
show an opposite contribution when the dispersion model is com-
pared with the stirred tank model. Thus, the error in the evaluation
of ˇ can be positive, negative or null depending on the predomi-
nance of each factor, as shown in Fig. 8(a). In this case it is possible
that both factors have compensating effects and Eqs. (18) and (30)
yield the same result for the evaluation of ˇ. However, both fac-
tors contribute in the same direction when the dispersion model
is compared with the plug flow model, which always gives posi-
tive errors, as shown in Fig. 8(b). Finally, Fig. 8 shows that the use
of Eq. (30) or Eq. (36) for the correlation of experimental results
instead of Eq. (18) can produce significant errors in the calculation
of  ̌ depending on the fluid dynamics, mass-transfer behaviour and
operating conditions of the recirculating electrochemical system.

According to Eqs. (18), (23), (30), (36) and (39) the logarithm
of the concentration in the reservoir always shows a linear rela-

tionship with time. However, the true value of the kinetic constant,
calculated from the slope of the line, depends on the mathematical
model adopted to represent the electrochemical reactor. Thus, it is
necessary to have additional information about the fluid dynamic
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ehaviour of the system in order to choose the appropriate equation
o perform this calculation.

.2. Current as a function of time at high R values

.2.1. Dispersion model
In order to obtain the average current density, jmean (A m−2), as

 function of time, Eq. (5) must be integrated

mean(T, y) = �eFkc0

1∫
0

C(T, y)dy (41)

ntroducing Eq. (20) into Eq. (41) and integrating gives

mean(T) =
4�eFkc0

[
˛+1
˛−1 (e˛Pe/2 − ePe/2) + ˛−1

˛+1 (ePe/2 − e−˛Pe/2)
]

Pe
[
(  ̨ + 1)2e˛Pe/2 − (  ̨ − 1)2e−˛Pe/2

]
× Ci(T) (42)

ntroducing Eq. (23) into Eq. (42) and applying logarithms to both
ides of this equation, yields

ln jmean(T)
∣∣
DM,R→∞ = ln

{
4�eFkc0

[
(  ̨ + 1)/(  ̨ − 1)(e˛Pe/2 − ePe/2)

Pe
[
(  ̨ + 1)2e˛Pe/2 − 

−
[

1 − 4˛ePe/2

(  ̨ + 1)2e˛Pe/2 − (  ̨ − 1)2e−˛Pe/2

]
T 

.2.2. Plug flow model
Solving Eq. (32) at high R values, introducing the result into Eq.

41) and integrating, yields

mean(T) = �eFkc0

ˇ
(1 − e−ˇ)Ci(T) (44)

ntroducing Eq. (36) into Eq. (44) and applying logarithms to both
ides of the resulting equation, yields

ln jmean(T)
∣∣
PF,R→∞ = ln

[
�eFkc0

ˇ
(1 − e−ˇ)

]
− (1 − e−ˇ)T (45)

.2.3. Stirred tank model
Solving Eq. (24) at high R values, introducing the result into Eq.

41) and combining with Eq. (30), results in

ln jmean(T)
∣∣
ST,R→∞ = ln

(
�eFkc0

1 + ˇ

)
−

(
ˇ

1 + ˇ

)
T (46)

q. (46) was firstly reported by Robinson and Walsh [13]. In all
ases it is observed that the dependence of current with time in
emi-log coordinates is always a straight line, whose slope and ordi-
ate depend on the model used to represent the electrochemical
ystem. Likewise, for a given model in semi-log coordinates, the
emporal variation of current shows the same slope as that for the
hange in concentration. However, for the evaluation of  ̌ it is more
ppropriate to use the concentration variation because the current
an be influenced by side reactions, which occur at the electrode
imultaneously with the main reaction.

. Residence time distribution

For an electrochemical system without reaction Eq. (1) is sim-

lified to:

∂c(t, y)
∂(t/tmean)

= 1
Pe

∂2c(t, y)
∂y2

− ∂c(t, y)
∂y

(47)
ica Acta 58 (2011) 406– 416 411

 − 1)/(  ̨ + 1)(ePe/2 − e−˛Pe/2)
]

1)2e−˛Pe/2
]

}

(43)

Considering an impulse function as a stimulus the initial and
boundary conditions for a closed system are given by

t = 0 c(0, y) = aı(y − 0) (48)

y = 0 and t > 0+ c(t, 0) − 1
Pe

∂c(t, y)
∂y

∣∣∣∣
y=0

= 0 (49)

y = 1
∂c(t, y)

∂y

∣∣∣∣
y=1

= 0 (50)

here a is a parameter and ı is the Dirac delta function.
The normalized outlet concentration, termed the E curve [14],

was  calculated as

E(t) = c(t, 1)
∞∫
0

c(t, 1)d(t/tmean)

(51)

In these studies a dimensionless time referred to the mean resi-
dence time, tmean (s), was  used, which was  calculated as

tmean =

∞∫
0

tc(t)dt

∞∫
0

c(t)dt

(52)

The experimental data were correlated by means of the least
squares method applied to Eq. (47) and using the Peclet number
as fitting parameter. Eq. (47) was  numerically solved by the tridi-
agonal matrix algorithm (TDMA) [15]. To quantify the agreement
between theoretical and experimental data, the mean square error,
MSE, is introduced as

MSE  = 1
N − 1

N∑
i=1

(Eth
i − Eexp

i )
2

(53)

The Peclet number for which MSE  is minimal is then taken as the
best fit value [16].

4. Experimental

Fig. 9(a) shows the configuration of the undivided continuous
electrochemical reactor used in this work, 109 mm internal diam-
eter and 201 mm total high, with a rotating cylinder electrode. The
upper end of the cylinder was attached to the motor shaft. A helical
platinum wire (1.0 mm diameter × 1 m long) with an internal diam-
eter of 55 mm was used as counterelectrode. The working electrode
and the counterelectrode were concentric, thereby ensuring a uni-

form primary current distribution. The reactor was made in acrylic
and was included in a flow circuit system, shown in Fig. 9(c) includ-
ing a centrifugal pump, a flowmeter, a diaphragm valve a reservoir
and a thermostat.
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Fig. 9. (a) Schematic representation of the reactor. (1) Rotating cylinder cathode; (2) helical anode; (3) Luggin probe to reference electrode; (4) reactor inlet; and (5) reactor
o de. (1
e ctrolyt
t

t
u
t
o
m
w
r
t
d
4
g
a
p
p
t
e
t
t
t

utlet.  (b) Exploded view of the hollow three-dimensional rotating cylinder electro
lectrode shaft; and (5) Teflon disc. Arrows: electrolyte flow. (c) Scheme of the ele
hermostat; (V-1, V-2 and V-3) valves.

For the evaluation of the performance of the recirculating elec-
rochemical system two types of rotating cylinder electrodes were
sed. The first was a smooth stainless steel cylinder (32 mm  diame-
er × 90 mm long, 90.5 cm2 electrode surface area), and the second
ne was made by winding a 304 stainless steel wire mesh (25-
esh size, 0.30 mm wire diameter and 0.72 mm distance between
ires) around a detachable cylinder, 35 mm diameter, which was

emoved afterwards the external layer was welded at several points
o obtain mechanical stability of the structure. Thus a hollow three
imensional electrode was obtained as shown in Fig. 9(b), with
3 mm  outer diameter and 90 mm  long. The average value of the
eometric specific surface area was approximately 3724 m−1 with

 void fraction of 0.7. The three dimensional electrode was sup-
orted by two discs. One of them, centrally positioned, was a
erforated brass disc and a stainless steel bolt passed through
he bed thickness, pressing the central disc and thus ensuring

lectrical contact. The lower part of the electrode was open but
he upper part was joined to a Teflon disc in order to orientate
he electrolyte flow through the sheet pack. The central disc and
he electrode shaft were covered with epoxy resin to make them
) Three-dimensional electrode; (2) electrical contact; (3) perforated brass disc; (4)
e circulation system. (1) Reactor; (2) reservoir; (3) pump; (4) flow meter; and (5)

electrochemically inactive. Copper deposition from dilute solutions
and oxygen evolution were used as cathodic and anodic reactions,
respectively. The solution was  prepared by dissolving copper sul-
phate in 1 M sodium sulphate solution, pH 2 with the addition of
H2SO4, to achieve an initial copper concentration of approximately
500 mg  dm−3, when the smooth electrode was used; and lower
than 200 mg  dm−3 for the case of the three-dimensional electrode.
In the experiments with smooth electrodes the solution volume
in the reactor was 1 dm3 and 5 dm3 in the reservoir, whereas
for a recirculating system with the three-dimensional electrode
the solution volumes in the reactor and reservoir were 0.87 dm3

and 10.13 dm3, respectively. These experiments were performed
under potentiostatic control, maintaining the cathode potential at
−0.55 V against a saturated calomel electrode as reference. Dur-
ing the experiments, small volumes of solution were taken out
from the reservoir at different times and the copper concentra-

tion was  determined by atomic absorption spectroscopy to obtain
the concentration versus time curve, and the current was  moni-
tored with a digital multimeter. All experiments were performed
at 30 ◦C.
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Fig. 10. Residence time distribution. (a) Smooth rotating cylinder electrode,
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 = 3.78 × 10−5 m3 s−1, ω = 146.6 s−1, Pe = 1.32. (b) Hollow three-dimensional rotat-
ng  cylinder electrode, Q = 3.25 × 10−6 m3 s−1, ω = 62.8 s−1, Pe = 0.58. Full lines:
orrelation according to Eq. (47), numerically solved.

The residence time distribution was analyzed for smooth rotat-
ng cylinders, 90 mm long, with the following diameters: 20, 32 and
2 mm and also for the hollow three-dimensional rotating cylin-
er electrode above described. As a stimulus, an instantaneous
racer injection of 0.2 cm3 of a 30 wt% NaOH solution was  manually
ntroduced at the reactor inlet. The electrolytic conductivity was

onitored by means of a platinum conductivity cell, WTW  model
TA 01, with a cell constant 0.114 cm−1 mounted on a T-piece in
he reactor outlet. The conductimeter was connected to a digital

ultimeter to obtain conductance versus time.

. Results and discussion

.1. Residence time distribution results

Fig. 10 shows typical curves of the normalized outlet concen-
ration at a given flow rate, Q (m3 s−1), and rotation speed, ω (s−1),
or the smooth and for the hollow three-dimensional cylinder elec-
rodes. The experimental points correspond to three independent
xperiments and the full lines represent the numerical fitting of
he experimental results with Eq. (47), where a close correlation is
bserved. The correlated value of the Peclet number for the smooth
lectrode was 1.32 and 0.58 for the three-dimensional case. Coeuret
nd Storck [17] and Eklund and Simonsson [18] reported a success-
ully correlation of experimental mass-transfer coefficients for a
otating cylinder electrode with axial flow taking as characteristic
ength the difference between the reactor radius and the electrode
adius. They used an axial Reynolds number, Rea, and a Taylor num-
er, Ta, to consider the axial and rotational flows, respectively,
hich are defined as:

ea = 4Q (D − d)
	(D2 − d2)�

(54)

nd

a = dω(D − d)
4�

×
(

D − d

d

)0.5

(55)

here d (m)  is the electrode diameter, D (m)  is the reactor diameter
2 −1
nd � (m s ) is the kinematic viscosity.

Thus, the Bodenstein number, Bo, is given by

o = Pe(D − d)
L

(56)
Fig. 11. Contour plots of Bodenstein number for smooth rotating cylinder electrodes
as  a function of axial Reynolds and Taylor numbers. Contour height numbers are Bo
values.

Fig. 11 shows a contour plot of iso-Bodenstein number profiles
as a function of both the axial Reynolds number and the Taylor
number for smooth rotating cylinders. The measurements were
carried out at 31.4 < ω < 146.6 s−1 and
0.325 < Q < 3.78 × 10−5 m3 s−1. Within the accuracy normally
expected for this type of measurements, three regions can be
observed. A first zone is detected at low values of Rea or at high
Ta, where Bo ranges from 0.4 to 1.5. This zone is under well mixed
conditions and is characterized for the lower values of Bo. The
second region is identified for Bo ranging from 1.5 to 2.3, where
the influence of the axial flow is more important. The third zone,
detected as an island with the highest Bo, occurs in the middle
range of Rea at low Ta. However, it is necessary to emphasize that
the Bodenstein number shows a variation in a narrow range, from
0.4 to 2.6, in spite of the broad experimental conditions.

Fig. 12 shows the Peclet number as a function of the Tay-
lor number for a hollow three-dimensional rotating cylinder at
different axial Reynolds numbers. The measurements were car-
ried out at 20.9 < ω < 62.8 s−1 and 0.325 < Q < 3.78 × 10−5 m3 s−1.
The secondary ordinate axis on the right hand side of the graph
corresponds to the Bodenstein number. As expected the Peclet
number decreases with increase in rotation speed because of the
improvement in the mixing conditions and the flow rate has a small
influence. Likewise, the hollow three-dimensional electrode shows
20000 4000 0 6000 0
Ta

Fig. 12. Peclet and Bodenstein numbers as a function of the Taylor number for a
hollow three-dimensional rotating electrode.
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eviation. c (0) = 174 ± 30 mg dm−3, Q = 2.77 × 10−6 m3 s−1, ω = 62.8 s−1, Pe = 0.58,

 = 11.64. Full line: numerical solution of Eq. (18).

.2. Temporal behaviour of concentration in the reservoir

Fig. 13 shows typical results of the concentration in the reservoir
s a function of time for two rotating cylinder electrodes. Fig. 13(a)
hows the results for the smooth cylinder electrode for three inde-
endent experiments and those of the three-dimensional rotating
lectrode are given in Fig. 13(b). In this last case each point rep-
esents the mean value of three independent experiments and the
egments the standard deviation. Both electrodes show a similar
ehaviour. For time values lower than 45 min  a close agreement is
bserved between independent experiments, and the results show
catter at time higher than 1 h because of the unpredictable increase
n the specific surface area due to metal deposition. This behaviour
s more pronounced for the smooth rotating cylinder electrode due
o the higher copper concentration and to the longer duration of the
xperiments to achieve a similar value of dimensionless concentra-
ion in the reservoir. The experimental results were correlated by
eans of the least squares method applied to Eq. (18), numerically
olved and plotted in Fig. 13,  using  ̌ as fitting parameter. The same
rocedure was performed with Eqs. (23), (28) and (30). The last
quation, in linearized form, is the conventional relationship used
ica Acta 58 (2011) 406– 416

to fit experimental results in recirculating electrochemical systems
in order to obtain the kinetic constant. In these calculations the
Peclet number was taken from Fig. 10.  For the smooth electrode
only the points at T values lower than 30 were used in the correla-
tion due to scatter at high times. Table 1 summarizes the correlation
data,  ̌ and the mean square error for each equation are reported.
The last four columns in Table 1 show the error in the calculation of

 ̌ for the different equations, related to the value given by the rig-
orous model, Eq. (18). For a given electrode kind, it can be observed
that the mean square error is similar for all the equations. Thus they
present a comparable correlation capability of the experimental
results but with a different  ̌ value. For the smooth rotating elec-
trode, under the examined experimental conditions, Eq. (30) gives
an error of 8.3% in comparison with the value of Eq. (18). This error
is in accordance with the values reported on Fig. 8(a), where it can
be seen that for low values of  ̌ the error between the behaviour of
Eqs. (18) and (30) is independent of Pe number. On the other hand,
Eq. (18) gives same result as Eq. (28) and Eq. (23) agrees with Eq.
(30), both in the normal and in the linearized form. Thus, in this
case the temporal behaviour of the electrochemical reactor has a
strong influence on the recirculating system and the effect of the
dispersion can be neglected. The last row in Table 1 summarizes
the correlation capability for the Eqs. (18), (23), (28) and (30) for
the hollow three-dimensional rotating electrode. All the equations
show significant errors in comparison with the  ̌ value given by
Eq. (18). It must be emphasized that Eq. (30) in the linearized form,
which represents the ordinary procedure for the processing of data,
gives an error of −26.3. This value also agrees with the prediction
of Fig. 8(a). It must be recognized that the errors reported here are
higher than the value reported by Mustoe and Wragg [3].  Thus,
depending on its geometric, fluid dynamic and physicochemical
properties is necessary to take into account a more complex model
to represent a recirculating electrochemical system.

6. Engineering aspects of the mathematical models

An electrochemical reactor with a rotating cylinder electrode is
frequently assumed as a well mixed system. According to the pre-
vious sections the use of a simplified model allows an easy method
to calculate the kinetic constant but it is possibly subject to high
error. In contrast the dispersion model gives more exact values
but requires the use of complicated mathematical calculations. In
order to circumvent these difficulties, the aim of this section is to
show graphically the error in the evaluation of the kinetic constant
according to the dispersion model at high R values, Eq. (23), when
this equation is used instead of the rigorous treatment given by the
dispersion model, Eq. (18) solved by a numerical procedure. Thus,
Fig. 14 shows the  ̌ value according to Eq. (23) as a function of m,
given by

m = d ln Ci(T)
dT

∣∣∣
exp

(57)

and for different Peclet numbers. The inset in Fig. 14 reports 
,
defined as


 = ˇDM

ˇDM,R→∞
(58)

as a function of m for different R values and Peclet numbers. There-
fore, the use of Fig. 14 to evaluate ˇ requires the calculation of m by
correlation of experimental results. Introducing m as abscissae and
choosing a Peclet number it can obtain  ̌ for the dispersion model
at high R values. Introducing m and choosing the R and Pe values

the inset in Fig. 14 yields 
 as ordinate, which allows the calculation
of  ̌ according to the dispersion model. It can be observed that sig-
nificant errors in the evaluation of  ̌ can be obtained for low values
of R.
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7. Conclusions

(a) When the reactor can be represented by the stirred tank model,
the temporal behaviour of a recirculating system can be mod-
elled assuming the reactor in steady state only when  ̌ is higher
than 1 and the ratio between the reservoir space time to the
reactor space time, R, is higher than 15. In this case the error in
the predictions is lower than 3%. However, the exact value of
the error depends on  ̌ and R.

(b) When the reactor can be represented by the plug flow model,
the temporal behaviour of a recirculating system can be mod-
elled assuming the reactor in steady state only when  ̌ is higher
than 1.5 and R is higher than 15. In this case the error in the pre-
dictions is lower than 3%. However, the exact value of the error
depends on  ̌ and R.

(c) The hydrodynamic behaviour of a rotating cylinder can be prop-
erly represented by the dispersion model. The Peclet number
lay in the range 0.4–3.2 for the smooth or three-dimensional
electrodes examined in this work. The exact value of the Peclet
number depends on both the Reynolds and Taylor numbers.

(d) Using a recirculating electrochemical reactor system it is very
important to verify the hydrodynamic behaviour of the reactor
and to take into account the ratio between the reactor volume
to the reservoir volume in order to adopt the most appro-
priate model for the calculation of the kinetic constant from
experimental results. Despite the fact that all the models pre-
dict that the logarithm of the concentration in the reservoir
shows a linear relationship with time, the use of the incor-
rect equation can produce a high error in the evaluation of
the kinetic constant. Thus, from the correlation of experimental
data for the removal of copper with a hollow three-dimensional
rotating cylinder electrode, it was demonstrated that the error
in the evaluation of the kinetic constant can be as high
as 26%.
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ppendix A. Deduction of Eq. (35)

Applying Laplace transformation to Eq. (32), integrating and
valuating at y = 1, yields

¯o(s) = 1
(s + ˇR)

(
1 − e−s/R

eˇ

)
+ C̄i(s)

e−s/R

eˇ
(A.1)

pplying Laplace transformation to Eq. (15) and combining to Eq.
A.1), is

¯ i(s) = 1
(s + ˇR)

[
1 + ˇReˇ

(s + 1)eˇ − e−s/R

]
(A.2)

hus, the inverse Laplace transformation of the first term on the
ight hand side is

−1
[

1
(s + ˇR)

]
= e−ˇRT (A.3)

o obtain the inverse Laplace transformation of the second term on
he right hand side in Eq. (A.2) it must be noted that

1
(s + 1)eˇ − e−s/R

= 1
(s + 1)eˇ

[
1 − e−s/R

(s + 1)eˇ

]−1

(A.4)

q. (A.4) may  be written as a power series expansion as

1
(s + 1)eˇ

[
1 − e−s/R

(s + 1)eˇ

]−1

=
∞∑

n=0

e−ns/R[
(s + 1)eˇ

]n+1
(A.5)

ultiplying top and bottom of the right hand side in Eq. (A.5) by n!
nd taking into account the following definite integral

n!
an+1

=
∞∫
0

xne−axdx (A.6)

ields

1
(s + 1)eˇ − e−s/R

=
∞∫
0

e−x

∞∑
n=0

xne−(x+n/R)s

n!(eˇ)n+1
dx (A.7)

efining

 = z − n

R
(A.8)

s

1
(s + 1)eˇ − e−s/R

=
∞∫
0

e−sz

∞∑
n=0

(z − n/R)ne(−z+n/R)

n!(eˇ)n+1
dz (A.9) [
ica Acta 58 (2011) 406– 416

Taking the inverse Laplace transformation of Eq. (A.9) results in

	−1

[
1

(s + 1)eˇ − e−s/R

]
=

∞∑
n=0

(z − n/R)n

n!(eˇ)n+1
e(−z+n/R) (A.10)

Applying the Borel theorem of convolution to the second term of
the right hand side of Eq. (A.2) and taking into account Eq. (A.10)
yields

	−1

[
ˇReˇ

(s + ˇR)[(s  + 1)eˇ − e−s/R]

]

= ˇReˇe−ˇRT

T∫
0

eˇRz

∞∑
n=0

(z − n/R)n

n!(eˇ)n+1
e(−z+n/R)dz (A.11)

Combining Eqs. (A.3) and (A.11) results in

Ci(T) = e−ˇRT

⎡
⎣1 + ˇReˇ

T∫
0

eˇRz

∞∑
n=0

(z − n/R)n

n!(eˇ)n+1
e(−z+n/R)dz

⎤
⎦ (A.12)
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