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Abstract
We review the recent work done by the Jyväskylä–La Plata collaboration on the
calculation of nuclear matrix elements for various modes of double-beta decays.
Whenever helpful, we connect our recent work to the historical background in
order to highlight the progress achieved in the field of double-beta decay. At
the same time, we introduce some new concepts and ideas to treat e.g. possible
backgrounds in Gamow–Teller strength functions generated in (p,n) and (n,p)
reactions.

1. Introduction

Thanks to the neutrino-oscillation experiments much has been learned about the basic
properties of the neutrino in the last decade [1]: their relative masses and mixing properties
are now known quite accurately. The underground experiments are complementary to the
oscillation experiments and they can determine the fundamental (Majorana) nature and
absolute mass scale of the neutrinos via detection of the neutrinoless double-beta (0νββ)
decay of atomic nuclei. To extract this information from the prospective data, we need to
know the details of nuclear structure for the decaying nuclei. The structure information can
be crystallized in the form of nuclear matrix elements (NMEs) intimately intertwined with the
lepton aspects of the various forms of double-beta decays [2, 3].

In the present work, we aim to provide a glimpse of the recent progress achieved by
the Jyväskylä–La Plata collaboration in calculating values of the NMEs for various double-
beta and related processes. We address both the electron- and positron-emitting modes of
the two-neutrino double-beta (2νββ) and 0νββ decays. We also shed light on the double-
electron capture (ECEC) modes that are presently under vigorous experimental scrutiny.
Furthermore, we explore various independent and complementary ways to extract direct or
indirect information on the 2νββ and 0νββ NMEs. These methods include, among others,
the various charge-exchange reactions and our recent work on their possible isovector spin
monopole (IVSM) backgrounds.

All the above-described decays and processes are handled in the general framework of
the quasiparticle random-phase approximation (QRPA) by combining its charge-conserving
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mode (ccQRPA) and proton–neutron mode (pnQRPA). In particular, we address the long-
standing ‘gpp problem’ of the pnQRPA and present various ways to deal with this problem.
We also highlight our recent work on the single-particle aspects of the calculations related to
the spin–orbit-partner orbitals and orbital occupancies. It should be stressed that the topics are
discussed in quite a compact manner due to space limitation and details are given in the many
cited references.

2. Lepton aspects of double-beta decay

Here we present briefly the formalism that we use to compute the double-beta NMEs as well
as the Gamow–Teller β+ and β− decay amplitudes and the associated strength functions.

2.1. The 2νββ-decay amplitude

The 2νββ-decay half-life, t (2ν)

1/2 , for a transition from the initial ground state, 0+
i , to the final

J+ state, J+
f (here either the ground state or some excited 0+ or 2+ state), can be compactly

written in the form[
t (2ν)

1/2 (0+
i → J+

f )α
]−1 = G(2ν)

α (J)
∣∣M(2ν)

α (J)
∣∣2

, (1)

where α = β−β−, β+β+, β+EC, ECEC is the mode of beta decay. Here G(2ν)
α (J) is the

leptonic phase-space factor for the different double-beta channels: double-electron emission
(β−β−), double-positron emission (β+β+), positron emission combined with electron capture
(β+EC) and double-electron capture (ECEC) [2, 4]. For the β−β− and β+β+ modes, the NME
is written as

M(2ν)
α (J) =

∑
mn

MJ
F

(
1+

m

)〈
1+

m |1+
n

〉
MI(1+

n )

Dm
, α = β−β−, β+β+, (2)

and for the rest of the channels, the expressions are compactly written in [4]. The amplitudes
connecting the initial ground state (the initial amplitude I) and the final ground or excited state
(the final amplitude F) are

MI
(
1+

n

) =
(

1+
n

∥∥∥∥∥
∑

k

t±k σk

∥∥∥∥∥ 0+
i

)
, MJ

F

(
1+

m

) =
(

J+
f

∥∥∥∥∥
∑

k

t±k σk

∥∥∥∥∥ 1+
m

)
, (3)

where t±k is the flavor-changing operator for the kth nucleon in the β+ or β− direction.
The quantity Dm is the energy denominator containing the average energy of the 1+ states
emerging from the two pnQRPA calculations, one for the initial nucleus and the other for the
final nucleus. The denominator can thus be written as

Dm = (
1
2� + 1

2 [E
(
1+

m

) + Ẽ
(
1+

m

)
] − Mic

2
)/

mec2 , (4)

where � is the nuclear mass difference of the ββ initial and final states, Ẽ
(
1+

m

)
is the energy

of the mth 1+ state in a pnQRPA calculation based on the initial ground state, E
(
1+

m

)
is the

same for a calculation based on the final ground state and Mic2 is the mass energy of the initial
nucleus. The quantity 〈1+

m |1+
n 〉 is the overlap between the two sets of 1+ states [2].

2.2. Gamow–Teller strength functions

The Gamow–Teller strength functions in the (p,n) (GT−) and (n,p) (GT+) directions consist
of the following quantities:

GT−
m =

∣∣∣∣∣
(

1+
m

∥∥∥∥∥
∑

k

t−k σk
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)∣∣∣∣∣
2

, GT+
m =

∣∣∣∣∣
(
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f

)∣∣∣∣∣
2

, (5)
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where 0+
i is the ground state of an (N, Z) nucleus and 0+

f is the ground state of an (N−2, Z+2)

nucleus. The states 1+
m are members of the set of 1+ states in the intermediate nucleus

of double-beta decay.

2.3. Neutrinoless double-beta decay

Along the lines described in section 2.1, the 0νββ-decay half-life can be written as [2, 5, 6][
t (0ν)

1/2

(
0+

i → 0+
f

)
α

]−1 = G(0ν)
α (M(0ν)′)2|〈mν〉|2 , α = β−β−, β+β+, β+EC , (6)

where 〈mν〉 is the effective neutrino mass [2]. The NME of (6) can be written as a linear
combination of the Gamow–Teller, Fermi and tensor terms [7, 8], i.e.

M(0ν)′ =
(

gA

gb
A

)2[
M(0ν)

GT −
(

gV

gA

)2

M(0ν)
F + M(0ν)

T

]
, (7)

where gb
A = 1.25 is the bare-nucleon value of the axial-vector coupling constant. Here we

consider only the final ground state or excited 0+ states since 0νββ decays to 2+ final states are
strongly suppressed [9]. Values for the phase-space factors G(0ν)

α are given in [2, 6, 10, 11] for
the value gA = 1.25 as is required by the definition of the NME M(0ν)

α

′
in the above equations.

Details of the associated NMEs are given e.g. in [2, 12].

2.4. Resonant neutrinoless double-electron capture

The resonant neutrinoless double-electron capture (R0νECEC) was studied in [13, 14] from
the lepton aspect points of view. There it was suggested that the fulfillment of a resonance
condition in this decay could enhance the decay rates up to a factor of a million. The R0νECEC
decay proceeds between two atomic states in the form

e− + e− + (A, Z) → (A, Z − 2)∗ → (A, Z − 2) + γ + 2X, (8)

where the capture of two atomic electrons leaves the final nucleus in an excited state that
decays by one or more gamma rays and the atomic vacancies are filled by outer electrons with
emission of x-rays. The corresponding half-life can be written as[

T R0νECEC
1/2 (J+)

]−1 = GECEC
0ν (J+)

∣∣MECEC
0ν (J+)

∣∣2 |〈mν〉|2�
(Q − E )2 + �2/4

, (9)

where J = 0, 2 is the angular momentum of the nuclear final state. The difference Q − E is
the degeneracy of the initial and final states, Q being the difference between the masses of
the initial and final atoms (decay Q value) and E is the total energy of the excited state in the
final atom (consisting of the nuclear excitation energy and the excitation energy of the two
holes in the electronic shells). The quantity � is the decay width of the two holes in the atomic
shells [13].

The phase-space integral for the R0νECEC mode can be written as

GECEC
0ν (J+) =

(
GF cos θC√

2

)4 g4
A

4π2 ln 2
m6

eN (J)2
x , (10)

where N (J)x is the normalization of the relativistic Dirac wavefunction for a uniformly
charged spherical nucleus [6] for the mode x relating to the atomic orbitals where the capture
is from. For the 0+ final states, the corresponding NME is related to the one of (7) by

MECEC
0ν (0+) = 1

RA
M(0ν)′ , RA = 1.2A1/3 fm. (11)

The involved NMEs for the 2+ final states have been detailed in [15].
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2.5. Beta transition amplitudes

Here we discuss only the Gamow–Teller type of allowed beta decays. For the Fermi and
first-forbidden transitions, involved in the lateral beta feeding of many nuclei participating
in double-beta processes, the reader is referred to the more detailed accounts in [8, 15, 16].
The allowed Gamow–Teller beta-decay transitions of interest in this work are of the type
1+ → 0+, 2+. For them, the log f t value is defined as [16]

log f t = log( f0t1/2) = log

[
6147

BGT

]
, BGT = g2

A

2Ji + 1

(
J+‖

∑
k

t±k σk‖1+)2
(12)

for the initial 1+ and final J+ = 0+, 2+ states, and for the β+ or β− type of transitions. Here
f0 is the leptonic phase-space factor for the allowed β− or β+/EC decays as defined in [16].

3. Ingredients of the QRPA formalism

Here we summarize briefly the nuclear-structure ingredients that are used to compute the
NMEs encountered in the different processes listed in section 2.

3.1. The pnQRPA and the ‘gpp problem’

A thorough account of the formalism used in the pnQRPA model is given in [2, 16, 17].
Instead of giving the details of the formalism here, we concentrate on the implications of using
such a formalism in calculations of decay rates of various modes of double-beta decays. The
pnQRPA was successfully used to explain the long 2νββ half-lives in [18] by suppression
of the associated NME relative to its simple single-particle estimate. The explanation called
for the use of the strength parameter gpp of the particle–particle part of the proton–neutron
interaction in the 1+ channel. This parameter governs the relative magnitudes of the particle–
particle and particle–hole terms in the nuclear Hamiltonian and the wavefunctions obtained
thereby. While the couplings of the particle–hole channel were fixed by fitting the observed
energy of the 1+ GTGR, there was no direct way of fixing the couplings of the pp channels
acting on the same states. This ambiguity was coined the ‘gpp problem’ and ever since the
determination of the exact value of this parameter has caused vivid discussion (see sections 7.1
and 7.2).

The schematic delta nuclear force was used in the gpp study of [18] but similar calculations
were performed also in [19] for 2νββ decays and in [17] for β+/EC decays by the use
of realistic G-matrix-based two-body interactions. These studies were later extended to the
particle-number-projected pnQRPA in [20, 21] and to the renormalized pnQRPA (RQRPA) in
[22, 23]. Since then the gpp-related problems have been discussed in the frameworks of exactly
solvable models, group theoretical approaches, exact shell-model schemes and by the use of
symmetry arguments.

3.2. The multiple-commutator model for decays to excited states

The multiple-commutator model (MCM) [24, 25] is designed to connect excited states of an
even–even reference nucleus to states of the neighboring odd–odd nucleus. Earlier the MCM
has been used extensively in the calculations of double-beta-decay rates e.g. in [10, 26]. The
states of the odd–odd nucleus are given by the pnQRPA and the excited states of the even–even
nucleus are generated by the (charge conserving) QRPA (ccQRPA) described in detail in [16].
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One can take a 2+
1 phonon (the collective first 2+ state in an even–even nucleus) of the

ccQRPA and build an ideal two-phonon J+ state of the form

|J+
2−ph〉 = 1√

2

[
Q†(2+

1 )Q†(2+
1 )

]
J|QRPA〉 , (13)

where |QRPA〉 is the vacuum of the ccQRPA and Q†(2+
1 ) creates the 2+ collective state

(phonon). An ideal two-phonon state consists of partner states Jπ = 0+, 2+, 4+ that are
degenerate in energy, and exactly at an energy twice the excitation energy of the 2+

1 state. In
practice, this degeneracy is always lifted by the residual interaction between the one- and
two-phonon states [27].

3.3. The proton–neutron microscopic anharmonic vibrator approach and four-quasiparticle
degrees of freedom

The microscopic anharmonic vibrator approach (MAVA) was first developed for the description
of the electromagnetic properties of one- and two-phonon states in even–even heavy nuclei in
[27]. It was later extended to the description of beta decays in [28] where the formalism of
this proton–neutron MAVA (pnMAVA) is reviewed in detail. Lately it was applied to the 2νββ

decays of 76Ge [29] and 100Mo [30]. In [29, 30], it was found that the four-quasiparticle degrees
of freedom embedded in the MAVA formalism change very little the 2νββ-decay observables
and gross structure of the Gamow–Teller strength functions GT− and GT+ defined in (5).
Hence, it can be concluded that the pnQRPA is a rather robust formalism for the description
of 2νββ-decay observables even beyond its basic two-quasiparticle nature.

4. Single-particle aspects of double-beta decays

The very basic ingredients of the QRPA-based double-beta calculations are the selection of
the valence single-particle space and the associated single-particle energies. These in turn are
connected to the occupations of the single-particle orbitals. These occupations play a key role
for many observables related to beta and double-beta decays.

4.1. Size of the single-particle space

As mentioned above, a proper selection of the active single-particle space is crucial for the
success of the QRPA calculations. In particular, the inclusion of all the spin–orbit partners
in the single-particle basis is essential for the pnQRPA results to satisfy the Ikeda 3(N − Z)

sum rule [16]. In [31], the aspects of including single-particle states beyond the minimal one
harmonic-oscillator major shell were discussed and illustrated for the 0νββ ground-state-
to-ground-state decays of 76Ge, 82Se, 128,130Te and 136Xe. A similar study was performed in
[32, 33] for the 0νββ decays of 76Ge, 82Se and 136Xe to the first excited 0+ states in 76Se, 82Kr
and 136Ba. In these works, the final 0+ states were assumed to be members of the two-phonon
0+, 2+, 4+ triplet discussed in section 3.2 and displayed in equation (13). These triplets have
been observed experimentally in numerous nuclei [34].

In all these studies, the importance of including all spin–orbit partners beyond the simple
one valence harmonic-oscillator shell used in the shell-model calculations [35] of double-beta
processes was stressed. Omission of these spin–orbit partners and the other single-particle
states around the valence shell could cause a serious underestimation of the magnitudes of the
0νββ NMEs. The effects turned out to be somewhat different for the ground-state-to-ground-
state and ground-state-to-excited-state decays [31, 33].

5
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4.2. Role of the orbital occupancies

The experimental work of [36, 37] in measuring the single-particle-orbital occupancies in the
valence 1p−0f5/2−0g9/2 space in 76Ge and 76Se has been an incentive to many theoretical
investigations about the role of these occupancies in the 0νββ-decay rates of various nuclei.
In the first of these investigations [38], the measured occupancies in 76Ge [36] were used to
modify the mean-field single-particle energies such that the experimental occupancies were
reproduced. This led the NME of the 76Ge decay to come closer in value to the corresponding
shell-model-computed [39] NME, which was an interesting result by its own right. Later
the effect was verified in [40]. Also within the shell model, the replacement of the original
computed orbital occupancies with the occupations simulating the experimental ones caused
the computed NME to approach the one obtained in the pnQRPA [35].

An extensive study of these effects was performed in [31] for the ground-state-to-ground-
state 0νββ decays of the 76Ge, 82Se, 128,130Te and 136Xe nuclei and for the ground-state-
to-excited-state decays of the 76Ge, 82Se and 136Xe nuclei [32, 33]. In these studies, the
BCS-computed single-particle occupancies were replaced by the shell-model-computed [39]
single-particle occupancies. It was found that no drastic effects upon the 0νββ decay rates
emerged although the effects were different in the case of the ground-state-to-ground-state
and ground-state-to-excited-state transitions. For more details, the reader is referred to the
mentioned original articles.

5. Short-range correlations and other refinements of the NME calculations

The traditional way to account for the short-range correlations between the two decaying
nucleons in the 0νββ processes has been to use the Jastrow correlation function [41]. These
correlations cause an effective repulsion between the two decaying nucleons so as to prevent
their overlap in the 1 fm region of their relative distance. This distance corresponds to the
large average momentum exchange (∼ 200 MeV) occurring in the propagation of the virtual
Majorana neutrino between the two decay vertices. The use of the Jastrow correlator causes
an unrealistically large suppression of the 0νββ NMEs as noticed in [42]. In this article, it
was proposed that the Jastrow short-range correlations should be replaced by the correlations
affected by the unitary correlation operator method (UCOM) [43].

The UCOM is a softer way to account for the short-range correlation effects in the 0νββ

decays than the Jastrow method, as pointed out in [42] for the 0νββ decay of 48Ca, treated
in the shell-model framework. The related effects were further studied for the pnQRPA in
[12, 44] and the obtained NMEs were reviewed in [45]. Results of these studies were verified
in [46] where also a self-consistent approach was devised with compatible results with the
UCOM method. In all these studies, the magnitudes of the UCOM-correlated NMEs were
larger than the magnitudes of the Jastrow-correlated NMEs.

Further refinements in the computation of the 0νββ decays were introduced in [7] in the
form of finite-size dipole form factors of nucleons and higher order nucleon currents, including
the interference between the vector, axial-vector and induced pseudo-scalar contributions.
All the latest calculations include these corrections to the 0νββ NMEs. The short-range
correlations and the finite-size and higher-order-current refinements were studied in detail in
[44] and later in [39, 47].

6. Competition between beta decays and double-beta decays

The nuclei 48Ca and 96Zr share the same interesting feature: they both beta decay and double-
beta decay. In both cases, the initial nuclei 48Ca and 96Zr β− decay extremely slowly to the

6
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lowest 6+ (6th forbidden non-unique decay), 5+ (4th forbidden unique decay) and 4+ (4th
forbidden non-unique decay) states in 48Sc and 96Nb. After this, they decay fast to the excited
states in 48Ti and 96Mo. In the unique beta decays, only one NME is involved, whereas in the
non-unique decays, several matrix elements are involved (for review of the underlying lepton
and nuclear-structure aspects, see [48, 49]).

In [50], it was found by using the shell-model approach that the computed single-beta-
decay half-life of 48Ca was some 25 times longer than the measured 2νββ decay half-life of
48Ca. The beta-decay half-life was shown to be dominated by the 4th forbidden unique decay
to the 5+ state in 48Sc with a computed half-life of 1.1+0.8

−0.6 × 1021 years. In [51], the nuclear
model that was used to describe the nuclear wavefunctions involved in the A = 96 decays
was the pnQRPA. As in the case of 48Ca also here the beta-decay half-life turned out to be
dominated by the 4th forbidden unique decay to the 5+ state in 96Nb with a computed half-life of
2.4×1020 years. This half-life is an order of magnitude longer than the measured 2νββ decay
half-life of 96Zr. This finding leads to the important conclusion that the single-beta-decay
channel does not contaminate the geochemical measurements of the double-beta half-life
of 96Zr.

7. Theoretical and experimental probes of the double-beta-decay NMEs

General investigations of the important ingredients of the NMEs related to 0νββ decays have
been performed in [39, 44, 47]. These surveys into the guts of the NMEs have to do with the
‘gpp problem’, multipole decompositions, radial dependences and short-range correlations.
Below we address a number of important aspects of the 0νββ NMEs with respect to these
analyses and with respect to the complementary experimental information accumulating in
the recently performed experiments on various observables related to the 2νββ and 0νββ

decays.

7.1. The parameter gpp from two-neutrino double-beta decays

The idea of fixing the value of the strength parameter gpp (particle–particle channel of the
proton–neutron two-body interaction) by the data on half-lives of 2νββ decays (see the recent
compilation [52]) was advocated in [53] and adopted in many subsequent works dealing with
the 0νββ decays. The method is based on the idea that the 2νββ NME represents a bulk
property of the GT− and GT+ amplitudes which pnQRPA can describe reliably. Fixing the
value of gpp by the experimental value of the 2νββ NME improves the stability of the 0νββ

NME with respect to the varying sizes of the single-particle valence spaces used in the pnQRPA
calculations [53]. A shortcoming of the method is that it can be used only for those nuclei
for which the 2νββ decay half-life is known experimentally. Also in the cases of a (near)
single-state dominance (SSD) (see section 7.5), this method could lead to a contradiction
between the computed and measured β− and EC decay rates of the intermediate 1+ ground
state, as discussed in the following section.

7.2. The parameter gpp from beta decays

In the previous section, the experimental value of the 2νββ NME was mentioned as a way to
fix the value of the strength parameter gpp. An alternative to it would be to use the measured
log f t value (see equation (12)) of the β− decay of the lowest 1+ state in the intermediate
nucleus of the double-beta decay. This method is the only alternative for those nuclei where
the 2νββ decay half-life is not known, as demonstrated in the recent work [8] where a set of
seldom studied 2νββ and 0νββ decays was investigated for the half-life estimates. The use

7
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of beta decays in determining the value of gpp was also advocated in [54] in cases where the
2νββ decay rate is to a large extent determined by the virtual transition through the 1+ ground
state of the intermediate nucleus (SSD, see section 7.5). In these cases, it could be misleading
to determine the value of gpp by the experimental 2νββ decay half-life since this can lead to
quite wrong computed log f t values for the β− and EC decays of the 1+ ground state of the
intermediate nucleus, as demonstrated for the 116Cd and 128Te decays in [54].

Recently, the measurements of beta decays related to double-beta processes have gained
new impetus. An example constitutes the experiments in the TITAN ion trap at the TRIUMF
radioactive beam facility [55].

7.3. Charge-exchange reactions

Charge-exchange reactions are one of the major tools for the scrutiny of the strength functions
of various multipole transitions in nuclei [56]. The most familiar of these reactions are the
(p,n) and (n,p) reactions (see e.g. [57]) that correspond to the GT− and GT+ strength functions
(see section 2.2), respectively. Recently, the other type of charge-exchange reactions (d,2He),
corresponding to the GT+ branch, have attracted attention [58–62]. The GT− type of reaction
(3He,t) has also raised interest as discussed in [63].

In the (d,2He) and (3He,t) works, the measured GT− and GT+ strength functions are used
to reconstruct the NMEs of the 2νββ decays in several nuclei (see e.g. [64] and the previously
mentioned works). Such reconstruction, if successful, can help in constraining the parameter
spaces of different nuclear models aiming at calculations of the 2νββ NME. In these works,
the focus has been to learn something about the decomposition of the 2νββ NMEs (the various
1+ contributions in the intermediate nucleus) and even go beyond and try to map e.g. the 2−

contributions in order to learn something about the 0νββ NME.

7.4. Muon capture

The charge-exchange reactions can be used directly or indirectly to access the virtual transitions
occurring in the 2νββ and 0νββ decays. As proposed in [65, 66], these virtual transitions
can also be probed indirectly via the ordinary muon-capture (OMC) reaction. This can be
achieved by capturing an atomic K-shell muon in the final nucleus of double-beta decay
thus reaching states of the intermediate nucleus of double-beta decay. The advantage of this
method is that due to the large mass of the captured muon (some 200 times the mass of an
electron), the capture transitions can reach highly excited states in the intermediate nucleus.
The disadvantage is that theoretically the description of the OMC process is complicated by
the interference of the induced pseudoscalar current with the vector and axial-vector currents
of the nucleons. This is because the importance of the pseudoscalar current is magnified by
the large momentum exchange between the muon and the initial nucleus.

The usefulness of the OMC in probing the virtual transitions depends on how well the
strong OMC transitions correspond to the strong virtual transitions in the 2νββ and 0νββ

decays. In [67], it was found by using the nuclear shell model with well-established two-body
interactions that the leading OMC and virtual transitions correlated strongly in the 2νββ

decays of 36Ar, 46Ca and 48Ca. This feature suggests that the OMC has the potential to be a
powerful tool to probe double-beta decays at least in light nuclei.

7.5. SSD in two-neutrino double-beta decays

Lately, the issue about the experimental reconstruction of the matrix elements for two-neutrino
double-beta decays by means of charge-exchange reactions (see section 7.3) and β− and
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electron-capture decays (see section 7.2) has attracted a lot of attention among experimentalists
and theoreticians. The literature on the subject is very rich and we shall focus here on the
essentials of the so-called single-state dominance (SSD). The SSD hypothesis states that if the
ground state of the intermediate odd–odd nucleus, mediating the 2νββ transition, is a 1+ state,
then, because in that case the energy denominator would be the smallest possible, the value of
the NME will be dominated by the product of the EC and β− matrix elements connecting the
initial and final ground states with the ground state of the intermediate nucleus. Because both
quantities can be determined experimentally, one may then obtain a model-independent value
for the 2νββ NME.

We have explored the possibility for SSD in a series of papers [68, 69] and concluded
that the SSD hypothesis may be good for some nuclei but for some other nuclei, the apparent
SSD is only an artifact. In the latter case, the value of the NME may indeed be close to the one
predicted by the SSD hypothesis but only via cancellations between low-lying and high-lying
transitions, not via the single virtual transition through the lowest 1+ state. The mechanisms
to produce the apparent SSD can be nicely tracked down by following the accumulation of the
2νββ NME as a function of the energy of the intermediate 1+ states. This question has been
addressed experimentally in the charge-exchange reactions and is still a matter of vigorous
investigation (see section 7.3).

7.6. Multipole decompositions of the 0νββ NMEs

The 0νββ NMEs M(0ν)′ can be decomposed into contributions of different intermediate
multipoles. This decomposition can be made in two ways, either through the different multipole
states Jπ of the intermediate nucleus or through different couplings J′ of the two decaying
nucleons [47, 70]. For the Gamow–Teller NME, these decompositions can be schematically
written as

M(0ν)

GT =
∑
Jπ

∑
J′

M(0ν)

GT (Jπ , J′) , (14)

where M(0ν)

GT (Jπ , J′) is given explicitly in [12, 47]. The Jπ decompositions were studied recently
for the 0νβ−β− decays to the ground states in [31] and to excited two-phonon states of (13)
in [33]. Both types of decomposition were studied for both the ground-state and excited-state
positron-emitting decays in [71].

In [71], interesting qualitative differences in the decompositions of the NMEs
corresponding to the decays of 106Cd to different final states in 106Pd were found. For the
ground-state NME, the decomposition in terms of Jπ was the typical one of the pnQRPA
calculations [31, 47] and the decomposition in terms of J′ was typical of the shell-model [70]
and pnQRPA [47] calculations. Here typical means that in the Jπ decomposition, the 1+

and 2− multipoles are the most prominent ones and in the J′ decomposition, there is a
large positive monopole contribution, a smaller negative quadrupole contribution and much
smaller, mostly negative, higher multipole contributions. For the one-ccQRPA-phonon states
(see section 3.2), the pattern resembles that of the ground state for the Jπ decomposition
but in the case of the J′ decomposition, the majority of the higher multipole contributions
are positive instead of negative. The behavior of the two-ccQRPA-phonon (see section 3.2)
NME is qualitatively totally different: both decompositions have both large positive and large
negative contributions. In the J′ decomposition, the monopole component is no more the
dominant one. The alternating structures of these decompositions conspire to produce larger
Jastrow than UCOM NMEs which deviates from the main stream of results (see section 5).

9
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7.7. Isospin symmetry breaking in double-beta-decay processes

One crucial question related to the renormalized pnQRPA (RQRPA) [22] is its reliability
in the vicinity of the pnQRPA collapse point that can be reached by increasing the value
of the coupling parameter gpp. The RQRPA ignores this collapse and thus becomes also
questionable from a more fundamental point of view. To begin with, the vanishing of the
2νββ NME is not an artifact of the pnQRPA but rather it is a manifestation of the underlying
isospin symmetry, as explained in [72]. The situation is better illustrated for the case of double
Fermi transitions where the matrix elements for the ground-state-to-ground-state transitions
should be exactly zero if the isospin symmetry is exactly obeyed by the approximations used
to calculate the involved nuclear wavefunctions. Both the pnQRPA and the RQRPA fail to
reproduce the vanishing of the NME at the symmetry restoration. But while the pnQRPA
collapses before reaching the symmetry point, the RQRPA passes over it and yields that way
non-physical results.

As pointed out in [72], an iso-quadrupole interaction between the final ground state and
the double analog state is needed to allow for a mixing between both states with a different T
but the same MT projection. The non-vanishing values of the double Fermi NMEs, obtained at
the symmetry-restoration point by the pnQRPA and RQRPA approaches, are essentially due
to the isospin admixture induced by the use of the BCS approximation. Thus, some caution
is in order when attempting a reconstruction of the double Fermi NME by the pnQRPA or
RQRPA. One should exercise similar caution when trying to construct the 2νββ NME by
double Gamow–Teller transitions in these theories.

7.8. IVSM contributions

Charge-exchange reactions (see section 7.3 and the references therein) can be used to measure
the GT− and GT+ strength functions in odd–odd nuclei. In the work of [57], the results
of measurements of the (p, n) and (n, p) charge-exchange reactions on 116Cd and 116Sn,
respectively, have been analyzed. It was shown that the dominant contribution to the cross
section σGT(0◦) for the 116Cd(p,n)116In reaction is due to the �l = 0 transitions around the
energy of the Gamow–Teller giant resonance (GTGR), and that a considerable amount of
strength lies at energies larger than the energy of the GTGR. Since these experiments cannot
distinguish between pure GT transitions and other transitions, a possible mechanism to explain
this strength is the excitation of the IVSM states by the action of the operator σ r2t± [73].

The interplay between the two types of modes, the GT± and the IVSM±, was studied in
the framework of the pnQRPA in [74], particularly in the energy domain E � 30 MeV relevant
for the bulk of the GT type of strength. The position of the IVSM− resonance, calculated at
about 34 MeV, is approximately 19 MeV higher than the GTGR which lies at about 15 MeV,
in good agreement with the systematics of [73]. The results of [74] do not show any significant
interference between the GT− and the IVSM− modes. The situation was found to be different
for the IVSM+ side of excitations. Theoretically, the IVSM+ strength is confined in the energy
range E � 30 MeV. In this interval, the IVSM+ intensity amounts to approximately 9.5
units of equivalent GT strength, the IVSM resonance appearing as a narrow state at energy
E ≈ 23 MeV, in agreement with [57].

It is interesting to note that in [57], the equivalent GT+ strength measured at energies
below 30 MeV was some 11 units. It was speculated that 6 units of this would be genuine
GT+ strength and the rest, 5 units, would come from the IVSM+ mode. The 6 units of GT+

strength would then connect strongly to the GT− strength at energies in the GTGR region and
beyond. This in turn would suggest that sizable contributions to the 2νββ NME may come

10
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from states lying at and above the energy of the GTGR. According to [74], it would seem that
at the GTGR energy and beyond, the bulk of the (n,p) strength would come from the IVSM+

and practically nothing from the GT+ branch. This would then exclude any sizable effect on
the double-beta-decay rate of 116Cd from energies at and beyond the GTGR energy [74].

7.9. Transitions near closed shells and the mixing between pairing and GT excitations

A typical energy spectrum from (3He,t) charge-exchange reactions on medium-mass nuclei
consists of a narrow peak (IAS) and a broad distribution (GTGR). The data for A = 48 [75]
show four states with T = I = 1, and a spin-dipole excitation at high energy. All these
excitations participate in beta-decay and electron-capture processes, and they can bring in
some very useful information about spin excitations. From the nuclear-structure point of view,
the collectivity of the spin modes, based on the vibrational picture of Bohr and Mottelson [76],
may be assessed at the level of the centroids of the energy spectra, but less accuracy can be
obtained at the level of the strength associated with the states. Thus, the strength of the GT
transitions may not be correctly reproduced unless the transition operator is renormalized. The
same problems appear in the shell-model description of the same states [77].

In [78], the available experimental information for states near closed shells, with spin
S = 0, 1 and isospin T = 0, 1, was analyzed in order to determine their structure as members
of isoscalar-pairing multiplets or as Gamow–Teller excitations at closed shells. The study of
[78] is different from the usual treatment of isoscalar pairing as an extension of the BCS
formalism, the use of which may be criticized due to the vicinity of the phase transition
between spherical and deformed pairing states.

The formalism of [78] was applied to calculate the response of 58Cu to spin–isospin
probes. The validity of the isoscalar and isovector pairing vibrational model was tested and to
it Gamow–Teller excitations were added. The ground state of 58Ni was described as the lowest
excited isovector pairing mode of 56Ni. The 1+ states in 58Cu were described as a superposition
of Gamow–Teller and pairing phonons. The RPA+NFT procedure of [78] shows that the
resulting effective charges are indeed energy dependent. This departure from the commonly
assumed scheme of a single effective charge for all transitions (like in the shell-model case) is
essential to preserve the Ikeda sum rule. The results shown in [78] demonstrate the importance
of including pairing degrees of freedom together with Gamow–Teller excitations in the cases
where the number of particles outside a shell closure is very small (say 2 or 4). This is relevant
for the treatment of the single- and double-beta decays around closed shells, like for the
128,130Te isotopes, as will be discussed in the following section.

7.10. Decays near closed shells: the case of 128,130Te

A weakness of the pnQRPA method is the fragility of its results based on the use of the
BCS approximation for nuclei near closed shells, like in the case of the tellurium isotopes.
The results of [77] on the interplay between pairing vibrations and Gamow–Teller excitations
were used to construct a model where pairs of protons are treated as pairing excitations
and the neutrons described as quasiparticles [79]. In this scheme, the vacuum state is the
product of the proton closed shell (Z = 50) and the BCS vacuum for neutrons. In both the
initial and final nuclei, the neutrons are described as quasiparticles moving in a common BCS
vacuum state and proton states lie above (below) the Fermi energy. The model of [79] takes into
account Gamow–Teller bosons �+

I=1M,T=1Tz,n
(which include isoscalar-pairing admixtures) and

the proton isovector-pairing boson �+
00,11,1. The initial and final states are described by

one proton-pairing phonon (Te isotopes) and two proton-pairing phonons (Xe isotopes),
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respectively. The procedure followed to extract the values of the various fields is described
in [79].

The whole 2νβ−β− process is divided into two stages. In the first decay 128,130Te(Z =
52)→ 128,130I(Z = 53), the first electron–antineutrino pair is emitted. The nuclear term
of the associated interaction is proportional to the Gamow–Teller operator [77]. It creates
intermediate states upon which another Gamow–Teller operator acts, leading to the final state
through the transition 128,130I(Z = 53)→ 128,130Xe(Z = 54). These intermediate states must
be treated as final (initial) states in the NFT sense [79], for the first (second) stage of the
process, respectively. The couplings of the pairing sector are determined from the observed
mass differences that yield the energy of the isovector-pairing excitations. The isoscalar-
pairing coupling is taken from [78], scaled to the actual masses A = 128, 130. One particular
feature of the formalism is the energy dependence of the renormalization factors which appear
in the expression of the matrix elements between initial (final) and intermediate states [79].
In the standard pnQRPA, these factors are just BCS occupation factors. The results shown in
table II of [79], for A = 128 and A = 130, show the suppression of the NMEs which was
obtained without any additional renormalization of the couplings of the pnQRPA. We believe
that this is a clear improvement in the theoretical description of 2νβ−β− observables in this
mass region.

8. Positron-emitting and ECEC processes

A lot of work has been done in experimental [52] and theoretical [1, 2] investigations of
the double-β− decays of nuclei due to their favorable decay Q values. The positron-emitting
modes of decays, β+β+, β+EC and ECEC, are much less studied. Theoretical studies of these
modes include reference [4] for the general, nuclear-model-independent frameworks of two-
neutrino β+β+, β+EC and ECEC decays and reference [6] for the general frameworks of the
neutrinoless β+β+ and β+EC decays. The formalism for the resonant neutrinoless double-
electron capture (R0νECEC) was first developed in [13] and later discussed and extended to its
radiative variant (0νγ ECEC) in [14]. Experimental search for such processes was performed
e.g. in [80–83].

8.1. Two-neutrino processes

The first nuclear-structure calculations of the NMEs involved in the above decays were
performed for the two-neutrino and neutrinoless β+β+ decay channels of 78Kr, 96Ru, 106Cd,
124Xe, 130Ba, 136Ce and 148Gd in [84]. After this, the two-neutrino β+β+, β+EC and ECEC
decays of 58Ni, 96Ru, 106Cd and 136Ce were discussed in [85] and later the two-neutrino β+β+,
β+EC and ECEC decays and neutrinoless β+β+ and β+EC decays in 58Ni, 78Kr, 96Ru, 106Cd,
124Xe and 136Ce were addressed in [86]. All of these calculations considered transitions to
the final ground states only. Later the two-neutrino β+β+, β+EC and ECEC decays of 78Kr,
92Mo, 96Ru, 106Cd, 124Xe and 130Ba were examined in [26] for both the ground states and
first excited 0+ states. This study was complemented by a joint theoretical and experimental
investigation for the decay of 106Cd in [87].

The RQRPA was used in [23] to calculate the NMEs of the two-neutrino β+β+ decays
of 78Kr and 106Cd to the ground and first excited 0+ states of the final nuclei. In [68, 69], the
SSD hypothesis was examined and the NMEs related to the two-neutrino ECEC decays of
106Cd and 136Ce to the final ground state and two lowest excited 0+ states were derived. More
recently in [88], the two-neutrino β+β+, β+EC and ECEC modes of decay were discussed
under the SSD hypothesis, without a quantitative nuclear-structure calculation, for several
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Table 1. R0νECEC decay transitions with degeneracy parameters Q − E derived from Q-value
measurements of the last column. Also the involved atomic orbitals have been given. The second-
last column lists the currently available half-life estimates with the reference indicated in the last
column.

Transition Jπ
f Q − E (keV) Atomic orbitals CECEC References

74Se → 74Ge 2+ 2.23 L2L3 (0.2−100) × 1043 [92]
96Ru → 96Mo 2+ 8.92(13) L1L3 [93]

0+? −3.90(13) L1L1
102Pd → 102Ru 2+ 75.26(36) KL3 [94]
106Cd → 106Pd 0+? 8.39 KK (2.1−5.7) × 1030 [71]

(2, 3)− −0.33(41) KL3 [94]
112Sn → 112Cd 0+ −4.5 KK > 5.9 × 1029 [95]
136Ce → 136Ba 0+ −11.67 KK (3−23) × 1032 [96]
144Sm → 144Nd 2+ 171.89(87) KL3 [94]
152Gd → 152Sm 0+

gs 0.91(18) KL1 ∼ 1 × 1026 [97]
156Dy → 156Gd 1− 0.75(10) KL1 [98]

0+ 0.54(24) L1L1 [98]
2+ 0.04(10) M1N3 [98]

162Er → 162Dy 2+ 2.69(30) keV KL3 [93]
168Yb → 168Er (2−) 1.52(25) keV M1M3 [93]

nuclei and for several 0+ and 2+ final states. A more refined NME and half-life calculation of
the two-neutrino β+β+, β+EC and ECEC decays of 106Cd to the ground state and first excited
0+ state in 106Pd was carried out in [89]. The two-neutrino β+β+, β+EC and ECEC decays
of 106Cd to the final ground state were also examined within the Hartree–Fock–Bogoliubov
model in [90].

8.2. Neutrinoless modes

The calculation of the NMEs related to the neutrinoless positron-emission modes was started,
as mentioned earlier, in [84, 86]. Later, in [10], the ground-state neutrinoless β+β+ decays
of 124Xe and 136Ce were compared with several β−β− decays and in [11], a systematic
study of the neutrinoless β+β+ and β+EC decays to excited 0+ states in 92Mo, 96Ru, 106Cd,
124Xe, 130Ba and 136Ce was performed. In [91], the two-neutrino β+β+, β+EC and ECEC
decays as well as the neutrinoless β+β+ and β+EC decays of 106Cd to the ground state were
treated within the second quasi random phase approximation framework. In [71], the positron-
emitting neutrinoless double-beta decays of 106Cd were revisited with up-to-date short-range
correlations, nucleon form factors and higher order nucleonic currents.

8.3. Search for the resonant neutrinoless ECEC decay

Measurements of the R0νECEC decays for various nuclei were carried out in [81, 82].
Table 1 lists the best known cases of R0νECEC transitions in various nuclei where Q-value
measurements have been conducted recently. These Q values have been measured exploiting
the Penning-trap techniques. In the cases of 96Ru and 106Cd, the assignment of 0+ spin-parity
to the resonant state is uncertain.
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In the table, we also list the estimated half-lives for the cases for which such estimates
exist. The reference of the last column indicates the origin of the estimate. In the table, a
quantity CECEC is given and it ties to the R0νECEC half-life through

T R0νECEC
1/2 = CECEC(〈mν〉[eV]

)2 years , (15)

where the effective neutrino mass should be given in units of eV. In all the listed cases, the
decay rates are suppressed by the rather sizable magnitude of the degeneracy parameter. There
are much more favorable cases listed in table 1 but the associated NMEs are still waiting for
their evaluation.

9. Toward QRPA theory for double-beta decay of deformed nuclei

The issue of double-beta-decay calculations for deformed nuclei was raised several years
ago, in connection with the measurements of the decay of nuclei such as Mo, Nd and U.
The NMEs corresponding to the DBD transitions (both the 2νββ and 0νββ modes) in some
of the deformed nuclei where DBD can be measured have been calculated using deformed
Hartree–Fock mean field [99], pseudo-SU3 [100, 101] and deformed QRPA models [102, 103].
Other attempts have made use of a deformed Nilsson mean field plus pairing plus quadrupole
residual interactions [104], or the nuclear energy-density-functional method with generator
coordinates plus angular-momentum projection [105].

From a conventional point of view, in dealing with deformed nuclei, one may, for instance,
adopt a Nilsson scheme for the single-particle levels and then solve the inverse gap equations to
extract single-quasiparticle occupation numbers from the available experimental information
on energy gaps. After this, one can write pnQRPA equations in the resulting quasiparticle
basis [76]. The proton–neutron interaction may be fixed from phenomenology [103], though
the correlated two-quasiparticle (one phonon) excitations do not actually have good angular
momentum. The angular-momentum symmetry can be recovered by performing a numerical
projection on angular momentum [106]. This scheme is feasible but numerically involved,
because of the large number of states which should be included in the single-particle basis,
and because of the dependence of the pnQRPA results upon locally defined deformation
parameters.

While a lot of experience has accumulated in the past concerning two-like-particle
excitations in deformed nuclei (e.g. electric and magnetic excitations in deformed nuclei
based on the excitations of the same kind of particles, either neutrons or protons) [107],
much less experience has been gained in treating proton–neutron excitations in deformed
nuclei. Recently, the results of (deformed) Hartree–Fock mean-field treatments of double-beta
emitters have been reported [99]. These results may be confronted with those produced by
the Madrid group [102]. The comparison between both sets of results shows very important
differences, mainly in the sector of the calculations concerning self-consistent deformations.
We may then conclude this section by saying that the field of pnQRPA treatments of double-
beta decays in deformed nuclei is still open for improvements. Work is in progress concerning
this matter [108].

10. Calculated values of double-beta observables

In this section, we summarize our recent calculations concerning the different modes of
double-beta decays. The calculated observables include the NMEs, decay half-lives and
possible auxiliary information concerning the related beta-decay and other observables. These
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Table 2. Our recent QRPA calculations of double-beta observables (NMEs, half-lives, etc) for the
nuclei listed in the first column.

Nuclei Mode References

70Zn, 86Kr, 94Zr β−β− [8]
104Ru, 110Pd, 124Sn
74Se R0νECEC [92]
76Ge, 82Se β−β− [29, 31–33, 38, 44, 45]
96Zr, 116Cd β−β− [12, 45]
100Mo β−β− [12, 30, 45]
106Cd β+/EC, R0νECEC [71, 89]
112Sn R0νECEC [95]
128Te, 130Te β−β− [12, 31, 45, 79]
136Xe β−β− [12, 31, 33, 45]
136Ce R0νECEC [96]

calculations have been summarized in table 2 where the first column lists the nuclei, the second
column the studied decay modes and the third column the references where these nuclei have
been investigated.

Acknowledgments

This work has been partially supported by the Academy of Finland under the Finnish Centre
of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Programme at JYFL).

References

[1] Avignone F T III, Elliott S R and Engel J 2008 Rev. Mod. Phys. 80 481–516
[2] Suhonen J and Civitarese O 1998 Phys. Rep. 300 123–214
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