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Abstract

This paper is devoted to study the behavior, in the range of linear viscoelasticity, of shear flexible thin-walled beam
members constructed with composite laminated fiber-reinforced plastics. This work appeals to the correspondence princi-
ple in order to incorporate in unified model the motion equations of a curved or straight shear-flexible thin-walled beam
member developed by the authors, together with the micromechanics and macromechanics of the reinforced plastic panels.
Then, the analysis is performed in the Laplace or Carson domains. That is, the expressions describing the micromechanics
and macromechanics of a plastic laminated composites and motion equations of the structural member are transformed
into the Laplace or Carson domains where the relaxation components of the beam structure (straight or curved) are
obtained. The resulting equations are numerically solved by means of finite element approaches defined in the Laplace
or Carson domains. The finite element results are adjusted with a polynomial fitting. Then the creep behavior is obtained
by means of a numerical technique for the inverse Laplace transform. Predictions of the present methodology are com-
pared with experimental data and other approaches. New studies are performed focusing attention in the flexural–torsional
behavior of shear flexible thin-walled straight composite beams as well as for thin-walled curved beams and frames.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of slender composite structures is growing continuously in many applications of aeronautical,
mechanical, naval and even construction industries. The composite materials have many advantages that
motivate their use in structural applications. The most well-known features of composite materials are their
high strength and stiffness properties along with low weight, good corrosion resistance, enhanced fatigue life,
low thermal expansion properties among others (Barbero, 1999). Other important property of composite
materials is the very low machining cost (Jones, 1999) in comparison with common isotropic materials, i.e.
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2008.02.009

* Corresponding author. Tel.: +54 291 4555220; fax: +54 291 4555311.
E-mail address: mpiovan@frbb.utn.edu.ar (M.T. Piovan).

mailto:mpiovan@frbb.utn.edu.ar


M.T. Piovan, V.H. Cortı́nez / International Journal of Solids and Structures 45 (2008) 3466–3493 3467
steel and aluminum. As a consequence of the increasing applications of thin-walled beams constructed with
curved or straight shapes, many research activities have been devoted toward the development of theoretical
and computational methods for the appropriate analysis of such members.

In the past years, many structural models have been introduced to evaluate the mechanics of composite
thin-walled beams members under general static loads in the linear elastic range. Interesting models for linear
static analysis of thin-walled composite straight beams can be found in the works of Pollock and Sack (1995),
Barbero et al. (1993), Massa and Barbero (1998) and Kim and White (1997) among others. These models were
developed on the basis of shear-flexibility concepts. The work of Yu et al. (2005) and Volovoi et al. (1999a)
offers a good background for the case of Vlasov approaches of composite thin-walled straight beams.
Although most of mentioned models were derived taking into account warping (Pollock and Sack, 1995; Barb-
ero et al., 1993; Massa and Barbero, 1998), flexural–torsional coupling and including shear flexibility due to
bending, none of them was developed considering also the shear flexibility due to torsion-warping, that can be
important in some circumstances (which involve different stacking sequences, slenderness characteristics, type
of cross-section, etc). In recent years, the authors have developed models (Cortı́nez and Piovan, 2002; Piovan
and Cortı́nez, 2003, 2007a; Piovan, 2003) for curved and straight thin-walled beams accounting for compre-
hensive shear flexibility. That is, the shear flexibility is composed by the conventional terms due to bending or
flexure and the non-conventional term of warping torsion. It has been proved; that the inclusion of the shear
flexibility due to warping-torsion is crucial for the appropriate prediction of displacements and deformations
in elastically coupled thin-walled beams (Piovan and Cortı́nez, 2007a; Piovan, 2003). The aforementioned
approaches (Pollock and Sack, 1995; Barbero et al., 1993; Massa and Barbero, 1998; Piovan and Cortı́nez,
2003a, 2007a) are quite useful in linear static’s, however by themselves cannot allow the possibility to study
the behavior, for a given load, of progressive deformations along the time or the long-term structural response.
Under this behavior, also known as ‘‘creep effect”, the displacements and deformations of the structure reach
such a value that can eventually lead to the structural catastrophic collapse. This aspect is important in plastic
reinforced structures subjected to changes in environmental features such as humidity or temperature. Exam-
ples of these circumstances are bridges, pultruded profiles for out-door applications, etc. The viscoelasticity
concept offers the possibility to describe and analyse the creep behavior of composite structural material.

The structures constructed with laminated fiber-reinforced plastics are quite susceptible to suffer progres-
sive deformations along the time, principally due to the viscoelastic features in the matrix of the composite
material. Under these circumstances, it is of crucial importance the proper understanding of the viscoelastic
properties of composite plastic materials and their characterization in order to analyse the behavior of struc-
tural components. Thus, Barbero and Luciano (1995) developed a micromechanical model, to characterize lin-
ear viscoelastic solids with periodic microstructure. They deduced the analytical expressions, in the Laplace
domain, for the linear relaxation tensor of the matrix of a composite material whose viscoelastic behavior
is considered with a Maxwel–Voigt model (Mase, 1977) with four-parameters. The previous micromechanical
model (Barbero and Luciano, 1995) was employed by Harris and Barbero (1998) together with a macrome-
chanical model to predict the viscoelastic behavior of laminated composites under tensile loads. Qiao et al.
(2000) performed a study about linear viscoelastic thin-walled composite beams, describing the micromechan-
ical model (Barbero and Luciano, 1995) in the Carson domain and assuming that the matrix of the composite
material has linear viscoelastic behavior described according to a Maxwell model (Mase, 1977) with two-
parameters. In Barbero and Luciano (1995), as well as in Harris and Barbero (1998) and in Qiao et al.
(2000) new studies and comparisons with experiments have been made, showing a good correlation between
the predictions of the models and the experiments.

Although there is evidence of studies about linear viscoelastic analysis of thin-walled beams (Harris and
Barbero, 1998; Qiao et al., 2000; Lee and Ueng, 1995), most of them consider only axial or bending motions
based on structural models for straight beams taking into account only shear flexibility due to bending.
Recently, Oliveira and Creus (2003) developed a study of viscoelastic thin-walled straight beams by means
of a non-linear approach using finite shell elements. On the other hand, in the knowledge of the authors there
is no evidence of research on the linear viscoelastic behavior of thin-walled composite curved beams.

In the present article, a study on the linear viscoelastic behavior of thin-walled curved and straight beams
constructed with composite materials of polymeric matrix. The micromechanical model derived by Barbero
and Luciano (1995) is applied to a thin-walled curved beam model allowing for full shear flexibility derived
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by the authors (Piovan and Cortı́nez, 2003a, 2007b). It has to be mentioned that the curved beam model (Pio-
van and Cortı́nez, 2003a, 2007b) can be reduced to the straight case if one employs the condition of infinity
curvature radius. After a brief review of the micromechanical model (Barbero and Luciano, 1995) that
describes the linear viscoelastic behavior of the polymeric matrix, the macromechanical model for the
curved-straight beam is introduced and described in the Carson domain. Then, the scheme of solution based
on the method of finite elements is introduced. A finite element with four-nodes is employed in the computa-
tional task. The linear viscoelastic response of the structure is calculated in the Carson domain by means of the
aforementioned finite element. The creep behavior in the time domain is obtained by means of a numerical
procedure in the inverse Laplace transformation together with a procedure of polynomial adjustment of
the previous finite element results. Comparisons of the present model reduced to previous simplified
approaches and with experimental results are performed. New studies are performed attending particularly
the flexural–torsional behavior of shear flexible thin-walled straight composite beams and especially for
thin-walled curved beams. Thus, the methodology is employed to explore the influence of creep effect in dif-
ferent stacking sequences, cross-sectional shapes and in-plane or out-of-plane motions of thin-walled curved
beams.
2. Description of the macromechanical model

2.1. Brief review of the basics of the linear viscoelastic behavior for polymeric composites

The viscoelastic behavior of a polymeric composite material with periodic microstructure has been evalu-
ated analytically and experimentally by Barbero and Luciano (1995) and Luciano and Barbero (1994, 1995).
In these works, it was observed that the viscoelastic behavior of composite materials is exclusively due to the
polymeric matrix instead of the reinforcement fibers, because the creep effect does not have a measurable influ-
ence in the fibers, thus allowing the consideration of the fibers behavior as elastic. Also, the time variation of
Poisson’s ratios of matrix and fibers is quite difficult to be measured and consequently with the literature
(Aboudi, 1991) those coefficients are assumed invariable with the time. This criterion simplifies the expressions
in the derivation process without affecting the most relevant conceptual issues for the modeling procedure of
the linear viscoelastic relaxation components. On the other hand, this simplification showed to correlate quite
well with the available experimental data. For the interested reader on this particular subject, in the open lit-
erature (Aboudi, 1991; Luciano and Barbero, 1994, 1995; Barbero, 2007) clarifying topics and examples can be
found. Under these circumstances the micromechanical model for linear viscoelastic polymeric composites is
subjected to the following hypotheses (Barbero and Luciano, 1995):

H1: The polymeric matrix of the composite material has a linear viscoelastic behavior whereas the fibers are
supposed to behave elastically.

H2: The viscoelastic behavior of the matrix can be represented by means of simple spring-dashpot Maxwell
family models (Mase, 1977) to account only for secondary creep (with a two-parameter model) or to con-
sider both primary and secondary creep (with a four-parameters model).

H3: The Poisson’s ratios for fibers and polymeric matrix are considered constants.
H4: The composite material is assumed to be transversely isotropic.

The constitutive equations for a linear viscoelastic material can be obtained from experimental tests in the
absence of initial stresses or strains before the loading process. Then, strains and stresses as functions of the
time can be represented in the following form:
eðtÞ ¼MðtÞr ð1Þ
rðtÞ ¼ LðtÞe ð2Þ
where MðtÞ and LðtÞ are the functions of ‘‘creep compliance” and ‘‘relaxation”, which are obtained from tests
of creep and relaxation, respectively. In fact, a creep test allows obtaining the creep compliance function MðtÞ
for a given level of constant stress. If the function MðtÞ is independent of the stress level, then it represents a
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linear viscoelastic material. On the other hand, with the relaxation test one can obtain the relaxation function
LðtÞ for a given level of constant strain.

Now appealing to the Correspondence Principle – which can be employed to make an analogy between the
elastic and linear viscoelastic relaxation moduli of heterogeneous materials that have the same phase geometry
(Mase, 1977) – one can find a relationship between functions LðtÞ and MðtÞ. The transformation of a generic
function of time G(t) in the Carson domain (Laws and McLaughlin, 1978) is described as follows:
G
_

ð s_Þ ¼ OC½GðtÞ� ¼ s
_
Z 1

0

e� s
_

tGðtÞdt ¼ s
_

G
_

ð s_Þ ¼ s
_

OL½GðtÞ� ð3Þ
where s
_

is the variable of the Carson or Laplace domains, G
_

ð s_Þ is the Laplace Transform of function G(t) and
OL½GðtÞ� and OC½GðtÞ� are the Laplace and Carson transformation operators, respectively.

Then, taking into account (3) in expressions (1) and (2), it is possible to arrive (Qiao et al., 2000; Luciano
and Barbero, 1994, 1995) to the following relationship between the transformed creep compliance and relax-
ation functions:
L
_

ð s_ÞM
_

ð s_Þ ¼ 1 ð4Þ
Expression (4) can be employed to obtain the effective relaxation modulus LðtÞ if the creep compliance MðtÞ is
known.

Now the creep compliances for a two-parameter Maxwell (Qiao et al., 2000) model and for a four-param-
eter Maxwell–Voigt model, also called Maxwell–Kelvin model (Mase, 1977; Luciano and Barbero, 1995) are
described in the following functions of time:
MðtÞ ¼ 1

EðMÞ
þ t

gðMÞ
ð5Þ

MðtÞ ¼ 1

EðeÞ
þ t

gðMÞ
þ 1

EðV Þ
1� Exp �EðV Þt

gðV Þ

� �� �
ð6Þ
In (5) and (6) 1/g(M) is the slope of the secondary creep, as one can see in Fig. 1. In (5) 1/E(M) represents the
strain deformation lumped at time t = 0. In (6) E(e) and E(V) are elastic moduli and together with g(V) describe
the primary creep. Transforming (5) and (6) to the Carson domain and taking into account (4) it is possible to
arrive to the expressions of the effective relaxation modulus of the linear viscoelastic matrix employing the
Maxwell model and the Maxwell–Voigt model, respectively:
Fig. 1. Representation of the creep pattern.
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The expression (7) shows a good correlation with experimental data when only the secondary creep is of inter-
est (Qiao et al., 2000; Harris and Barbero, 1998). On the other hand expression (8) reflects a very good agree-
ment with experimental results for the primary and secondary creep in view of the work of Luciano and
Barbero (1994). Expressions (7) or (8) imply that the overall structural beam model can be suited for a
two-parameter or four-parameter viscoelastic model depending on the experimental data available that char-
acterizes a particular specimen of composite material.

The expressions of the Lamé properties for the matrix can be described in terms of the effective relaxation
modulus E

_

M as shown in (9). The expressions of the Lamé properties for the elastic fibers are represented in
(10).
k
_

M ¼
E
_

MmM

ð1þ mMÞð1� 2mMÞ
; l

_
M ¼

E
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M

2ð1þ mMÞ
ð9:a; bÞ

kF ¼
EF mF

ð1þ mF Þð1� 2mF Þ
; lF ¼

EF

2ð1þ mF Þ
ð10:a; bÞ
In expressions (9) and (10), mF, mM and EF are Poisson coefficient of fiber, Poisson coefficient of matrix and
Elastic modulus of the fibers, respectively. Remember that these properties are constants according to the
hypotheses H1 and H3. Note also that Lamé properties of the fibers are constants.

The components of the relaxation tensor for transversely isotropic material can be represented with the fol-
lowing expressions (Qiao et al., 2000):
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where L
_

ij are the components of the relaxation tensor of a linear viscoelastic polymeric solid with long rein-
forcing fibers oriented in the principal direction. These components depend on the Lamé properties of fibers
and matrix and the fiber volume fraction VF. The expressions of the relaxation components L

_

ij were intro-
duced by Luciano and Barbero (1994).

The unidirectional plies are modeled with the assumption of a plane stress state, that is:
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where the reduced relaxation components Q
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ij are given by:
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If the stacking sequence of a segment of the cross-section has a layer with continuous strand mat (CSM) which
is transversely isotropic, then expression (12) can be written as:
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are given by the following expressions obtained by Harris and Barbero (1998):
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The expressions (12) and (14) can be employed in the usual form (Jones, 1999; Barbero, 1999) to calculate the
relaxation components for the laminates of the cross-sectional panels.

2.2. Description of the structural model in the Carson domain

In this paragraph, a structural model of composite thin-walled curved beams developed earlier by the
authors (Piovan and Cortı́nez, 2003a; Piovan, 2003) is reformulated in the Carson domain in order to perform
studies about the linear viscoelastic response of curved thin-walled beams with polymeric matrix. Fig. 2(a)
shows an overall description of the curved beam. In Fig. 2(b) one can see two reference systems. The principal
reference system is located at point C, whereas an auxiliary reference system is located at point A. The motion
variables are measured with respect to the point C. The basic constitutive equations for the laminates are ref-
erenced from point A.

Thus, the strains of a laminated plate of the curved thin-walled composite beam can be represented in the
Carson domain as:
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where uxc is the axial displacement of the cross-section, hz and hy are bending rotation parameters (if the
curved beam is reduced to the case of a straight beam, these parameters are the bending rotations), uyc and
uzc are the transversal bending displacements of the cross-section, /x is the twisting angle and hx is a measure
of the warping intensity. In expressions (16) the entities Y(s), Z(s), r(s) and l(s) are geometric cross-sectional
parameters – see Fig. 2(b) – that have no changes in the time.



Fig. 2. Structural member. (a) General layout. (b) Cross-section.
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The functions F , r(s) and l(s) are defined (Piovan and Cortı́nez, 2003a) as follows:
F ¼ R
Rþ Y ðsÞ ; rðsÞ ¼ ZðsÞ dY

ds
� Y ðsÞ dZ

ds
; lðsÞ ¼ Y ðsÞ dY

ds
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ds
ð19:a–cÞ
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It is important to note that s and s
_

are inherently different because the first one is the geometric co-ordinate in
the circumferential direction, whereas the second one is the variable of the Carson domain. Expression (20)
holds for both open and closed cross-sections, because in the case of open cross-sections, it is verified the con-
dition w

_

ðs; s
_Þ ¼ 0 (Piovan, 2003). The coefficients A

_

11 and A
_

66 are modified relaxation coefficients in the Car-
son domain (Piovan and Cortı́nez, 2007a).



M.T. Piovan, V.H. Cortı́nez / International Journal of Solids and Structures 45 (2008) 3466–3493 3473
The constitutive equations, in the Carson domain, of the beam stress-resultants in terms of the generalized
deformations are given by:
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The matrix in expression (22) has to be considered as the matrix of relaxation coefficients J
_

hk
ij of the beam.

These coefficients are given by the following form:
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for i = 1, . . . , 8; j = 1, . . . , 8; {h,k} = {1,6} and with:
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The coefficients A
_

kh, B
_

kh and D
_

kh are modified relaxation coefficients in the Carson domain. These coefficients
are obtained employing (12) or (14) in the general constitutive relation between resultant forces and moments
and mid-surface strains and curvatures, and neglecting (Piovan and Cortı́nez, 2003a) the circumferential resul-
tant force and moment (i.e. NSS = MSS = 0) and rearranging the remaining equations. This simplification in
the constitutive equations proved to offer good correlation of the curved/straight beam model predictions with
the experimental results in the linear elastic range (Piovan, 2003; Piovan and Cortı́nez, 2007a). If the stacking
sequence is especially orthotropic or symmetric balanced or quasi-isotropic the constitutive matrix in (22) can
be simplified because the only non-vanishing components are those of the diagonal and J

_
66
78 (Piovan, 2003).

Finally the equations of static equilibrium of the curved thin-walled composite beam are rewritten in the
Carson domain as it follows:
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The equilibrium Eqs. (25) are subjected to the appropriate boundary conditions defined in the Carson domain.
Expressions 26.a–26.c represent in the Carson domain the boundary conditions for a clamped end, a free end
and a simply supported free-to-warp end, respectively
u
_

xc ¼ u
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z ¼ u
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y ¼ /
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x ¼ h
_

x ¼ 0 at x ¼ 0 or x ¼ L ð26:aÞ

Q
_

X þ
M
_

Z

R
¼ Q

_

Y ¼ M
_

Z ¼ Q
_

Z ¼ M
_

Y �
B
_

R
¼ T

_

W þ T
_

SV ¼ B
_

¼ 0 at x ¼ 0 or x ¼ L ð26:bÞ

Q
_

X þ
M
_

Z

R
¼ u

_
yc ¼ M

_

Z ¼ u
_

zc ¼ M
_

Y �
B
_

R
¼ /

_

x ¼ B
_

¼ 0 at x ¼ 0 or x ¼ L ð26:cÞ

Consequently, once the boundary conditions are applied, the Eqs. (25) can be solved in the Carson domain
considering (22) and (23). Finally, in order to obtain the time response for the problem of linear viscoelasticity,
one has to use the inverse Laplace transformation in the solution expressions calculated in the Carson domain
employing the following forms:
GðtÞ ¼ O�1
L ½G

_

ð s_Þ� ¼ O�1
L

G
_

ð s_Þ
s
_

" #
ð27Þ
In expression (27), O�1
L ½�� is the operator of the inverse Laplace transformation, whereas G

_

ð s_Þ and G
_

ð s_Þ are
functions in the Laplace and Carson domains, respectively. The inverse transformation (27) can be performed
with either a symbolic or a numerical methodology. The first case is feasible for a quite limited set of config-
urations, specifically for simple loads and for cross-sections with special orthotropic or symmetric balanced
stacking sequences. On the other hand, the second case is more versatile allowing for general loadings and
complex stacking sequences.

Although, a symbolic analytical solution of the differential Eqs. (25) in the time domain is completely fea-
sible by means of an algebraic symbolic handling software such as MathematicaTM or MAPLETM, the advantage
is restricted to the cases explained in the previous paragraph and even if it would be possible to solve analyt-
ically certain complex problems, it takes a long calculation time (Piovan and Cortı́nez, 2002). These circum-
stances compel the employment of a numerical procedure based in the method of finite elements in order to
cope with the solution of more general problems related to the linear viscoelastic behavior of thin-walled
curved beams.

Note 1: The curved beam model (25) is completely coupled; however it can be decoupled if the conditions of
cross-sectional symmetry, at least, in the plane p and special orthotropic or even symmetric balanced
laminations are imposed. In these circumstances two subsystems can be decoupled; thus the Eqs.



M.T. Piovan, V.H. Cortı́nez / International Journal of Solids and Structures 45 (2008) 3466–3493 3475
25.a–25.c represent the In-plane motions (i.e. in the plane p) and Eqs. 25.d–25.g represent the out-of-
plane motions. Also under these conditions it is possible to integrate the corresponding equation in
order to obtain analytical or closed-form solutions (Piovan, 2003; Piovan and Cortı́nez, 2005).

Note 2: The model of the curved beam can be reduced to the case of a straight beam if the condition R ?1 is
imposed in equilibrium Eqs. (25) and the related boundary conditions (Piovan, 2003).

Note 3: It is interesting to point out that the Carson transform of a constant is the constant itself as one can
deduce from expressions (3) and (27). This simple fact avoids the transformations of many algebraic
entities of the model such as, for example, the applied forces among others.

3. Numerical approach based on the method of finite elements

A four-node iso-parametric finite element described in the Carson domain is introduced in this section. The
element, denominated ISOP4N, is employed to discretize the spatial domain of thin-walled composite curved
beams (Piovan, 2003; Piovan and Cortı́nez, 2002, 2003b). The interpolation expressions of the generalized dis-
placement in the Carson domain U

_

ið�xÞ are given by:
U
_

ið�xÞ ¼
X4

j¼1

f jð�xÞU
_ ðjÞ
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ð28Þ
where, le is the length of the element and:
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The vector of nodal displacement of the element can be described in the Carson domain as:
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Now, following the common procedures of the method of finite elements (Oñate, 1992; Zienkiewicz, 1980) but
here drawn in the Carson domain, one arrives to:
K
_j k

W
_n o
¼ P

_n o
ð32Þ
where K
_j k

is the global stiffness matrix in the Carson domain, whereas W
_n o

and P
_n o

are the global vector

of nodal displacements in the Carson domain and the global vector of nodal loads in the Carson domain,
respectively. A scheme of reduced integration (Oñate, 1992) is employed to avoid the shear-locking
phenomenon.

The numerical calculation scheme for the structural response of linear viscoelastic composite thin-walled
curved beams can be observed in Fig. 3. The first steps correspond to the definition of the micro and macrom-
echanics of the laminates, and the adoption of the structural model (curved or straight beam) and its main
characteristics (shear deformable or non-shear deformable). The finite element method is employed to discret-
ize the spatial domain of the beam. Note that in this article four-node isoparametric elements are employed,
however the calculation scheme can be also suitable for other types of elements (Piovan and Cortı́nez, 2002,
2003b). Then for each node, a set of NL values of the Carson variable s

_
is adopted, and for each value of s

_
the

structural response (node displacements, strains, etc.) is obtained. In these circumstances one has at each node
and element the viscoelastic behavior posed numerically in the Carson domain. At this point one may invert



Fig. 3. Calculation flowchart.
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the response in a given point posed in Carson domain in order to obtain the response in time domain. This can
be done by means of two different schemes. The first scheme implies the numerical inversion of the response
posed in the Carson domain arriving to a discrete response in the time domain, i.e. a set of values in the
instants t0, t1, t2, etc. that may be fitted with a certain set of power-law functions in order to reach to the con-
tinuous creep response (Qiao et al., 2000; Barbero, 2007). The second scheme is the one employed in the pres-
ent paper. Thus, a set of functions Pjð s

_Þ, j = 1,2,3, . . . ,1, is selected to fit the discrete responses of a given
displacement posed in the Carson domain leading to a continuous expression in the variable s

_
. Finally the

continuous response in the Carson domain is transformed into the time-domain by means of a numerical pro-
cedure of the Laplace inverse transformation such as Stehfest method or Piessens method or Durbin method
or Weeks method or Crump method, etc., as one can see in Mallet (2002). The set of fitting functions (33) can
be employed in order to obtain the algebraic expressions in the Carson domain. These functions proved to
reach very good performance when compared with the available analytical solutions (Piovan and Cortı́nez,
2002; Cortı́nez and Piovan, 2001).
Pjð s
_Þ ¼ s

_�1=j; with j ¼ f1; 2; 3; 4; 5; 6; . . . ;1g ð33Þ
Normally, one requires just a few fitting functions (33) and models with a few finite elements to reach good
results and good approximations. The set of functions (33) are one of the sets that may be employed in the
linear and nonlinear fit procedures that offers the software MathematicaTM (Wolfram, 1999).

The calculation scheme of the present approach is programmed in the software MathematicaTM which pro-
vides the context for doing numerical or symbolic analysis in the same environment. Thus, with this scheme
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one can obtain in a unified fashion analytical solutions (in the cases where it is possible) as well as numerical
approximations of the creep behavior.

4. Examples on the linear viscoelasticity of thin-walled beams

4.1. Validation of the linear elastic structural model

It is important to show examples of the validity of the linear elastic structural model employed. Take into
account that the general structural model employed in the present paper is a thin-walled curved beam for static
purposes which can be reduced (by means of R ?1) to a thin-walled straight beam model.

The first example corresponds to a curved I-beam with the following geometric properties: radius R = 1 m,
Length L = 3 m, web height h = 0.1 m, flange width b = 0.1, laminate thickness e = 0.005 m. The web is per-
pendicular to the curvature radius. Flanges and web have the following stacking sequences {0/±45/90}S or
{0/0/±45}S. The material is such that E1 = 144 GPa, E2 = 9.68 GPa, G12 = G13 = 4.14 GPa,
G23 = 3.45 GPa, m12 = 0.3, m23 = 0.5. The curved beam is clamped at both ends and an out-of-plane flexural
load of QZ = 10 N is applied at x = L/2. In Fig. 4 one can see a comparison between the curved beam model
(Piovan and Cortı́nez, 2007b) and a computational finite element approach performed with shell elements of
the Commercial Program Cosmos/M. The shell models were prepared with more than 3000 SHELL8T finite
elements whereas the response of the one-dimensional model was performed with four curved finite elements.
As one can see, the correlation of one-dimensional approach and shell approach is quite good. In these cases
differences of less than 2.5% have been reached between the shell and beam approaches. In a recent work of
the authors (Piovan and Cortı́nez, 2007b) one can find extensive comparisons of the thin-walled curved beam
model for composite materials, in different linear elastic problems (static, vibration and buckling).

The second example is a comparison of different straight thin-walled beam models for composite materials.
It consists of three different cases of closed box beam clamped at x = 0 and subjected to a certain load at
x = L. The length of the beam is 0.762 m the cross-section is such that it has a panel thickness of
0.762 mm, with web height of 12.84 mm and flange width of 23.44 mm. The width and height are measured
between the mid-lines of the wall thickness. In the first case, the beam has a circumferentially uniform stiffness
(CUS) lay-up of {15}6 and the beam is subjected to a flexural load of QZ = 4.45 N at x = L and directed
towards the web direction. The lay-up of the second and third is a circumferentially asymmetric stiffness
(CAS) of {45}6, {�45}6, {45/�45}3 and {�45/45}3 in top flange, bottom flange, right web and left web,
respectively. The loads applied at x = L, in the second and third cases are a flexural load of QZ = 4.45 N
and a twisting moment of MX = 0.113 Nm, respectively. The elastic material properties are such that
E1 = 141.96 GPa,E2 = 9.79 GPa, G12 = G13 = 6.01 GPa, G23 = 4.83 GPa, m12 = 0.24, m23 = 0.5. For other
complementary details one can see the works of Kim and White (1997) and Smith and Chopra (1991). In
Fig. 4. Out-of-plane bending displacement of a clamped curved beam: comparison of shell and beam approaches.
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Fig. 5(a) one can see the bending slope of different thin-walled straight beam models. In Fig. 5(b) one can see
the twisting angle due to elastic couplings related to a flexural force. On the other hand, in Fig. 5(c) one can see
the bending slope due to elastic couplings connected with a twisting moment.
Fig. 5. Comparison of different beam models. (a) Bending slope of a cantilever straight beam under flexural load. (b) Twisting angle of a
cantilever beam under flexural load. (c) Bending slope of a cantilever straight beam under torsional load. (See above-mentioned references
for further information.)
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In a recent work of the authors (Piovan and Cortı́nez, 2007a) one can find many other comparisons and
validations of the thin-walled straight beam model (reduced from the curved beam model) for composite mate-
rials, in different linear elastic problems such as free vibrations with or without initial stresses, buckling and
general static problems.

4.2. Convergence and comparisons

In order to check the numerical methodology for the viscoelastic analysis a few convergence tests are per-
formed. The first test considers a straight (i.e. R ?1) cantilever box-beam with a cross-section of height
h = 0.20 m, width b = 0.10 m and a wall thickness of e = 0.01 m, and the beam is such that h/L = 0.05.
The stacking sequence of each panel is {0/0/0/0} and the properties of the material can be found in Table
1 with a fiber volume fraction VF = 0.54. The linear viscoelastic behavior of the plastic matrix can be repre-
sented with the four-parameters Maxwell–Voigt model. A bending force of QZ = 500 N is applied at x = L in
the direction of the larger panels. Under these circumstances, the bending deflection at the free end can be
described analytically. The analytical expression for the bending deflection at the free end in the Carson
domain is given by the following form:
Table
Proper

EF ¼ 6

EðeÞ ¼
EðV Þ ¼
U
_
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QZL3

3J
_

11
22

þ QZL

J
_

66
66

ð34Þ
A finite element model with four ISOP4N elements is employed to perform the computation on a set of 30
locations of the Carson domain variable s

_
. The 30 discrete values of U

_

zc were adjusted with three different
sets of 15, 10 and 5 fitting functions which are shown in expression (35). The numerical inversion of the La-
place transform is performed with the Stehfest method (Mallet, 2002), which has proved to be computationally
faster than the others (Piovan and Cortı́nez, 2002, 2003b).
Dð s_Þ ¼ 1; s
_�1; s

_�0:9; s
_�0:8; s

_�0:7; s
_�0:6; s

_�0:5; s
_�0:4; s

_�0:3; s
_�0:2; s

_�0:1; s
_�0:05; s

_�0:02; s
_�0:01; s

_�0:005; s
_�0:001

n o
ð35:aÞ

Dð s_Þ ¼ 1; s
_�1; s

_�0:8; s
_�0:7; s

_�0:6; s
_�0:5; s

_�0:4; s
_�0:3; s

_�0:2; s
_�0:1

n o
ð35:bÞ

Dð s_Þ ¼ 1; s
_�1; s

_�0:5; s
_�0:3; s

_�0:1
n o

ð35:cÞ
In Fig. 6, one can see the comparison of the analytical solution and finite element approximations in the time
domain of the creep response. Note that in this case, 10 fitting functions are good enough to reach an accept-
able matching with the analytical solution. Fig. 7 shows, for the same previous example, a convergence of the
finite element employed. Note that one element is enough to reach a very good approximation.

As it was told in the Note 1 of Paragraph 2.2, under certain conditions it is possible to obtain closed-form
solutions for the in-plane or out-of-plane motions of the curved beam model. Thus, for a cantilever curved
box-beam with symmetric cross-ply lamination {0/90/90/0}, with a subtended angle of p/2, and with a uniformly
distributed radial load qy, the radial displacement uyc is obtained from the closed-form solutions given in refer-
ence (Piovan and Cortı́nez, 2005) and it can be described in the Carson domain according to the following form:
U
_

yc ¼
qyR2

2

1

J
_

11
11

þ 1

J
_

66
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ties of glass fibers and for the four-parameter model of an ED-6 matrix

8:67 GPa; mF ¼ 0:21; mM ¼ 0:38;

3:27 GPa; gðMÞ ¼ 8000 GPa h

1:80 GPa; gðV Þ ¼ 300 GPa h



Fig. 6. Bending displacement of a cantilever straight beam: comparison of adjustment functions.

Fig. 7. Bending displacement of a cantilever straight beam: convergence test.
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In Fig. 8, one can see a convergence test of the finite element approximations for the creep behavior of the
radial displacement under a constant distributed load of qy = 50 N/m. The curved beam has a squared
cross-section with a side of h = 0.05 m. (measured at the midline of the wall thickness); the wall thickness
and the curvature radius are such that e/h = 0.1 and h/R = 0.05. The beam is constructed with the material
whose properties are shown in Table 1 with a fiber volume fraction VF = 0.54. Finite element models of



Fig. 8. In-plane bending displacement of a cantilever curved beam: convergence test.
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one, two and four ISOP4N elements are employed to perform the computation on a set of 30 locations s
_

of
the Carson domain. These 30 discrete values of U

_

yc were fitted with the base of fifteen fitting functions given in
expression (35.a), and the Stehfest method (Mallet, 2002) was employed to perform numerically the inverse
Laplace transformation. In Fig. 8 it is possible to see a good convergence to the analytic solution, even with
one element there is a maximum relative error with respect to the analytic solution of about 0.2%.
4.3. Comparisons with experimental data and other approaches

The creep response of a unidirectional FRP specimen whose properties are those of Table 1 with VF = 0.54
is shown in Fig. 9. The axial compliance coefficient (namely e(t)/r) of the specimen can be obtained by invert-
ing the transversely isotropic relaxation tensor (11). The numerical approach of the compliance coefficient cor-
relates quite well with the experimental data available (Luciano and Barbero, 1995) for three different levels of
applied stress during a 12:00-h period.

Fig. 10 shows the compliance coefficient of a Derakane 411-350 resin. The experimental data has been taken
from the work of Harris and Barbero (1998) that employed a two-parameter Maxwell model to represent the
creep behavior during a 4-h period. On the other hand the authors of the present paper employed a non-linear
fitting procedure in order to fit the aforementioned experimental data to a four-parameter Maxwell–Voigt
model. The viscoelastic properties of this material are shown in Table 2. The Maxwell model and the Max-
well–Voigt model were employed to evaluate the compliance coefficient of a {[90/45/�45/CSM]3}S laminate
with VF = 0.44. Fig. 11 shows the variation of the axial compliance coefficient. As one can see the present
numerical procedure with both the two-parameter and four-parameter models agrees very well with the avail-
able experimental data during a 22-h period.

The creep behavior under bending loading of a glass fiber-reinforced-plastic straight box-beam is analyzed.
The pultruded box-beam was tested experimentally by Qiao et al. (2000), who also developed a beam model
for the analysis of linear viscoelasticity. The box-beam is simply supported with a length of 3.66 m, and the
cross-section of 101.6 � 101.6 � 6.35 mm (measured in the outer surfaces, not in the middle line of the wall)
is manufactured with E-glass fiber and vinylester resin with the properties shown in Table 3 (the plastic matrix
is supposed to respond to a two-parameter Maxwell model), and each panel has a stacking sequence of three



Fig. 9. Variation of compliance coefficient of an ED-6 resin matrix specimen under constant tensile stress. Comparison of the present
numerical approach with the available experimental data.

Fig. 10. Variation of the compliance coefficient for a Derakane 411-350 matrix. Comparison of Maxwell models with the available
experimental data.
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layers: the outer of unidirectional roving and the other two of continuous strand mats (CSM). The beam is
subjected to loads of 4500 N applied at x = 1/3L and x = 2/3L during a period of 120 h. In order to compare
the present methodology with other approaches, the linear viscoelastic behavior of the vinylester matrix was
modeled with the Maxwell model (5). A model of five ISOP4N finite elements, a set of 25 discrete locations s

_



Table 2
Properties of E-glass fibers and for the Maxwell models of a Derakane 411-350 matrix

EF = 72.5 GPa, mF = 0.22

Two-parameter Maxwell model

EðMÞ ¼ 3:33GPa
gðMÞ ¼ 854:6 GPa h; mM ¼ 0:38

Four-parameter Maxwell model

EðeÞ ¼ 3:58 GPa; gðMÞ ¼ 608 GPa h
EðV Þ ¼ 72:5 GPa; gðV Þ ¼ 16:1 GPa h; mM ¼ 0:38

Fig. 11. Variation of compliance coefficient of the laminate {[90/45/�45/CSM]3}S under constant tensile stress. Comparison of the present
numerical approach with the available experimental data.

Table 3
Properties of E-glass fibers and for the two-parameter model of a Vinylester matrix

EF ¼ 72:5 GPa; mF ¼ 0:22;

EðMÞ ¼ 3:86 GPa; gðMÞ ¼ 855:09 GPa h; mM ¼ 0:38
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in the Carson domain and a set of 12 fitting functions were employed to perform the calculations with the
present approach. The Stehfest method (Mallet, 2002) for the numerical inversion of Laplace transform is
employed. Fig. 12 shows, for the mid-span deflection, a comparison of the experimental results and model pre-
dictions of Qiao et al. (2000) and the predictions of the present finite element approach. In Fig. 12, one can see
that differences between model predictions and experimental responses are less than 3.0% during a five-day
period. It is important to take into account that, although in this example the structural model employed
by Qiao et al. (2000) and the authors (i.e. the case reduced to a straight beam) is practically the same, i.e.
a Timosheko bending model, however there are differences between the calculation methodology employed
in the present approach and the one used by Qiao et al. (2000). Effectively, Qiao et al. employed a collocation



Fig. 12. Mid-span bending displacement of the box-beam. Comparison of models and experiments.
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method to perform the inverse Laplace transformation obtaining discrete values in the time domain and then
adjusting the solution in the time domain, whereas in the present approach the responses in discrete locations
of the Carson domain are adjusted with a given base as a previous step to the numerical inversion of the
Laplace transformation. As it was mentioned previously, one can obtain in a unified fashion analytical solu-
tions as well as numerical approximations.

Now, the creep behavior under bending loading of a pultruded straight I-beam is analyzed. A cross-section
with 0.3048 m of flange width and web height (measured in the outer surfaces), and a thickness of 0.0127 m, is
employed. The three panels have the same lay-up composed by 13 plies in the following configuration {(a/b)6/
a/(b/a)6}; where ‘b’ corresponds to 54 roving layers, and ‘a’ corresponds to a combination of continuous
strand mat (5%) and stitched fabrics (13%) with angular orientation (for particular details see Qiao et al.,
2000). The material viscoelastic properties are the ones of Table 3. The beam is simply supported, with a
length L = 3.66 m. and subjected to a central load of QZ = 4500 N. whose direction is parallel to the web.
In Fig. 13 one can see a comparison between the present approach (i.e. the reduced case of straight beam)
and the approach of Qiao et al. (2000) of the linear viscoelastic behavior of the mid-span displacement for
a beam with stitched fabrics oriented along the beam axis and for two different fiber volume fractions. During
the analyzed period of 400 h, both approaches correlate quite well.

4.4. Linear viscoelastic behavior of thin-walled curved beams with open section

In Fig. 14(a) the dimensions of the cross-section of a curved beam are presented. The curved beam has a
length of L = 1.5 m, a curvature radius of R = 2 m, it is clamped at x = 0 and free at x = L where the forces
QY = 500 N and QZ = 500 N are applied in the point C. The panels are constructed with the material whose
properties are shown in Table 1 with a fiber volume fraction VF = 0.54. Each panel has a stacking sequence {0/
0/�a/a}S, that is a symmetric balanced lamination. In Fig. 15 one can see the variation of the relaxation coef-
ficient A11 for three different laminates employed in the open section beam. This kind of stacking sequence
does not produce constitutive elastic couplings, then QY leads only to in-plane bending motions and QZ leads
to a coupled out-of-plane bending-twisting motion, due to mono-symmetry of the cross-section. In Figs. 16–18
one can see the creep behavior for different fiber orientation of uyc(L), uzc(L) and /x(L), respectively. Note that
the secondary creep tends to stabilize beyond 800 h in many cases. Note in Fig. 17 that the creep behavior of



Fig. 13. Mid-span displacement of a simply supported straight beam under central load: comparison of viscoelastic results of different
authors.

Fig. 14. Dimensions and stacking sequence of (a) U-profile. (b) Closed rectangular section.
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displacement uzc(L) has the best performance for a = 15�, i.e. with the least deflections and with lower deflec-
tion gap since the forces are acting. This deflection gap can be calculated by means of the ratio of uzc(L)|t = 1200

with respect to uzc(L)|t = 0. In the cases of a = 15� and a = 0�, the deflection gap reach values of 34% and 51%,
respectively. In Figs. 19 and 20 one can see the variation, with respect to the angle of fiber reinforcement, of
uzc(L) and /x(L) for different instants. Note that the stacking sequence case with a = 15� has the best perfor-
mance (meaning the minimum deflection) in both variables.
4.5. Linear viscoelastic behavior of thin-walled curved beams with closed section

Fig. 14(b) shows the dimensions of a closed cross-section with stacking sequence of {(0/a)3}. This kind of
lamination is denominated circumferentially uniform stiffness (CUS) and it is such that provides a selective



Fig. 15. Variation of the relaxation coefficient �A11 for three different laminates employed in the curved U-beam.

Fig. 16. Creep displacement uyc(L) under an in-plane bending load, for a U-profile.
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elastic coupling between in-plane and out-of-plane motions. In Fig. 21 one can see the variation of the relax-
ation coefficient A11 (see Piovan and Cortı́nez, 2007a; for definitions) for three different laminates employed in
the closed section curved beam. The beam is clamped at both ends and it is constructed with a material of
Table 1 with a fiber volume fraction VF = 0.54, R = 2.546 m and the subtended angle is b = 90�. The stacking



Fig. 17. Creep displacement uzc(L) under an out-of-plane bending load, for a U-profile.

Fig. 18. Twisting angle /x(L) under an out-of-plane bending load, for a U-profile.
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sequence of the panels corresponds to a type denominated ‘‘Circumferentially Uniform Stiffness” or CUS that
leads to a constitutive elastic coupling between twisting and extension motions and bending-bending motions.



Fig. 19. Variation of uzc(L) with respect to the fiber orientation angle, for a U-profile.

Fig. 20. Variation of /x(L) with respect to the fiber orientation angle, for a U-profile.
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Under these conditions, the out-of-plane loading induces in-plane displacements. The curved beam is sub-
jected to an out-of-plane bending force QZ = 4500 N and a total twisting moment MX = 4000 Nm that are
applied in the point C located at x = L/2.



Fig. 21. Variation of the relaxation coefficient A11 for three different laminates employed in the curved beam with closed cross-section.
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In Figs. 22 and 23 one can see, for different stacking sequences, the creep behavior of displacements uzc(L/2)
and /x(L/2), respectively. Note that in the case where a = 30� the beam has the least creep displacements of all
the analyzed configurations. In Fig. 24, the creep displacement uzc(L/2) with respect to the angle of fiber
orientation.
Fig. 22. Creep behavior of uzc(L/2) for the closed section.



Fig. 23. Creep behavior of /x(L/2) for the closed section.

Fig. 24. Variation of uzc(L/2) with respect to the fiber orientation angle, for the closed section.
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As one can see in the previous study, there is a fiber orientation angle which provides the least deflections in
the beam for a given stacking sequence and for a given load condition. In the following study, the creep behav-
ior of curved beams with different types of generic stacking sequences is analyzed. The same geometric, mate-



Table 4
Angle of fiber reinforcement, for different generic stacking sequences, that manifest better creep behavior in a case of curved beam with
closed cross-section

Type of generic stacking sequence Angle for best performance of

uzc(L/2) /x(L/2)

Symmetric balanced {a/�a/�a/a}S 15 15
CUS: {0/a}4 30 30
CAS: {a/a}4 and {�a/�a}4 top and bottom flanges 15 15

{a/�a}4 and {�a/a}4 inner and outer webs

Fig. 25. Influence of the fiber volume fraction on the creep behavior of uzc(L/2), for the closed section.
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rial, boundary conditions and loading features of the previous example are employed. However three types of
generic stacking sequences are compared: symmetric balanced laminates, Circumferentially Uniform Stiffness
laminates (denominated CUS) and Circumferentially Asymmetric Stiffness (denominated CAS). The angle a
of fiber reinforcement can have the values 0�, 15�, 30�, 45�, 60�, 75�, or 90�, which are common in practical
cases (Barbero, 1999; Jones, 1999). In Table 4 one can see the angle of fiber reinforcement that gives the best
creep behavior for those generic stacking sequences and for the loading conditions imposed to the beam. It is
interesting to note that for different generic stacking sequences angles of 15� and 30� offer the best perfor-
mances of the seven values of angle a. Moreover if there is interest to obtain the angle for the best general
creep performance, a scheme involving techniques of optimization has to be introduced.

The influence of the fiber volume fraction VF on the creep behavior of the curved beam with a CUS stacking
sequence when a = 15� is shown in Fig. 25. One can see that beam creep displacements have a stable variation
over time for higher fiber volume fractions. On the other hand when the fiber volume fraction is increased
from VF = 0.2 to VF = 0.7, the creep deflections can be reduced more than four times.
5. Conclusions

In the present paper, a model to predict the flexural–torsional creep behavior of thin-walled laminated FRP
curved beams is presented. The motion equations for the curved beam member can be solved either analyti-



3492 M.T. Piovan, V.H. Cortı́nez / International Journal of Solids and Structures 45 (2008) 3466–3493
cally or numerically in the Carson domain. In order to solve general flexural–torsional coupled problems a
finite element methodology was employed. The creep responses are obtained appealing to a numerical inver-
sion of the Laplace transformation. A complete package was programmed in the environment of the software
Mathematica, which offers the possibility to calculate in a unified fashion analytically or numerically the linear
viscoelastic behavior of the curved beams. The model developed in this paper can be reduced to analyze the
linear viscoelastic behavior of straight beams. In this particular option, it has shown a good correspondence
with the predictions of other approaches for straight beams and with the available experimental data. Para-
metric studies for curved beams with open and closed cross-sections were performed. In these studies the
importance of certain stacking sequences in what concerns to especial elastic couplings for both open and
closed sections was appropriately enhanced. From these studies it was possible to show that for certain types
of generic stacking sequences there are certain angles for fiber reinforcement that provides the best creep
behavior, meaning that the beam has the least deflections. This is important in order to evaluate a beam design
and to select a particular stacking sequence.
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Oñate, E., 1992. Cálculo de Estructuras por el método de elementos finitos, análisis estático lineal. CIMNE, Barcelona, Spain.
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