
Physica Scripta 
 
An International Journal for Experimental and Theoretical Physics 

Editorial office    Telephone Telefax  Electronic Mail Home Page 
 
Physica Scripta    +46-(0)8-673 95 00 +46-(0)8-673 95 90 physica@kva.se http://www.physica.org 
The Royal Swedish Academy of Sciences 
Box 50005 

 
 
 
Dear  
 
Please find attached a PDF of your article that has appeared in issue        4 of Physica 
Scripta. This file has been optimised for viewing on screen, but can be printed off. If you 
would like a version of this file, optimised for printing, or would like to purchase a number of 
printed copies of your paper, please contact me. 
 
Best Wishes, 
 
Audry Samuels 
Journal Controller
Marston Digital
Omega Park
Collet
Didcot
OX11 7AW 
email:samuelsa@lrl.com 
voice:  +44 1235 518700 
fax:      +44 1235 515777 
web:    http://www.physica.org 
 
 
 

S-104 05 Stockholm, Sweden 
 

Claire
dowdeswelle@

Claire
humphreysc@lrl.com



Classical Structures Arising in the Autoionization of He

S. Otranto� and G. Gasaneo

Departamento de Fı́sica, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, 8000 Bahı́a Blanca,
Buenos Aires, Argentina

Received November 17, 2003; revised version received March 1, 2003; accepted March 12, 2004

PACS Ref: 34.50Fa

Abstract

In this work, a classical mechanics study of the autoionization process induced

by ion impact is performed. The electron distribution in momentum space is

obtained and compared with the results of the continuum distorted wave

quantum theory. Typical structures arising in quantum and classical treatments

are identified and compared. Oscillatory profiles for the autoionization

spectrum are obtained within the present classical picture, in contrast with

existing models which attach them to a purely quantum behavior.

1. Introduction

One of the processes observed during the collision of
charged particles and photons with atoms is the ionization
of a single electron, leaving the remaining target with one
extra unit of plus charge. Two main mechanisms can take
place within this process: direct ionization and two step
Auger effect. During the collision the incident particle (or
photon) can leave the target atom in an excited state which
decays in a radiation-less form by the emission of an
electron to the continuum. When a two electron atom is
involved the process is known as autoionization. Usually,
the denomination Auger effect is used for electron emission
induced by a primary inner-shell ionization of many-
electron atoms, in honour to P. Auger who discovered it in
1925 [1]. In this case, the electron emission is a consequence
of the rearrangement of the atom which after the inner-
shell ionization becomes unstable. In this paper we will
concentrate in the autoionization process and for practical
purposes we will refer to the He atom.
A difference between the electrons emitted by auto-

ionization and other processes is that the energy is quite
well defined in the former. This is mainly due to the
spontaneous emission from a doubly excited state
embedded in the continuous spectra of the ground state
of a one electron atom. Thus, the energy can only present a
small dispersion corresponding to the line width h� =� : If the
autoionization is induced by photon impact, the angular
distribution of the electron depends only on the symmetry
of the autoionizing state.
The autoionization induced by ion impact presents a

series of substantial differences with that induced by
photons. The electrons are emitted not only in presence
of the residual target but of the projectile. Thus, changes
should be expected in the energy and angular distribution
due to the presence of the projectile instead of the isotropic
behavior typical of the process reached by photon impact.
The first observed effect is a shift on the emission energy
due to the inclusion of the potential energy of the electron
in the field of the projectile. Besides, an asymmetric profile

appears in the typical isotropic Lorenzian. These effects
were discussed by Barker and Berry in 1966 in a classical
model built upon phenomenological considerations [2]. For
more than a decade, this turned the only available model to
describe the autoionization induced by ion impact. In 1977,
Devdariani et al. developed the first quantum mechanical
model for this process [3]. In their pioneering work, they
made the same consideration that Barker and Berry
performed in the classical context. They assumed the
projectile to affect the electron energy but not its trajectory.
The eikonal model of van der Straten and Morgenstern in
1986 represents the first attempts to introduce the post
collisional interaction (PCI) between the emitted electron
and the projectile [4]. Finally in 1989, the continuum
distorted wave (CDW) of Barrachina and Macek [5]
successfully predicted the existence of a Coulomb focusing
mechanism which was experimentally corroborated in the
same year by Swenson et al. [6]. This model with its
subsequent improvements [7–9] took account of the Stark
effect (which is important when the impinging ion energy is
rather low) and the distorting effects the projectile induces
on the excited state modifying its lifetime.

Meanwhile, the classical description of the process was
not laid aside. In 1989 and 1991 Swenson et al. employed a
Coulomb path interference mechanism in order to give a
classical description of the Coulomb focusing [6,10]. They
concluded that this effect is a consequence of electrons
emitted in the forward direction at slightly different
emission times that could emerge from the collision, after
following different paths, with the same asymptotic
velocity. Furthermore, this Coulomb path interference
thus represents an ion-atom collision analog to classic
double-slit electron scattering.

Recently, another semi-classical analysis showed that the
interference structures of CDW spectral lines could be
interpreted in terms of nearside–farside scattering, which
was first used to describe elastic reactions of spin-zero
nuclei [11]. Decomposition is possible of the autoionization
amplitude in two terms which can be related to trajectories
which have traveled along one or the other side of the
interaction potential suffering a positive or negative
deflection. On the other hand, Kunikeev and Senashenko
[12] interpreted oscillatory structures in the autoionization
peaks as an interference between waves that are and are not
scattered by the projectile. As a result, many possible
interpretations have been employed to describe this feature
from both classical and quantum point of view. The
purpose of the present article is to clarify this point.

In this work, we concentrate on giving a classical picture
of the emitted electron trajectory. We take a different point
of view and perform a simulation of the autoionization� e-mail: sotranto@uns.edu.ar
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process in classical terms. In the next section, we show how

the electron distribution in momentum space is obtained.

For this purpose, we use many well known concepts in

classical mechanics to solve the two-bodyCoulomb problem

with particular initial conditions. The dynamical evolution

of electrons emitted from a moving point-like source is

studied. The trajectories as well as the final velocities of the

electrons are given. In Section 3, the autoionization process

is considered. The electron distributions in momentum

space are obtained and compared with those resulting from

the CDW quantum theory. The purely classical structures

are identified. Oscillations in the autoionization profile due

to the simple superposition of classical structures are

obtained and discussed. Main results are summarized.

Finally some conclusions are drawn. Atomic units are

used throughout this work unless explicitly stated.

2. The electron distribution in momentum space for the

coulomb problem

Let us consider the autoionization of an atom induced by

ion impact. We assume that the projectile leaves the atom

in a doubly-excited state. Within the PCI-scheme, the atom

spontaneously decays in the presence of the projectile. So,

once the electron has been emitted by the atom, it evolves

under the projectile field. The dynamics of the electron can

be better analyzed in a projectile reference system. In the

PCI-scheme the time dependent problem of an electron in

two moving centers reduces to a time-independent problem

of one electron in the field of only one center (the

projectile). The time dependence leads to a time-dependent

initial condition for each of the electrons emitted by the

autoionizing atom.
We study the trajectory of an emitted electron which

only interacts with the projectile field (post collisional

interaction scheme). This implies a considerable simplifica-

tion but allows for an exact treatment of the problem. The

initial conditions of the problem are given by defining the

initial distance r0 of the emitted electrons to the projectile

and the emission velocity v0 and angle �0; measured with

respect to the incidence direction z: The velocity of the

projectile is vP: Placing the reference system in the

projectile, the energetic balance reads

1
2mv2 ¼ 1

2mv2emis �
ZP

r0
¼ E0: ð1Þ

vemis represents the relative velocity of the emitted electron
to the moving projectile and it is defined by vemis ¼ v0 � vP:
From Eq. (1) the asymptotic velocity v could be obtained,
being clearly a function of the initial distance and the
projectile velocity.
The orbit equation for the Coulomb problem is well

known in classical dynamics and is given by [13]

p

r
¼ �1þ e cos� ð2Þ

where the upper (lower) sign corresponds to the interaction
with an attractive (repulsive) projectile. Here p and e are

usually referred to as the parameter and eccentricity of the
orbit,

p ¼
l20

mZP
; ð3Þ

e ¼ 1þ
2E0l

2
0

mZ2
P

� �1=2
: ð4Þ

They are given in terms of the modulus l0 of the angular
momentum, which referred to the emission instant is given
by l0 ¼ mr0 � vemis and the projectile charge Zp:

The perihelion is defined as the point of the orbit that is
closest to the center, the distance being

rmin ¼
p

e� 1
ð5Þ

with the upper (lower) sign again corresponding to the
interaction with an attractive (repulsive) projectile.

The angle � gives the asymptotic angle of the orbit
measured from the perihelion and is given by:

� ¼ cos�1 �
1

e

� �
: ð6Þ

Let us consider the electron orbits for a projectile fixed at a
certain distance R from the emitter, vemis fixed and different
emission angles. The situation in which mv2emis=2 < Zp=r0
leads for the different emission angles to closed elliptic
orbits, all crossing in the point where the electron ‘‘source’’
is located. For mv2emis=2 > Zp=r0 the different emission
angles lead to hyperbolic orbits, all of them joining in the
same point r0 (see Fig. 1). The Runge–Lenz vector is
defined by [14]

A ¼ mv� l�mZpbrr; ð7Þ

and its initial definition A0 ¼ mvemis � l0 �mZpbrr0 gives the
perihelion position for each emission angle. For large

Fig. 1. Electron trajectories in the field of a fixed center at 10 a.u. of the

emitter for different emission angles in the projectile frame.
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angles, the trajectories of the emitted electrons are slightly
modified, but they bend strongly towards the projectile for
decreasing emission angles. It is possible to identify a limit
angle �G for which the trajectories of the emitted electrons
are parallel to the source-projectile line. All the trajectories
coming from emission angles smaller than �G overtake the
projectile and cross ahead of its trajectory. So, we can
distinguish those trajectories with �0 > �G overcoming the
projectile trajectory from those with �0 < �G which do not
overcome it. Of course there exists a �G for each distance R
which is given by

�G ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ZP=R

1=2mv2emis

s
: ð8Þ

This angle, as we shall see, is the angle corresponding to the
glory effect. Through Eq. (8) we can note that �G decreases
for increasing values of R; and in the limit of R�!1 it
becomes zero.
The scattering cross section usually defined in terms of

impact parameters and assuming that the impinging
particles form a beam coming from infinity. In the problem
of our concern, the emitter could be located at an arbitrary
distance from the Coulomb center and the emission occurs
in all directions. These differences in the definition of the
problem lead to a modified differential cross section:

�ð�Þ ¼
sin �0
sin�

d�0
d�

���� ���� ð9Þ

where� is the scattering angle and the sum runs over all the
emission angles �0 which lead to the same asymptotic angle
�: When compared with the usual definition [13,14], sin �0
replaces the impact parameter and the derivative of �0 with
respect to � replaces the impact parameter derivative with
respect to �: Although this is an adimensional quantity, it
could be considered a differential cross section since it
represents the number of scattered electrons in a given solid
angle per unit time and incident flux. The study of the
divergences of this cross section could be associated with
two well-known optical effects: the glory effect given by
sin� ¼ 0; �0 6¼ 0; d�0=d� 6¼ 0 and the rainbow effect which
corresponds to d�0=d� ! 1; �0 6¼ 0: In the case considered
here, the glory (rainbow) effect is reached by positive
(negative)-ion impact and both of them leave, as we shall see
in the next section, a noticeable fingerprint on the
autoionization electronic distributions. However, in the
present analysis we dispense of the use of this scattering
cross section and we concentrate on the asymptotic part of
the orbits instead.
In order to obtain the asymptotic velocity vector we

must define its direction. In the following, we measure the
asymptotic angle � from the z axis (the beam direction)
counterclockwise. In order to determine this angle, we must
take account of the angle � between the perihelion and the
emitter. The Laplace–Runge–Lenz vector defined in terms
of the initial conditions allows us to define the angle � as
follows

� ¼ cos�1 A0 � r0
A0r0

� �
: ð10Þ

In this sense, � results are defined by the initial conditions
through the angles � and �:

We assume the orbit to take place in the z; x plane. Then,
the asymptotic angle � could be expressed by sections,
according to the respective values taken by the components
z; x of the emission velocity vector vemis:

ðvemisÞz > 0; ðvemisÞx > 0; � ¼ �� ð�þ �Þ;

ðvemisÞz > 0; ðvemisÞx < 0; �þ � < �; � ¼ �þ ð�þ �Þ;

ðvemisÞz > 0; ðvemisÞx < 0; �þ � > �; � ¼ ð�þ �Þ � �;

ðvemisÞz < 0; ðvemisÞx > 0; � ¼ �� ð�� �Þ;

ðvemisÞz < 0; ðvemisÞx < 0; � ¼ �þ ð�� �Þ:

From these expressions and the orbits shown in Fig. 1, we
can conclude that for ðvemisÞz < 0 the orbit does not contain
a perihelion since it has already been passed. Thus, we have
obtained the asymptotic velocity vector of an electron
emitted under the above mentioned initial conditions seen
from the projectile frame. In order to express this vector in
the emitter frame, we must simply add the projectile
velocity vector.

3. The autoionization problem

In this section we describe the main features corresponding
to our classical simulation of the autoionization process.
We will consider the trajectory of each emitted electron and
evaluate its asymptotic velocity. By taking a large enough
number of trajectories we compose the electron spectra
corresponding to the autoionization process.

In the previous section, we have not made any
assumption about the way in which it was emitted. We
have just assumed emission in all directions and at a time-
dependent distance. According to the quantum theory [15],
if the autoionization process takes place due to excitation
of the ground state to an autoionizing state by photon
absorption, the electron intensity profile I of the spectra is
given by the Lorenzian,

I ¼
� 2

� 2 þ 1=4 v2e �evv 2
0

� �2 ð11Þ

where � is the full width at half maximum of the
Lorenzian. Then, we will use this velocity profile to
calculate the initial electron velocity v0 according to a
Lorenzian distribution,

v0 ¼ evv0 � 2�
1

x
� 1

� �1=2
" #

ð12Þ

with x a real number between 0 and 1. The velocityevv0 is the
velocity acquired by the emitted electron as the second one
decays forming Heþ: For the He atom, and for the
autoionizing states 2s2ð1SÞ; 2p2ð1DÞ; and 2s2pð1PÞ the
values for � are 0.00507, 0.00265 and 0.0014 a.u. and
their corresponding electron velocitiesevv0 are 1.5646, 1.6106
and 1.6168 a.u. [7].

According to Barker and Berry, the probability that the
electron has been emitted at the time t after the excitation
has occurred is given by
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PBBðtÞ ¼ 1� e�� t: ð13Þ

We use this law to weight the electron emission at different
distances of the projectile. Letting y be a random variable
uniformly distributed between 0 and 1, and since t ¼ r0=vP
we obtain the following distribution for the initial position
of the projectile,

r0 ¼
vP
�

j logð1� yÞj: ð14Þ

Using the velocity and distance distributions, we build the
electron distribution in the velocity space of the electron
considered in the emitter frame, as shown in Fig. 2. A total of
25000 electrons have been emitted from the 2s2ð1SÞ
autoionizing state sorting their velocities and projectile
distances according to the distributions mentioned above.
Three different velocities have been considered (0.6, 1.2 and
1.8 a.u.) for an attractive projectile of charge ZP ¼ 1: For
comparison, a contour plot (in logarithmic scale) for the
CDW results of the quantum theory have been included [9].
Two structures observed in the quantum calculations appear
also in the classical one: the autoionization and the binary
rings. We should note that the binary ring has not been
mentioned previously in the literature with exception to the
work of Caputti [16]. In this work, the quantum transition
amplitude was separated in two parts following the
procedure proposed by Kunikeev and Senashenko [12] and

one of the structures was recognized as the binary ring. The
autoionization ring represents electrons that seeing the
projectile field deflect their trajectories, but none of them
bends it enough to overcome the projectile trajectory. In the
cases considered in Fig. 2(a) and (b), the electron velocity is
greater than the projectile’s. As we mentioned in the
previous section, for each projectile distance there exists a
glory angle �G: All the trajectories with emission angles
smaller than this glory angle will cross the projectile
trajectory. In the plots of Fig. 2(a) and (b), the structure
observed inside the autoionization ring results from the
accumulation of all these electrons. Overcoming the
projectile trajectory ð� ¼ 0Þ means a strong interaction
between the electron and the projectile. The energy change
from scattering off a heavy particle must be negligible. As a
consequence the electrons diminish their velocity forming
the binary ring. The electrons emitted with small emission
angles transfer more energy to the projectile than those
emitted with an angle close to the glory. In Fig. 2(c), the
projectile velocity is greater than that of the autoionization
electrons, so now the binary ring is not allowed and the
electrons are pulled in the forward direction out of the
autoionization ring. This is also evident in the CDW theory
where a minimum of intensity is observed on the auto-
ionization ring [17]. Besides the classical effects mentioned,
the CDW theory adds other non-classical structures. One of
them is the continuum capture to the continuum (ECC)
peak, situated on the projectile velocity [18,19]. This
divergence of intensity in the distribution, represents a
zero energy resonance for the electrons which travel with
zero relative velocity respect the projectile. Another non-
classical structure is that ‘‘crab’’-like form, which connects
the ECC peak with the focusing peak in the forward
direction. A discussion about the origin of these structures
will be given in another paper. A particular situation is when
the emission angle is close to or coincides with the glory
angle. As we mentioned in the previous section, in this
situation the cross section of Eq. (9) diverges. Thus, for each
emission angle a divergence will be observed. The minimal
distance from which it occurs is given by ðZP=RÞ=
ð1=2Þmv2emis ¼ 1; and this defines a maximum angle. The
minimal angle is �G ¼ 0 and corresponds to the situation
where the electron emission happens when the projectile is at
an infinite distance from the target. So, a large amount of
electrons will accumulate in the forward direction as a
consequence of the divergence occurring for each distance.
This gives rise to a structure known as focusing peak and it
appears on the binary ring and close to the forward
direction. According to the weighted velocity and emission
time given by Eqs. (12) and (14), the electrons emitted at
different times (or equivalently different distances of the
projectile) contribute differently in the electron spectra. The
electron emission at small projectile distances is less
probable than that occurring at intermediate and large
ones. So there are less electrons contributing to the glory
effect for large angles and this produces an angular profile.
Since we are considering a finite number of electrons, the
glory does not lead to a divergence but a maximum. In Fig. 3
a we plot the angular profile of the binary where the focusing
is clearly visible.

In Figs. 3(b) and 4 the repulsive projectile case is
considered. In Fig. 3(b) we show the angular profile of the

Fig. 2. Electron distribution in velocity space considered in the emitter

frame for a positively charged projectile. Left: present model; right: CDW

model. Three projectile velocities are considered: 0.6, 1.2 and 1.8 a.u.
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binary ring seen from the projectile frame for negatively

charged projectiles. A total absence of electrons in the

forward direction is obtained. This behavior has been

explained in terms of optics-analog effects as the rainbow

effect [20]. The three projectile velocities considered in Fig.

4 are as mentioned above. It could be observed that

electrons are pulled outside of the binary and autoioniza-

tion rings. The quantum theory again exhibits the non-

classical structure when the electron velocity is equal to the

projectile one, leading in this case to zero intensity in the

distribution. The total absence of electrons emitted in the

projectile direction is also clearly noticeable. The histogram

made for vP ¼ 1:2 a:u;ZP ¼ 1 shown in Fig. 5, represents

the intensity profile for the asymptotic angles 0, 5 and 10

degrees. The contribution of the binary ring could be

clearly appreciated as also the asymmetry of the auto-

ionization peak, first observed by Barker and Berry, due to

the projectile distorting effect. Recently, an analysis based

on the CDW model explained that certain oscillations in

the profiles could be due to the interference between waves

that have and have not been scattered by the receding

projectile [12]. The presence of an apparently oscillating

profile within the classical description, shows to be a

consequence of the simple accumulation of separate

structures, i.e. the binary and the autoionization rings.

Our classical results then show that similar oscillatory-like

Fig. 3. Angular profile of the binary ring in the projectile frame. (a) and

(b) positively and negatively charged projectile respectively.

Fig. 4. Electron distribution in velocity space considered in the emitter

frame for a negatively charged projectile. Left: present model; right: CDW

model. The projectile velocities are as in Fig. 2.

Fig. 5. Autoionization spectra as a function of the electron velocity for

angles 0, 5 and 108.
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behavior could be due to the simple superposition of
separate structures in agreement with recent quantum
results [16].

4. Conclusions

In this work, we have performed a classical treatment of
the autoionization process. Restricting ourselves to the
post collisional interaction approach, we have assumed
that the emitted electron only interacts with the projectile
Coulomb center. A complete treatment of the problem
would include the emitter Coulomb field.
The electron emission by autoionization of the target has

been modelled by giving a profile in the initial velocity for
the autoionizing electron as well as a probabilistic weight
for the emission at different projectile distances. The final
electron distributions in momentum space have been
obtained using the classical trajectories and the statistical
initial conditions. A comparison with the calculations
resulting from the CDW quantum theory has been
performed. When compared with the quantum mechanical
method our classical model presents similar structures with
nearly identical positions and forms. These are the
autoionization and binary rings, and the focusing peak.
Another non-classical structure has been observed which
does not seem to be reproduced by the present model,
probably due to a pure quantum origin. The autoionization
peak profile has been obtained, exhibiting the correct
asymmetry. The binary peak appears as a contribution of
all the autoionizing electrons emitted at different times with
an angle which allows them to cross the projectile
trajectory. In this sense, the classical simulation procedure
could be useful in order to distinguish purely quantum
structures, as interference patterns, from the simply
accumulation of classical ones.
It is our hope that the present study would contribute to

a deeper understanding of the classical and semi-classical
mechanisms inherent to the autoionization process with
post-collisional-interactions.

Acknowledgments

The authors would like to thank C. R. Garibotti and F. D. Colavecchia for

helpful discussions and for careful reading of the manuscript. This work has

been partially supported by the PICT Grant No. 99/03/06249 of the APCYT

and PGI Grant No. 24/F-027 of the UNS (Argentina).

References

1. Auger, P., J. Radium 6, 205 (1925).

2. Barker, R. B. and Berry, H. W., Phys. Rev. 151, 14 (1966).

3. Devdariani, A. Z., Ostrovskii, V. N. and Sebayakin, Yu. N., Sov.

Phys. JETP 46, 215 (1977).

4. van der Straten, P. and Morgenstern, R., J. Phys. B: At. Mol. Opt.

Phys. 19, 1361 (1986).

5. Barrachina, R. O. and Macek, J. H., J. Phys. B: At. Mol. Opt. Phys.

22, 2151 (1989).

6. Swenson, J. K., Havener, C. C., Stolterfoht, N., Sommer, K. and

Meyer, F. W., Phys. Rev. Lett. 63, 35 (1989).

7. Miraglia, J. E. and Macek, J. H., Phys. Rev. A 42, 3971 (1990).

8. Cordrey, I. L. and Macek, J. H., Phys. Rev. A 48, 1264 (1993).

9. Otranto, S., Garibotti, C. R., Colavecchia, F. D. and Gasaneo, G.,

Phys. Rev. A 63, 022713 (2001).

10. Swenson, J. K. et al., Phys. Rev. Lett. 66, 417 (1991).

11. Samengo, I., Pregliasco, R. G. and Barrachina, R. O., J. Phys. B: At.

Mol. Opt. Phys. 32, 1971 (1999).

12. Kunikeev, Sh. D. and Senashenko, V. S., Sov. Phys. JETP 82, 839

(1996).

13. Landau, L. D. and Lifshitz, E. M., ‘‘Mecánica’’ (Editorial Reverté,
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