
1 

 

Leibniz in Paris: a discussion concerning the infinite number of all units
1
 

 

Oscar M. Esquisabel and Federico Raffo Quintana 

(CEFHIC–UNQ / CONICET) 

omesqui@fibertel.com.ar / federq@gmail.com  

 

Abstract 

 

In this paper, we analyze the arguments that Leibniz develops against the 

concept of infinite number in his first Parisian text on the mathematics of 

the infinite, the Accessio ad arithmeticam infinitorum. With this goal, we 

approach this problem from two angles. The first, rather philosophical or 

axiomatic, argues against the number of all numbers appealing to a 

reductio ad absurdum, showing that the acceptance of the infinite number 

goes against the principle of the whole and the part, which is analytically 

demonstrated. So, discussing the ideas of Galileo, Leibniz concludes that 

the infinite number equals 0. Moreover, Leibniz seems to arrive at the 

same conclusion through his rule for adding the infinite series resulting 

from the harmonic triangle. Although he acknowledges the conjectural 

character of this conclusion, he seems to consider it to be a reinforcement 

of his first argument. Moreover, in reconstructing the justification of the 

given rule, we try to show that Leibniz does not appeal to the application 

of infinitesimal quantities, but rather to a treatment of the infinite series in 

terms of totalities. 
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Introduction 

 

 In 1672 Leibniz arrived in the French capital, an important cultural and intellectual 

center of the seventeenth century, where he resided for four years. As soon as he settled 

down, he met the renowned Dutch scientist C. Huygens, thanks to whom the philosopher 

from Leipzig began his studies in mathematics. Huygens immediately decided to test the 

mathematical skills of the young legate from Mainz, proposing that he undertake the sum of 

the reciprocal series of the triangular numbers (that is, 
1
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, 𝑒𝑡𝑐. ).

2
 Leibniz started 

working on this immediately and he obtained amazing results. He also became acquainted 

with all the philosophical and scientific developments to which he had not had access 

previously. He read, for instance, Galileo’s Discorsi e dimostrazioni matematiche, intorno 

a due nuove scienze (1638), a text which impacted him deeply. On the first part of this 

work, the Italian scientist thoroughly tried to justify a composition of the continuum of an 

infinite number of indivisibles, which obliged him to specify the nature of the indivisible 

and the infinite. One of the conclusions drawn by Galileo was that in the infinite number 

the whole would not be greater than the part. This consequence of the Galilean exam will 

be a constant point of discussion in Leibnizian thought.
3
 

 Briefly, according to Galileo, the finite and the infinite differ from the point of view 

of the scope of human knowledge, in the sense that both infinities and indivisibles 

transcend our finite understanding, namely, because of their magnitude or size (infinities) 

or their smallness (indivisibles).
4
 Galileo considered that the incomprehension of the 

infinite due to the limitation of human understanding must lead us to recognize that there 

are properties which can be assigned to the finite that cannot be extrapolated to the infinite. 

In this sense, the properties of ‘being greater than’, ‘being smaller than’ and ‘being equal 

to’ are particularly important. These attributes, comprehensible in the finite, are 

inconveniently assigned to the infinite.
5
 The distinction between the scope of the finite and 

of the infinite entails significant consequences. For instance, it is evident that the axiom of 

Euclid according to which the whole is greater than the part
6
 possesses a narrow scope of 

application if we consider the presuppositions of Galileo. This implies some important 
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conclusions regarding the infinite number, supposing we can conceive it:
7
 let us take two 

sets such that one of them is at the same time a subset of the other, for example, the set of 

the natural numbers and the set of the square numbers (see image 1). 

 
Image 1 

As we can see, there are three square numbers contained in the first nine natural numbers 

(that is, 1, 4 and 9). Hence, in any finite number, regardless how large it is, the whole (in 

this case, the set of natural numbers) is greater than the part (the set of square numbers in 

the first nine natural numbers). Moreover, the proportion of contained square numbers 

decreases in larger numbers (that is: while in the first nine natural numbers 1 out of 3 is a 

square number, in the first hundred numbers 1 out of 10 is a square number, and so on). If 

the aforementioned properties (that is, being greater than, smaller than or equal to) cannot 

be extrapolated to the infinite, in an alleged infinite number the whole would not be greater 

than the part. Thus, the infinite numbers would be beyond the scope of the whole-part 

axiom. Hence, if there is a number which fulfills the requisites of the infinite number (as we 

have said, supposing we can conceive it), it would not be a large number. Thus, an alleged 

infinite number must rather be compared with the number one, since only in it are 

contained as many squares number as natural numbers (or more generally, any power of 

this number is equal to itself).
8
 Leibniz seems to understand that Galileo’s view implies that 

the infinite number represents a whole. 

 In this paper we will analyze the discussion of Galileo’s thesis on the infinite 

number by Leibniz at the beginning of his stay in Paris. In order to do this, we will divide 

this paper into four sections. In the first section we will point out that Leibniz carried out a 

double approach to the problem of the infinite number, a philosophical or axiomatic one 

(by which he shows that the infinite number implies a contradiction) and an arithmetical or 

analytical one (by which, through the application of rules for adding an infinite series of 

terms to the series of units, he shows that its sum would be 0). In the second and third 

sections, we will develop respectively the two approaches above mentioned. The 

examination of the rule for adding infinite series presented by Leibniz will be done by 

discussing the usual interpretation by which, in these early writings, Leibniz would already 

be appealing to the elimination of infinitesimal quantities. In this sense, as we will exhibit 

in this paper, the explanation of Leibniz’s application of the rule to the case of the infinite 

series of units, by which he concludes that 1 + 1 + 1 + 1 + 𝑒𝑡𝑐. = 0, supplies a lacuna in 

the classical literature. After doing so, in the fourth section we will finally consider 

Leibniz’s justification for such a rule, given a few years later. 

 

                                                           
7
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1. The infinite number in Leibniz 

 

 When Leibniz examines Galileo’s argument he immediately recognizes that, above 

all, the Italian scientist has failed in his understanding the requirements which define the 

infinite number (still regardless of the problem of its existence). Leibniz believes that, if the 

whole is equal to the part in the infinite number, then in this number there are not only as 

many powers as roots (that is, not only as many natural numbers as squares), but also as 

many even and odd numbers (namely, the numbers simpliciter) as even numbers, and as 

triangular, pyramidal numbers or numbers of any given progression of this kind, and as 

doubles, triples, etc. of the numbers simpliciter (that is, added to itself two, three times, 

etc.), and so on.
9
 In other words, the set of the natural numbers must be equal to any of his 

subsets, not only to those of the powers. However, these requirements are not all complied 

with by the unit. The double of 1 (1+1), or its triple (1+1+1) is not equal to 1. Hence, when 

Leibniz asks with which number the infinite number would be compared or equated, he 

observes that the number which complies with these requirements altogether is not 1 but 0. 

Only in 0 are there as many even and odd numbers as even, triangular or pyramidal 

numbers, etc., as well as only the double or the triple of this number is equal to itself, and 

so on. For Leibniz, the fact that the infinite number equates to 0 means that it is nothing, or 

that it does not represent a whole.
10

 

 However, as we have said, Leibniz not only disagrees with Galileo regarding the 

requirements which define the infinite number but also regarding the affirmation of its 

existence. The philosopher from Leipzig deepens in his approach to this problem in two 

ways, namely, a philosophical or axiomatic and an arithmetical or analytical one. From the 

philosophical point of view, Leibniz carries out an exam regarding how the propositions 

which have to be accepted in philosophy must be so that there is a breakthrough in it. 

Leibniz’s main concern here is to examine the scope of the whole-part axiom. As we have 

said, the Galilean argument assumes that this axiom, although valid for finite quantities, 

‘fails’ in the case of the infinite. What Leibniz notes is that, if the axiom could be 

demonstrated, then its scope of application could not be limited to the finite. In other words, 

if it could be analytically demonstrated, its universal scope would be exposed. Hence, it 

would be demonstrated that Galileo’s conclusion is wrong, or rather contradictory. From 

the arithmetical point of view, on the other hand, Leibniz presents arguments which show 

that the sum of all units, which precisely would be the infinite number, is 0. From this 

perspective Leibniz formally offers no arguments with which to conclude that the 

affirmation of the existence of the infinite number is contradictory. In any case, it is not the 

task of arithmetic to justify something’s existence or not, but of philosophy. In this sense, 

the two ways by which Leibniz approaches the problem of the existence of the infinite 

number are complementary. Accordingly, in the next section of this work we will consider 

the philosophical approach, while in the subsequent one, the arithmetical approach. 

 

2. The infinite number from the philosophical standpoint: the demonstration of the axiom 

 

 It could be consider that ultimately the difference between the proposals of the 

Italian scientist and the philosopher from Leipzig is based on the fact that they rely on 
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different premises. There are indeed two premises in conflict, namely, (a) in the infinite the 

whole is greater than a part and (b) an infinite set, such as that of natural numbers, is a 

whole. While the Italian scientist holds (b) and rejects (a), the philosopher from Leipzig 

does the opposite. However, as E. Lison points out,
11

 if were so, Leibniz could not 

disapprove the affirmations based on Galileo’s premises through his arguments. In this 

sense, he could not say that the infinite number is contradictory, since the assumption of 

other premises makes it possible. In this section we will show that for Leibniz it was not 

just a matter of assumed premises, that is to say, a matter of deciding which presupposition 

must be held and which rejected. He indeed considered that the universal scope of the 

axiom can be demonstrated. As a consequence, for Leibniz holding the opposite would not 

have been a viable option.  

 Now, the Leibnizian intention of ‘demonstrating the axiom’ might seem 

paradoxical. Even in Leibniz’s days the notion of axiom or principle was more or less 

understood in the terms presented by Aristotle in his Posterior Analytics, that is, as a first 

truth that is so self-evident that it is beyond any possible demonstration.
12

 However, in the 

present discussion Leibniz notes that one of these alleged first truths is not recognized as 

such by Galileo: 

In fact, as this proposition: the whole is greater than the part, has been 

questioned by the highest geometers, such as Galileo and Gregory of Saint 

Vincent, can we continue claiming from now on that there are propositions 

which are evident in themselves?
13

 

 The fact that a first truth can easily be doubted, means for Leibniz that in 

philosophy no proposition must be accepted, except those which either are certain by 

immediate observation of the senses, or based on a clear and distinct idea or are 

demonstrated by a definition.
14

 For the present discussion the third type of propositions, 

that is, those demonstrated, is particularly important. Thus, Leibniz thinks that if a 

proposition which is not confirmed by the senses or based on a clear and distinct idea is 

accepted, then it has to be demonstrated. As a result, no demonstrable proposition should be 

taken as self-evident. Leibniz mentions a clear example of an alleged self-evident 

proposition which however must be demonstrated: 

From this it is also clear that these propositions: [1] things equal to another 

thing are also equal to each other; [2] if the same is added to or removed from 

the same things, then the same things are obtained; [3] a whole is greater than a 

part; [4] the equimultiples are like the simples; [5] if proportional things are 

added to or removed from proportional things, then proportional things are 

obtained; etc., require a demonstration, since it is possible to doubt them, and if 

                                                           
11

 Elad Lison, “The Philosophical Assumptions Underlying Leibniz’s Use of the Diagonal Paradox in 1672,” 

Studia Leibnitiana 38 (2006): p. 197-208. 
12

 Aristotle, Posterior Analytics, 76a30. 
13

A II 1, 351: “Cum enim ista propositio: totum esse majus parte, dubitationem receperit apud maximos 

Geometras, quales certe Galilaeus et P. Gregorius a S. Vincentio fuere, ullasne alias imposterum per se notas 

clamitare pergemus”. Translations of this text of Leibniz are ours. With regard to Gregory of Saint Vincent, 

Leibniz points out that this mathematician held that the whole-part axiom fails in the angle of contact, that is, 

the angle between a circle and a tangent: Gregory of Saint Vincent. Opus geometricum quadraturae circuli et 

sectionum coni. Anvers, 1647, p. 871. 
14

 A II 1, 351. 
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they are true, they would be demonstrable, namely, from terms, that is, from 

definitions.
15

 

 Some famous axioms of Euclid, among which the one involved in the discussion 

with Galileo stands out, can be recognized in this quote. They are, strictly speaking, some 

“common notions” of Elements, I. Besides the fact that we can doubt the axioms, like the 

Italian scientist has effectively done, Leibniz recognizes another important reason why they 

cannot be taken as self-evident truths. In this case it is an epistemological reason: a human 

faculty or power which sets the same truths for all and with the same criteria cannot be 

established. The author recognizes that this would inevitably lead to the deepest skepticism. 

In this point, Leibniz is strongly critical of the Cartesian conception according to which it is 

possible to know propositions with evidence:
16

 

I say this [that all propositions must be demonstrated] against those who think 

that [truths] are known per se by I don’t know what natural light, since it is 

known that some consider certain propositions as known per se, while others 

reject and differentiate them, and they do not provide a criteria of what is 

known per se, unless perhaps the common opinion according to which, if it 

were not subjected to doubts, it would lay probable foundations of 

demonstrations, which is shaking hands with Pyrrho.
17

 

 According to Leibniz, the demonstration of the axioms –as well as of any other 

proposition which must be taken in philosophy and is not ascertained by the senses– must 

be carried out from definitions. Leibniz recognizes that he is in debt to the scholastic 

thought regarding the thesis that truths become manifest by inspecting the terms. The next 

required step in Leibniz’s exam consists in analyzing, on the one hand, definitions as such 

and, on the other, their role in demonstrations. Foremost, the fact that it can be 

demonstrated from definitions has in its basis the understanding that a definition is, 

according to Leibniz, the meaning of an idea.
18

 As a linguistic expression, a definition also 

‘points at’ the corresponding idea.
19

 However, this certainly does not mean that definitions 

are the same for everyone. In fact, Leibniz recognizes that definitions as such are arbitrary. 

Therefore, the fact that a definition is the meaning of an idea does not imply that it must be 

accepted without further questioning. The propositions demonstrated from definition must 

be accepted, not the definitions themselves. The demonstrated propositions can be, as such, 

true or false. Regarding definitions from which demonstrations are carried out, coincident 

in this point with the Galilean exam, Leibniz says that “falsity must not be argued [about 

them] but ineptitude or obscurity”.
20

 

                                                           
15

A II 1, 352: “Hinc apparet etiam propositiones istas: eidem aequalia etiam inter se esse, aequalia aequalibus 

addita vel demta facere aequalia, totum esse majus parte, aequimultiplicia esse ut simpla, si proportionalibus 

addantur demanturve proportionalia, producta esse proportionalia etc., cum dubitationis capaces sint, 

demonstratione indigere, et si sunt verae, demonstrabiles esse, ex terminis scilicet, seu definitionibus”. 
16

 For example, AT, VIII, 1, § 30. 
17

A II 1, 352: “(…) contra quam illi qui nescio quo lumine naturali per se notas putant. Cum constet quaedam 

ab aliquibus inter per se nota poni, quae ab aliis rejiciantur aut distinguantur, nec criterion afferri per se noti 

nisi forte opinionem communem, quae praeterquam quod dubitationibus obnoxia est, probabilia poneret 

fundamenta demonstrationum, quod est Pyrrhoniis manus dare”. 
18

 A II 1, 351. 
19

 Oscar M. Esquisabel, “Leibniz: las bases semióticas de la characteristica universalis”, Representaciones, 8, 

1 (2012): p. 12. 
20

 A II 1, 351: “(...) nec falsitatis, sed ineptiae obscuritatisque tantum arguendae”. 



7 

 

 The claim that every proposition which is admitted as true must be demonstrated 

from definitions, leads inevitably to a big problem: if definitions as such are arbitrary, then 

are the truths also so? That is: does this also mean that all truths depend on human will? 

There have been those who have claimed this interpretation. Thomas Hobbes, a decisive 

influence on Leibniz’s early thought, was one of them.
21

 The Hobbesian exposition is 

briefly that truths are arbitrary precisely because they depend on arbitrary definitions.
22

 

However, Leibniz disagrees with this interpretation. Although in the first version of the 

Accessio Leibniz held a conventionalist conception of definitions which has led him to the 

thesis that axioms are true by convention,
23

 in the second and definite version he conceived 

this issue otherwise. It is true that propositions in some way depend on definitions since the 

first are expressed precisely by words or other signs. However, the connections of the ideas 

themselves, which are expressed by definitions, are, as such, non-symbolic, that is, 

independent of the terms of language. Such connections of ideas, as we have said, depend 

on sensation or on an idea, but not on definitions. Since thoughts are precisely non-

symbolic, they are not arbitrary like definitions, given that the arbitrariness of them 

depends on the used terms. Therefore, Leibniz points out that the notations and symbols are 

arbitrary, be they words or characters, but the ideas are the same for all.
24

 

 However, there is one important feature which the use of symbols or characters 

admits. Leibniz indeed recognizes that on many occasions we proceed by a mere symbolic 

manipulation, without a direct consideration of the ideas themselves to which the characters 

are referred to.
25

 These thoughts which proceed by means of mere symbols abstaining from 

the consideration of ideas are denominated by Leibniz as blind, for behaving precisely in 

this way. According to Leibniz, in blind thoughts we proceed analogously to the way we 

proceed in those cases in which we consider a few ideas simply and distinctly 

comprehended. The usefulness of the use of symbols rests ultimately in the analogical 

nature of their employment, mainly in cases in which very complex things are symbolically 

considered. Despite this advantage of the use of symbols, the philosopher from Leipzig 

recognizes that we lack of a system of simple, complete and ordered symbols, even in pure 

mathematical sciences. From this fact, Leibniz designs the project of a Language or a 

Philosophical Scripture.
26

 

 In accordance with the stipulated procedure, to demonstrate the whole-part axiom 

Leibniz begins by establishing the definitions of the notions which are involved, namely, 

whole-part, greater than and smaller than. In this regard, Leibniz says: “if (def. 1) a and b 

are the parts, then the whole (def. 2) will be a + b. Likewise, if (def. 3) a is smaller than, 

                                                           
21

 On the importance of Hobbes for the main arguments in the Accessio, see also Ursula Goldenbaum, 

“Indivisibila Vera – How Leibniz Came to Love Mathematics Appendix: Leibniz’s Marginalia in Hobbes’ 

Opera Philosophica and De Corpore,” in Infinitesimal Differences: Controversies between Leibniz and his 

Contemporaries, edited by Ursula Goldenbaum and David Jesseph (Berlin and New York: Walter de 

Gruyter), p. 67-76. 
22

 Thomas Hobbes, Hobbes, De corpore, I, 3, 8, in The English Works of Thomas Hobbes, William 

Molesworth ed (London: Bohn, 1839), vol. 1. 
23

 Esquisabel, “Leibniz: las bases semióticas de la characteristica universalis”, 9-14 
24

 A II 1, 353. 
25

 A II 1, 353-354. 
26

 A II 1, 354; an examination of the way in which Leibniz understands the employment of symbols in the 

Accessio and his project of a universal language can be found in Esquisabel, Leibniz: las bases semióticas de 

la characteristica universalis, 14-26. 
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then c = a + b (def. 4) will be greater than”.
27

 Now, the fact that he understands that every 

proposition which is accepted must be demonstrated from definitions, implicitly supposes a 

certain conception of what a demonstration is. What Leibniz has in mind here is at least 

similar to what Hobbes had said. The British philosopher had considered a demonstration 

as a syllogism or a chain of syllogisms which goes from definitions of names, to a last 

conclusion, in such a way that what is concluded must be in some way contained in the 

definitions which are at the basis of the first syllogism. If the conclusion is not found in it, 

it will not be found in any other syllogism which depends on the first and hence will never 

be reached.
28

 According to Leibniz (and in this he is in explicit accordance with Pascal), 

this is the procedure of pure sciences, that is, those which are not empirical. As a matter of 

fact, in this kind of sciences a definition or a part of a definition of what is defined is 

enunciated.
29

 The idea that everything which can be deduced from a notion must already be 

contained in its definition (under the assumption that there is nothing without a cause) will 

be repeatedly present in the Leibnizian analysis. In this case, this means that the 

demonstration of the whole-part axiom should be deducible from the definitions of ‘whole’, 

‘part’, ‘greater than’ and ‘smaller than’. Precisely for this reason, after establishing such 

definitions, Leibniz adds: “if the definitions are joined, the demonstration is composed: the 

Whole = a + b (def. 2) a + b = c (def. 4) c = greater than (the same def. 4), part = a (def. 

1), a = smaller than (def. 3)”.
30

 

 Thus, Leibniz has an analytical demonstration of the whole-part axiom (that is, from 

definitions). Thereby, the universal scope of the axiom, that is, its universal validity for 

every quantity, either finite or infinite, is guaranteed. Therefore, it is incorrect to say that 

the axiom ‘fails’ in the infinite, as well as it is to claim that the infinite number of all units 

(which according to Galileo does not contradict the axiom since it is beyond its scope) does 

not imply any contradiction. This leads us to conclude that the infinite number of all units is 

impossible, precisely because it contradicts the whole-part axiom. Finally, if it is 

impossible, it does not exist.
31

 

 

3. The Leibnizian rule for adding infinite series 

 

 The second kind of approach proposed by Leibniz is very important for the present 

discussion. One feature of this reasoning is that it does not require the whole-part axiom. In 

                                                           
27

 A II 1, 355: “Nam si (defin. 1) partes sint a, b, totum (defin. 2) erit a + b. Item si minus (defin. 3) sit idem a, 

majus (defin. 4) erit c = a + b”. 
28

 Hobbes, De corpore, I, 6, 13 and 16. 
29

 A II 1, 354. 
30

A II 1, 355: “Conjunctis definitionibus connectetur demonstratio: Totum = a + b (defin.2) a + b = c (defin. 

4) c = majus (dict. defin. 4), pars = a (def. 1), a = minus (defin. 3)”. 
31

 These considerations regarding the infinite number are connected with others philosophical problems 

beyond the epistemological thesis of the demonstrability of axioms. For example, Rabouin points out its 

connection with the so-called ‘ontological proof’ (David Rabouin. “The Difficulty of Being Simple: On Some 

Interactions Between Mathematics and Philosophy in Leibniz’s Analysis of Notions”. In G. W. Leibniz, 

interrelations between Mathematics and Philosophy, edited by Norma Goethe, Philip Beeley and David 

Rabouin. Dordrecht; Heidelberg; New York; London: Springer, 2015, p. 61-62). Leibniz considered that this 

argument needs a ‘supplement’, since it supposes that the perfect or maximum being is possible, and this must 

be demonstrated (A VI 3, 511). This requirement is based on the fact that there are definitions of alleged 

greatest or ‘maxima’ things which imply contradictions, as, for example, a most rapid motion, a maximum 

number or a greatest shape (A VI 3, 520). Hence, the demonstration of the impossibility of the number of all 

units plays an important role in Leibniz’s ‘ontological proof’.  
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this sense, it shows the equalization of the infinite number with 0 by other means than those 

described above, and hence it evades the philosophical discussion. Thus, Leibniz offers a 

different argument, arithmetical in this case (at least in the early modern way of working in 

arithmetic), which complements the philosophical or axiomatic one. The convergence of 

different arguments was for Leibniz persuasive enough to convince him of the non-

existence of the infinite number of all units. 

 This second argumentation is a consequence of the examination which Leibniz 

carries out from Huygens’s proposal mentioned at the beginning of this paper. By looking 

for the sum of the reciprocals of the triangular numbers, Leibniz believes he has found not 

only a rule for adding this infinite series but for many others series too. The result of this 

procedure gave rise to the draft of a paper which he sent to the Journal des Sçavans, 

directed by J. Gallois, which was finally not published. This work, entitled Accessio ad 

arithmeticam infinitorum, contains Leibniz’s first intervention in the field of infinite sums 

and it is frequently considered that the obtained result is the beginning of the Leibnizian 

research in the field of the mathematics of infinitesimals. As we will see, according to 

Leibniz, the application of this rule to certain series (that of units and of the reciprocals of 

natural numbers) will show the equalization of the infinite number (which is the sum of the 

above series) with 0. 

 The Accessio, which was reviewed several times, only introduces the rule of 

procedure for adding both the reciprocals of the triangular numbers and the successions 

generated by the triangular numbers (that is, of the reciprocals of the complete series of 

Pascal’s triangle), but not its demonstration, which is the subject of later works. In this 

section we will first analyze the Leibnizian rule, in order to consider its demonstration, and 

finally present the problems which arise both from the rule and its justification, and from its 

application to the sum from which the infinite number would result. 

 According to the usual reconstruction of the Leibnizian procedure for the sum of 

infinite series, at some point the philosopher from Leipzig appeals to the elimination of 

infinitesimal quantities. J. Hofmann and more recently S. Levey explain the procedure in 

this way:
32

 

 

1. Consider two infinite series, a) and b), such that the elements of b) are the differences 

between the consecutive elements of the a) series, namely: 

 a) 𝑎1, 𝑎2, 𝑎3, 𝑎4  … , 𝑎𝑛, 𝑎𝑛+1, etc. 
 b) 𝑏1 = 𝑎1 − 𝑎2;  𝑏2 = 𝑎2 − 𝑎3;  𝑏3 = 𝑎3 − 𝑎4, … , 𝑏𝑛 = 𝑎𝑛 − 𝑎𝑛+1, etc. 
 

2. Given these infinite series, then [Rule]: 𝑏1 + 𝑏2 + 𝑏3 + ⋯ + 𝑏𝑛 = 𝑎1 − 𝑎𝑛+1 

 

3. For example, let us try to obtain the sum of the series of the reciprocals of the triangular 

numbers (b). 

 

4. First of all we must determine the generating rule of the reciprocals of the triangular 

numbers: 𝑏𝑛 =
2

𝑛 (𝑛+1)
. Thus, for example: 

                                                           
32

 Joseph Hofmann, Leibniz in Paris, 1672-1676. His growth to mathematical maturity (Cambridge & New 

York: Cambridge University Press, 1974), p. 12-22, and Samuel Levey, “Leibniz on Mathematics and the 

Actually Infinite Division of Matter,” The Philosophical Review 107, 1 (1998): p. 49-96.  
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(𝑏1) 
2

1 (1+1)
=

2

2
=

1

1
  

(𝑏2) 
2

2 (2+1)
=

2

6
=

1

3
 

(𝑏3) 
2

3 (3+1)
=

2

12
=

1

6
  

(𝑏4) 
2

4 (4+1)
=

2

20
=

1

10
 

And so on.  

 

5. According to [Rule], for obtaining the sum of (b) we must find a series (a) such that the 

sum of (𝑏) = 𝑎1 − 𝑎𝑛+1. 

 

6. The generating rule of such sequence (a) is: 𝑎𝑛 =
2

𝑛
. Thus, for example: (𝑎1) = 

2

1
; (𝑎2) = 

2

2
; (𝑎3) = 

2

3
; (𝑎4) = 

2

4
; and so on. 

 

7. We can observe what was indicated in the step 1 point b), since: (𝑏1)
1

1
=

2

1
−

2

2
; (𝑏2)

1

3
=

2

2
−

2

3
; (𝑏3)

1

6
=

2

3
−

2

4
; etc. 

 

8. According to [Rule]: 
1

1
+

1

3
+

1

6
+

1

10
𝑒𝑡𝑐. =

2

1
−

2

𝑛+1
  

 

9. Now, supposing that the series (b) and (a) have a last term, that is, making n infinitely 

big, such last term will be infinitely small and, hence, it can be eliminated, so (Levey, 1998: 

72):  

𝑠𝑢𝑚 𝑜𝑓 (𝑏) =
2

1
−

2

𝑛 + 1
=

2

1
= 2 

 However, the concept of the infinitesimal is not presented either in the rule 

presented by Leibniz in the Accessio, nor in the foundation presented later. He rather 

supposes that the infinite sums can be treated as wholes, that is to say, it always makes 

sense to speak of a result of the sum, regardless of its nature.
33

 

 

1. The rule of the Accessio is proposed not for adding the reciprocals of the triangular 

numbers only (from now on, ‘triangular fractions’; Leibniz himself names them in this way 

when he justifies the rule: A VII 3, 366), but as a universal rule, that is, a rule that also 

allows us to add the pyramidal fractions (the differences between the pyramidal numbers 

are the triangular ones), the triangulo-triangular (the differences are the pyramidals), the 

triangulo-pyramidal (the differences are the triangulo-triangular), and so on. Leibniz 

                                                           
33

 For another approach to Leibniz’s method applied in the Accessio, see Michel Serfati, “Order in Descartes, 

Harmony in Leibniz: Two Regulative Principles of Mathematical Analysis,” Studia Leibnitiana 45, 1 (2013): 

p. 75-78; Michel Serfati,“‘On the Sum of All Differences’ and the Origin of Mathematics According to 

Leibniz: Mathematical and Philosophical Aspects,” in Perspectives on Theory of Controversies and the Ethics 

of Communication, edited by Dana Riesenfeld and Giovanni Scarafile (Dordrecht; Heidelberg; New York; 

London: Springer, 2014), p. 69-79 and David Rabouin. “The Difficulty of Being Simple: On Some 

Interactions Between Mathematics and Philosophy in Leibniz’s Analysis of Notions”. In G. W. Leibniz, 

interrelations between Mathematics and Philosophy, edited by Norma Goethe, Philip Beeley and David 

Rabouin. Dordrecht; Heidelberg; New York; London: Springer, 2015, p. 57-63. 
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presents a table, which he calls replicated arithmetical progression, and which is the 

equivalent of Pascal’s triangle:
34

 

 
Image 2 

 

2. Hence, the series of the corresponding reciprocals are: 

 Natural fractions: 
1

1
,

1

2
,

1

3
,

1

4
,

1

5
,

1

6
,

1

7
, 𝑒𝑡𝑐. 

 Triangular fractions: 
1

1
,

1

3
,

1

6
,

1

10
,

1

15
,

1

21
,

1

28
, 𝑒𝑡𝑐. 

 Pyramidal fractions: 
1

1
,

1

4
,

1

10
,

1

20
,

1

35
,

1

56
,

1

84
, 𝑒𝑡𝑐. 

 Triangulo-triangular fractions: 
1

1
,

1

5
,

1

15
,

1

35
,

1

70
,

1

126
,

1

210
, 𝑒𝑡𝑐. 

 Triangulo-pyramidal fractions: 
1

1
,

1

6
,

1

21
,

1

56
,

1

126
,

1

252
,

1

462
, 𝑒𝑡𝑐. 

 Pyramido-pyramidal fractions: 
1

1
,

1

7
,

1

28
,

1

84
,

1

210
,

1

462
,

1

924
, 𝑒𝑡𝑐. 

 Etc. 

(In today’s terms: natural fractions: 
1

𝑛
; triangular fractions: 

2

𝑛(𝑛+1)
; pyramidal fractions: 

6

𝑛(𝑛+1)(𝑛+2)
, and so on). 

 

3. In each of the progressions we must distinguish between the generating number and the 

exponent number. The generating number is that which multiplies each fraction of each 

progression, while the exponent number is that which indicates the order of the arithmetical 

progression in the table of the reciprocals of the replicated arithmetical progression. From 

the succession of the natural numbers on, the exponent number coincides with the number 

which follows the unit immediately. Thus, for example, the exponent number of the series 

of natural numbers is 2, that of the triangular numbers is 3, that of the pyramidal numbers is 

4, and so on.
35

 

 

4. With this in mind, Leibniz’s rule is: 

The sum of a series of fractions whose numerator is the generating number and 

whose denominators are the terms of some Replicated Arithmetical 

                                                           
34

 A II 1, 345-346. 
35

 A II 1, 346. 
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progression, that is, what is the same, the sum of ratios in which the antecedent 

is the unit and the consequent is a term of the Replicated Arithmetical 

progression which has the Unit as the generating number, this sum, I say, is a 

fraction or ratio whose numerator or antecedent is the exponent number of the 

immediately preceding series, that is, of the penultimate (namely, supposing a 

given last one), but the denominator or consequent is the exponent number of 

the immediately preceding series to the preceding one, that is, of the 

antepenultimate.
36

  

 

5. Thus, for example:  

- Sum of the pyramido-pyramidal fractions: 
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑜−𝑝𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑜−𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟
=

6

5
 

- Sum of the triangulo-pyramidal fractions: 
5

4
 (for the same reason) 

- Sum of the triangulo-triangular fractions: 
4

3
 (for the same reason) 

- Sum of the pyramidal fractions: 
3

2
 (for the same reason) 

- Sum of the triangular fractions: 
2

1
 (for the same reason) 

 

6. The following table is therefore obtained: 

 
Image 3 

 

7. We can observe that Leibniz, showing that the sum of the triangular fractions is 2, 

presents a procedure for adding an endless number of series. 

                                                           
36

 A II 1, 346: “Regula Universalis haec est: Summa seriei fractionum, quarum numerator est generator, 

nominatores sunt termini cujusdam progressionis Arithmeticae Replicatae, seu, quod idem est, summa 

rationum in quibus antecedens Unitas, consequens est terminus progressionis Arithmeticae Replicatae 

Unitatem habentis generatricem, haec summa, inquam, est fractio seu ratio cujus numerator seu antecedens est 

exponens seriei proximae praecedentis seu penultimae (data scilicet supposita ultima) nominator vero seu 

consequens est exponens seriei proxime praecedentis praecedentem, seu antepenultimae”. 
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8. The application of the aforementioned rule to the series of natural numbers and of units 

constitutes Leibniz’s arithmetical argument for showing that the infinite number is equal to 

0.
37

 Indeed, the sum of the series of units would be the infinite number of all units. As the 

last table shows: 

- Sum of the natural fractions: 
1

0
  

- Sum of units: 
0

0
  

 

As we have said in section 1, the idea that the infinite number equates to 0 implies that it is 

nothing, or better, it does not represent a whole, in opposition to the conclusion draws by 

Galileo. 

 

4. The justification of the rule 

 

 It is clear that here there is no explicit appeal to infinitesimal quantities, nor to any 

procedure for eliminating them. Therefore, the result of our examination seems to go 

against the usual interpretation. However, Leibniz seems to suppose more or less implicitly 

that whenever we have an infinite series there is a certain amount that corresponds with it 

as a totalization, either finite or infinite (regardless of whether this can make sense to us 

today or not). Thanks to the edition of Leibniz’s work on infinite series, we have texts 

which show in what way he justified the rule of the Accessio. There are at least two texts 

which expose the justification of the aforementioned rule. The first one is entitled Summa 

fractionum a figuratis, per aequationes and the second one Scheda Exigua.
38

 We will 

present a synthesis of the second text’s argumentation. These texts, again, do not explicitly 

refer to infinitesimal quantities, although they appeal to the idea that the infinite series 

make sense even when the results are not finite quantities. We will now provide the 

Leibnizian justification of the aforementioned rule.  

 The justification starts from a property which relates the succession of natural 

fractions with the succession of triangular fractions. Leibniz presents a table or graphical 

arrangement in order to show this property: 

 
Image 4 

 This property, which Leibniz takes as a theorem, consists in assuming that if to each 

term of the natural succession the half of the term of the triangular fractions linked to it by a 

bar is added, then the term of the natural succession immediately prior to it (that is, that 

which is placed above the triangular term linked to it by the bar) is obtained.
39

 As a 

consequence: 

                                                           
37

 A II 1, 349-350. 
38

 A VII 3, 365-369, September of 1674, and A VII 3, 712-714, December of 1675 or February of 1676. 
39

 A VII 3, 712-713. 
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1

2
 (natural fraction) +

1

2
 (half of the triangular fraction linked to it by a bar) = 1  

 
1

3
+

1

6
=

1

2
 

 
1

4
+

1

12
=

1

3
 

 
1

5
+

1

20
=

1

4
 

 

 On the basis of this property, Leibniz develops the proof that the infinite sum of the 

triangular fractions is 2, as well as that of the other progressions which are obtained from 

the triangular succession. To do so, Leibniz establishes, in the first place, the generating 

rule of the triangular numbers and, in the second, that of the reciprocals of such numbers. 

To obtain the triangular numbers: 
𝑦2+𝑦𝑎

2
, where ‘a’ is the generating number. As in this case 

the generating number is the unit, 
𝑦2+𝑦

2
. Thus, (𝑦1) 

12+1

2
=

2

2
=

1

1
= 1; (𝑦2) 

22+2

2
=

6

2
=

3

1
=

3; (𝑦3) 
32+3

2
=

12

2
=

6

1
= 6, and so on. The triangular fractions are obtained, in turn, by this 

formula:  
2𝑎2

𝑦2+𝑦𝑎
. Again, as ‘a’ is the generating number which here is the unit, 

2

𝑦2+𝑦
 is 

obtained. Thus, for example: (𝑦1) 
2

12+1
=

2

2
=

1

1
; (𝑦2) 

2

22+2
=

2

6
=

1

3
; (𝑦3) 

2

32+3
=

2

12
=

1

6
; and 

so on (VII 3, 366). Thus, we will have the opportunity to see how Leibniz justifies the rule 

of the Accessio from a generalization of this procedure. Let us take, in the first place, the 

infinite sums of the successions in order from the natural succession (remember image 3): 

 

(1) 

 𝐴 ⨅
1

1
+

1

2
+

1

3
+

1

4
+

1

5
𝑒𝑡𝑐. 

 𝐵 ⨅
1

1
+

1

3
+

1

6
+

1

10
+

1

15
𝑒𝑡𝑐. 

 𝐶 ⨅
1

1
+

1

4
+

1

10
+

1

20
+

1

35
𝑒𝑡𝑐. 

 𝐷 ⨅
1

1
+

1

5
+

1

15
+

1

35
+

1

70
𝑒𝑡𝑐. 

 𝑒𝑡𝑐. ⨅ 𝑒𝑡𝑐. 
 Before proceeding, a clarification on the sign which represents equality (⨅) should 

be made. This sign presents a notational ambiguity which has considerable consequences in 

the demonstration of the sum of the triangular fractions, since the letters A, B, C, D, etc. 

can be understood as a mere conventional notation used to express the series as such in an 

abridged form, but they can also be interpreted as quantities which result from the infinite 

sum of fractions. In any case, as we will see, Leibniz supposes that the algebraic operations 

which are applied to a finite number of terms can be equally applied if the number of terms 

is infinite. 

 Given the aforementioned ambiguity, let us now take the infinite sum A of natural 

fractions and let us subtract 1. This will result in: 

 

(2) 𝐴 − 1 ⨅
1

2
+

1

3
+

1

4
+

1

5
𝑒𝑡𝑐. 

 



15 

 

 Similarly, let us now take the sum of half of each one of the terms of the infinite 

sum of the succession of the triangular fractions. Again, given the aforementioned 

ambiguity, Leibniz seems to consider that the division is distributive in relation to the sum 

also for infinite terms: 

 

(3) 
1

2
𝐵 ⨅

1

2
+

1

6
+

1

12
+

1

20
𝑒𝑡𝑐. 

 

 Next, let us make the algebraic sum of (2) and (3). Thus, for the property exhibited 

in image 4, the following result will be obtained (which, apparently, is the restitution of the 

complete series of the natural fractions, that is, the series A): 

 

 (4) 𝐴 − 1 +
1

2
𝐵 ⨅ 1 +

1

2
+

1

3
+

1

4
𝑒𝑡𝑐.  

 

 Thus, since by the addition (4) the series A is again obtained, Leibniz concludes 

that: 

 

(5) 𝐴 − 1 +
1

2
𝐵 = 𝐴, then, 

 

(6) 
1

2
𝐵 = 1, hence, 

 

(7) 𝐵 =
2

1
, which was what he wanted to prove.

40
 

 

Leibniz obtains analogous conclusions by applying a similar reasoning to other 

series. In order to do this he recognizes, for example, that the succession of the series C 

(pyramidal fractions) behaves, regarding the succession of the terms of B (triangular 

fractions), in an analogous manner to B regarding A. The same can be said of the terms of 

the series D regarding C, of E regarding D, etc. For example: in analogy with the previous 

reasoning, let us subtract the unit from the series B (𝐵 − 1) and let us establish which 

fraction of C must be added in order to restore the original series B. We will obtain that 

𝐵 − 1 +
2

3
𝐶 = 𝐵 . From here Leibniz will recognize that there is a sequence in the 

coefficients for the remaining series: as well as for obtaining B, 
2

3
 of C must be added to B-

1, for obtaining C, 
3

4
 of D must be added to C-1, therefore for obtaining D 

4

5
 of E must be 

added to D-1, and so on. (Let us note the sequence of the coefficients: 
1

2
,

2

3
,

3

4
,

4

5
, 𝑒𝑡𝑐.). Thus, 

it is obtained that: 

 

(8) 𝐵 − 1 +
2

3
𝐶 = 𝐵; then, 

2

3
𝐶 = 1; hence, 𝐶 =

3

2
 

 

(9) 𝐶 − 1 +
3

4
𝐷 = 𝐶; then, 

3

4
𝐷 = 1; hence, 𝐷 =

4

3
 

 

Consequently, the next table follows (A VII 3, 714): 

                                                           
40

 A VII 3, 713-714. 
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Image 5 

 

 We see, therefore, where the rule of the Accessio arises. This rule (we must 

remember) says: the sum of each series of the reciprocals of the replicated arithmetical 

progressions is a ratio in which the numerator is the exponent number of the penultimate 

succession and the denominator is the exponent number of the antepenultimate succession. 

Thus, the following property is generalized: in order to obtain the sum of a given series the 

reciprocal of the coefficient which multiplies it must be formed so that the previous series 

can be obtained.  

 

Conclusions: some problems of the Leibnizian exposition 

 

In short: Leibniz deals with Galileo’s conclusions regarding the infinite number in 

two complementary ways. On the one hand, he demonstrates the whole-part axiom by 

means of definitions, in order to justify its universal scope. Hence, it would be inconvenient 

to say, as Galileo has done, that the properties of being greater than, being smaller than, and 

being equal to, cannot be applied to infinites. Thus, the infinite number implies a 

contradiction. This is what we have called the ‘philosophical’ or ‘axiomatic’ approach of 

Leibniz. On the other hand, Leibniz shows that we must not say that the infinite number 

equates to 1, but to 0, all of which means that it is nothing, or better, that it does not 

represent a whole. Leibniz applied the rule for adding the infinite series of the harmonic 

triangle to the infinite series of units to show the astonishing conclusion that the infinite 

sum of units would be 0. This is what we have called the ‘arithmetic’ or ‘analytical’ 

approach of Leibniz. It seems that Leibniz considered that the results of these two 

approaches are complementary, that is, they are in solidarity with each other: the infinite 

number is impossible, that is, it is nothing, or better, it is not a whole.  
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 Beyond this, it should be note that Leibniz’s rule and its justification raise questions 

regarding both the presuppositions which are in the basis of the proof and the validity of the 

application of the rule to the series of natural fractions and units. Let us return, in the first 

place, to the problem of the ambiguity of the equalities previously formulated (namely, A, 

B, C, D). It seems clear that Leibniz interprets the corresponding letters not only as 

abbreviations of the series but also as expressions of unknown quantities. If this 

interpretation is correct, then it follows that Leibniz deals with all the series as if we could 

consider them as wholes, that is, such that each one of them amounts to a certain quantity, 

finite or infinite, which can be algebraically operated with. 

 Implicitly, however, the course of Leibniz’s argumentation seems to suggest that the 

operations with an infinite number of terms do not maintain the same characteristics as the 

operations with a finite number of terms. Thus, for example, the step (4) ( 𝐴 − 1 +
1

2
𝐵 ⨅ 1 +

1

2
+

1

3
+

1

4
𝑒𝑡𝑐.) does not authorize the step (5) (𝐴 − 1 +

1

2
𝐵 = 𝐴) in the case of a 

finite series, since if A and B have n terms in a one to one correspondence, 𝐴 − 1 +
1

2
𝐵 =

𝐴 will have n-1 terms, so the result of the operation in the finite case does not restitute the 

original series. In other words, if the series A is the sum of the reciprocals of the k first 

natural numbers, we will have that 𝐴 − 1 +
1

2
𝐵 = 𝐴 −

1

𝐾
. However, Leibniz seems to 

suppose that in an infinitary case, both series, 𝐴 and 𝐴 − 1 +
1

2
𝐵, have the same cardinality 

as formulas, that is, the same number of terms. This seems to suggest that the algebraic 

operations in the field of the finite are not conserved in the field of the infinite. 

 There is, however, another possible answer, which consists in appealing to 

infinitesimal quantities. If we introduce these quantities and consider a series as a totality 

gifted with a last infinitesimal term, this term will become negligible and therefore 

dispensable. This would be the case of the missing term in the series 𝐴 − 1 +
1

2
𝐵, which 

would become infinitely small since the denominator is infinitely big and, in that case, both 

sums would be equal. Although this interpretation is closely related to the usual, which is 

correct if what we are considering is Leibniz’s mature thought, it does not seem to be 

applicable to the method of argumentation which he uses in these texts, since, as we have 

seen, there is no explicit reference to the concept of an infinitesimal quantity, neither to the 

elimination procedure of such quantities. In short, the strategy followed by Leibniz for 

obtaining the sum of the series of the triangular fractions does not consist in the 

introduction of infinitesimal quantities, but in the possibility of treating the infinite series as 

wholes which always give a certain quantity as the result, either finite or infinite. From this 

point of view, the usual interpretations, which claim that Leibniz already in 1672 obtained 

the sum of the triangular fractions by means of operating with infinitesimal quantities, are 

not correct. In other words, in the Leibnizian argumentation what matters is that the series 

can be treated as a whole which always gives a quantity as the result, but not that it must be 

considered as a whole ended by a last dispensable infinitesimal. 

 A second problem arises precisely in relation with the infinite number. While 

Leibniz elaborates the justification of the rule of the Accessio, he recognizes that the results 

of its application to the first two series are “conjectural”, not “certain” like the others. In 

this sense, he recognizes that the rule is useful for the sum of the series of the triangular 

numbers and the following series, but not for the sum of the preceding ones. From a 

contemporary point of view, we can recognize that the first two series are not convergent, 
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while that of the triangular fractions (as well as those that follow it) is. Although in 

Leibniz’s time there were no convergence criteria, he recognized the difference between 

convergent and non-convergent series. Notwithstanding, he applied a rule for adding 

convergent series even to non-convergent series, such as the series of natural numbers and 

of units. In other words, the infinite series were treated by Leibniz as summable wholes, 

whether they are convergent or not. 

 In third place, if what has been said is correct, namely, that Leibniz takes the sums 

as wholes, then some problems arise in relation to the strategy designed by Leibniz to find 

the sums of the triangular fractions and of the remaining fractions of the harmonic triangle. 

Indeed, the series of the reciprocals of the natural numbers (series A) is essential to the 

proof developed by Leibniz, and he knows that this series does not give a finite sum as the 

result (that is, it is not a convergent series). From Leibniz’s point of view, this is to say that 

its sum gives as a result an infinite quantity, which according to our interpretation follows 

from having considered the possibility of totalizing any kind of infinite sum. Thus, a 

conflict with his explicit rejection of the existence of the infinite number arises. In other 

words, the Leibnizian foundation seems to appeal to entities which his very conception 

rejects. Perhaps at this point we should appeal to something said by Leibniz in 1676, that is, 

that it corresponds to the metaphysicians to examine whether the nature of things accepts 

infinite bounded quantities or not, since for the geometer is enough to demonstrate what 

follow from their supposition.
41
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