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a b s t r a c t

In many situations, data follow a generalized linear model in which the mean of the
responses ismodelled, through a link function, linearly on the covariates. Robust estimators
for the regression parameter in order to build test statistics for this parameter, when
missing data occur in the responses, are considered. The asymptotic behaviour of the robust
estimators for the regression parameter is obtained, under the null hypothesis and under
contiguous alternatives. This allows us to derive the asymptotic distribution of the robust
Wald-type test statistics constructed from the proposed estimators. The influence function
of the test statistics is also studied. A simulation study allows us to compare the behaviour
of the classical and robust tests, under different contamination schemes. Applications to
real data sets enable to investigate the sensitivity of the p-value to themissing scheme and
to the presence of outliers.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The generalized linear model (McCullagh and Nelder, 1989), glm, is a popular technique for modelling a wide variety
of data and assumes that the observations (yi, xti ), 1 ≤ i ≤ n, xi ∈ Rk, are independent with the same distribution as
(y, xt) ∈ Rk+1 such that the conditional distribution of y|x belongs to the canonical exponential family

exp {[yθ(x)− B (θ(x))] /A(τ )+ C(y, τ )} , (1)

for known functions A, B and C . In this situation, if we denote by B′ the derivative of B, the mean µ(x) = E(y|x) = B′ (θ(x))
is modelled linearly through a known link function, g , i.e., g(µ (x)) = θ(x) = xtβ. Robust procedures for generalized linear
models have been considered, among others, by Stefanski et al. (1986), Künsch et al. (1989), Bianco andYohai (1996), Cantoni
and Ronchetti (2001), Croux andHaesbroeck (2003) and Bianco et al. (2005); see also,Maronna et al. (2006). Recently, robust
tests for the regression parameter under a logistic model were considered by Bianco and Martínez (2009).

In practice, some response variables may be missing by design (as in two-stage studies) or by happenstance. As is well
known, the methods proposed by the above mentioned authors are designed for complete data sets and problems arise
when missing observations are present. Even if there are many situations in which both the response and the explanatory
variables aremissing, wewill focus our attention on those cases in whichmissing data occur only in the responses. Actually,
missingness of responses is very common in opinion polls, market research surveys, mail enquiries, social-economic
investigations, medical studies and other scientific experiments, when the explanatory variables can be controlled. This
pattern appears, for example, in the scheme of double sampling proposed by Neyman (1938), where first a complete sample
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is obtained and then, some additional covariate values are computed since, perhaps, this is less expensive than to obtain
more response values. Hence, we will focus our attention on robust inference when the response variable may havemissing
observations, but the covariate x is totally observed.

In this paper, we consider the robust estimators for the regression parameter β introduced by Bianco et al. (2011a),
under a glm model. When there are no missing data, these estimators include the family of estimators previously studied
by several authors such as Bianco and Yohai (1996), Cantoni and Ronchetti (2001), Croux and Haesbroeck (2003) and Bianco
et al. (2005). It is shown that the robust estimators ofβ are asymptotically normally distributedwhich allows us to construct
a robust procedure to test the hypothesis H0 : β = β0 versus H1 : β ≠ β0. The paper is organized as follows. The robust
proposal is given in Section 2, the asymptotic distribution of the regression estimators and a robust Wald-type test for the
regression parameter are provided in Section 3. The results of a Monte Carlo study are summarized in Section 4, while in
Section 5 we investigate the empirical breakdown point of the different procedures. The proposed procedure is illustrated
over two real data examples in Section 6 where we carried out a sensitivity study for the p-value. An expression for the
influence function of the test is obtained in Section 7. Proofs are relegated to the Appendix.

2. Robust inference

2.1. Framework and the robust estimators

Suppose we obtain a random sample of incomplete data

yi, xti , δi


, 1 ≤ i ≤ n, of a generalized linear model where

δi = 1 if yi is observed, δi = 0 if yi is missing and (yi, xti ) ∈ Rk+1 are such that the conditional distribution F(·, µi, τ ) of yi|xi
belongs to the canonical exponential family given in (1), withµi = H(xti β) and Var(yi|xi) = A2(τ )V (µi) = A2(τ )B′′ (θ(xi))
with B′′ the second derivative of B. Let (β, τ ) denote the true parameter values andEF the expectation under the truemodel;
thus EF (y|x) = H(xtβ). In a more general situation, we will think of τ as a nuisance parameter such as an additional scale
or dispersion parameter or even, the tuning constant for the score function to be considered below. For instance, under a
Gamma regression model τ is related to the shape parameter, while for Poisson and logistic regression, τ = 1.

Let (y, xt, δ) be a random vector with the same distribution as

yi, xti , δi


. Bianco et al. (2011a) defined robust estimators

of the regression parameter whenmissing responses occur under an ignorablemissingmechanism. To bemore precise, they
assumed that y is missing at random (MAR), that is, δ and y are conditionally independent given x, i.e.,

P (δ = 1|(y, x)) = P (δ = 1|x) = p (x) . (2)

A common assumption in the literature states that infx p (x) > 0, meaning that at any value of the covariate response
variables are observed.

For the sake of completeness, we remind the definition of the simplified estimators considered in Bianco et al. (2011a)
where also a propensity score approach is considered. Through a heuristic argument based on the influence function, Bianco
et al. (2011a) showed that in some situations, such as the Gamma model to be considered below, the asymptotic variance
of the robust simplified estimators is smaller than that of the propensity score ones. For that reason, we will focus here on
test statistics based on the robust simplified estimators.

Let w1 : Rk
→ R be a weight function to control leverage points on the carriers x and ρ : R3

→ R a loss function. For
any b ∈ Rk, t ∈ R, let us define

Sn(b, t) =
1
n

n
i=1

δiρ

yi, xti b, t


w1(xi), (3)

S(b, t) = EF

δρ

y, xtb, t


w1(x)


= EF


p(x)ρ


y, xtb, t


w1(x)


. (4)

In order to define Fisher-consistent estimators, Bianco et al. (2011a) assumed that w1(·) and ρ(·) are such that, S(β, τ ) =

minb S(b, τ ). As mentioned above, the parameter t in S(b, t) plays the role of a nuisance parameter.
Letτ = τn be robust consistent estimators of τ , the robust simplified estimator β of the regression parameter is defined

as β = argmin
b

Sn(b,τ). (5)

Under mild conditions the consistency ofβ is derived in Bianco et al. (2011a).
When ρ is continuously differentiable, if we denote by Ψ (y, u, t) = ∂ρ(y, u, t)/∂u, then β and β satisfy the diff-

erentiated equations S(1)(β, τ ) = 0k and S(1)n (b,τ) = 0k, respectively, where S(1)(b, t) = EF (Ψ (y, xtb, t) w1(x)p(x)x)
and S(1)n (b, t) = (1/n)

n
i=1 δiΨ


yi, xti b, t


w1(xi)xi.

Remark 2.1.1. Two classes of loss functions ρ have been considered in the literature. One of them aims to bound the
deviances, while the other one introduced by Cantoni and Ronchetti (2001) bounds the Pearson residuals. In both cases,
the correction term needed to ensure Fisher-consistency is included in the function ρ. For a complete description,
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see Bianco et al. (2011a). In particular, the Poisson and log-Gamma model were considered therein. We refer to Bianco
et al. (2005) for a description on robust estimators based on deviances for regression models with asymmetric errors where
all the responses are observed and also to Heritier et al. (2009) for a description on M-type estimators for the log-Gamma
model. One of the main advantages of robust estimators based on deviances is that they do not need a correction term
when the response distribution belongs to a continuous family of distributions with strongly unimodal density function
(Bianco et al., 2005). As pointed in Heritier et al. (2009), the nature of possible deviations in generalized linearmodels is close
to those appearing in regressionmodels, in the sense that atypical observations may correspond to outliers in the responses
(producing large vertical residuals) and/or leverage points in the design space. The deviation from the model that affects
the responses can be measured either through the Pearson residuals or through the deviances, while the weights w1(xi)
control covariates with high leverage. However, when considering a logistic model, deviations in the responses correspond
to misclassification (a zero instead of a one, or vice versa), which is naturally measured through the deviance, so robust
estimators bounding deviances should be considered. One of the advantages of estimators bounding the Pearson residuals is
their direct interpretation. In fact, the estimating equations in this last situation can be interpreted as the classical estimating
equations weighted (both with respect to the Pearson residuals and to xi) and re-centred via the correction term to
ensure consistency. In this way, the estimators can be computed through iterative reweighted least squares algorithms; see
Heritier et al. (2009) for a discussion. The general proposal based on Pearson residuals considered in Cantoni and Ronchetti
(2001) and in particular, for Gamma models in Cantoni and Ronchetti (2006), use a Huber’s score function to bound large
values of the residuals. We suspect that using a bounded loss function increases the breakdown point of the final estimators,
even when considering Pearson residuals. In our simulation study and in the examples analysed, we choose a Tukey’s score
function to bound large values of the deviance.

It is worth noting that when defining the estimators in (5), a preliminary estimator of the nuisance parameter is
needed. This parameter includes the situation of exponential families with overdispersion, such as the negative binomial
yi|xi ∼ N B(τ , µi), τ > 0, whereE(yi|xi) = µi andVar(yi|xi) = µi+τµ

2
i or the Gamma regressionmodel yi|xi ∼ Γ (τ , µi)

where E(yi|xi) = µi and Var(yi|xi) = µ2
i /τ , when τ ≤ 1 and µi > 1. A simple way to define a preliminary estimatorτ of

τ is to consider joint estimators of (β, τ ) as the solution of (β,τ) = argminb,tSn(b, t), for some choice of the loss function
ρ = ρ0, leading to estimators with lower efficiency but higher breakdown point. Then, to improve the efficiency of the
regression estimators, a different loss function may be used to plug-in the value ofτ in (5). However, even when dealing
with no missing responses, in some situations, such as location-scale models or regression models simultaneous estimators
lead to lower breakdown point estimators of the target parameter than regression estimators computed using a preliminary
S-estimator with a high breakdown point (see, for instanceMaronna et al., 2006, for a discussion). For that reason, and since
Gamma models can be transformed to a regression model with asymmetric errors, the proposal described in Remark 3.2 is
considered.

2.2. Test statistics

When the responses are missing at random, the results in Section 3 show that under mild conditions,
√
n
β − β


D

−→

N

0k,Σβ


where Σ = A−1BA−1 and the symmetric matrices A and B are defined as

A = EF

χ

y, xtβ, τ


w1(x)p(x)xxt


(6)

B = EF

Ψ 2 y, xtβ, τw2

1(x)p(x)xx
t (7)

with χ (y, u, τ ) = ∂Ψ (y, u, τ ) /∂u.
Estimators of A and B can easily be obtained through their sample versions. So, let us defineA =

n
i=1 δiχ


yi, xtiβ,τ

w1(xi)xixti /n,B =
n

i=1 δiΨ
2

yi, xtiβ,τw2

1(xi) xix
t
i /n. A Wald-type test statistic to test the hypothesis H0 : β = β0

versus H1 : β ≠ β0 can thus be defined as Wn = n(β − β0)
tΣ−1

(β − β0), with Σ = A−1BA−1. This test statistics will be
asymptotically χ2

k distributed under the null hypothesis; hence H0 is rejected if Wn > χ2
k,α , where χ2

k,α denotes the 1 − α

quantile of the χ2
k distribution, i.e., P


χ2
k > χ2

k,α


= α.

The asymptotic behaviour of Wn under contiguous alternatives is derived in Section 3. When the tested parameter is
one-dimensional, the quasi-profile log-likelihood approach considered by Adimari and Ventura (2002) may be modified to
include missing responses. Also, a score type test as defined in Heritier and Ronchetti (1994) when there are no missing
responses in the sample, can be adapted to the present situation. As in the complete sample case, we expect these tests to
be asymptotically equivalent. As is well known, for data sets with no missings, the advantage of these two procedures over
robust likelihood ratio-type tests based on a loss function ρ, also called dispersion tests, is that the robust likelihood-ratio
ones behave asymptotically as a linear combination of independent χ2

1 whose coefficients needs to be estimated, since they
depend on the unknown parameters. On the other hand, Wald tests can suffer from the Hauck–Donner effect in a logistic
regression whereas this is not the case for the likelihood ratio or score tests. From this point of view the latter should be
preferred to the former. Formissing responses, the robust likelihood ratio-type tests can bewritten as 2{Sn(β,τ)−Sn(β0,τ)}
where Sn(b, t) is defined in (3). It is worth noting that the asymptotic behaviour of robust likelihood ratio-type tests is, up
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to our knowledge, not known in this situation. This interesting topic may be the subject of future research. For complete
data sets, an interesting discussion on robust likelihood ratio-type tests is given in Heritier and Ronchetti (1994). Besides, as
pointed out in Amaral Turkman and Silva (2000), classical Wald tests are preferable to classical likelihood ratio-type tests
when overdispersion is present. For that reason, we have followed an approach based on the Wald-type test.

3. Asymptotic behaviour of the test statistics

In this section, we derive the asymptotic distribution of the test statistics under the null hypothesis and under contiguous
alternatives. We will consider the following set of assumptions.

N1. The functionsw1(x) andw1(x)∥x∥ are bounded.
N2. EF


p(x)w1(x)∥x∥2


< ∞.

N3. Ψ (y, u, v) and χ(y, u, v) = ∂Ψ (y, u, v) /∂u are bounded continuous functions.
N4. The matrix A defined in (6) is non-singular.
N5. The class of functions F = {fτ (y, x, δ) = δΨ (y, xtβ, τ )w1(x)x, τ ∈ K}, where K is a compact neighbourhood of τ ,

has finite entropy.
N6. EF (Ψ (y, xtβ, τ ) |x) = 0k for any fixed τ ∈ K .

Remark 3.1. Assumptions N1 and N3 are standard requirements since they state that the weight function controls large
values of the covariates and that the score function bounds large residuals, respectively. N2 is fulfilled for instance, for a 0–1
weight function and more generally, if w1(x)∥x∥2 is bounded. Assumption N4 is a standard condition in the robustness
literature to guarantee that the regression estimators will be root −n consistent. On the other hand, N5 is fulfilled for
the family of functions studied in Bianco et al. (2005), when τ plays the role of the tuning constant, ρ(y, xtβ, τ ) =

ρ(

d∗(y, x,β)/τ)with d∗(y, x,β) = −1−(log(y)−xtβ)+y exp(−xtβ), if ρ is twice continuously differentiable and there

exists M such that |u| > M implies that ρ(u) = supv ρ(v). Finally, note that N6 holds for the usual functions considered
in robustness, it is the conditional Fisher-consistency defined by Künsch et al. (1989). For instance, for regression models,
yi = xti β+ui with symmetric errors ui, the usual choice is to select an even loss function bounding the residuals to guarantee
N6. On the other hand, asmentioned in Remark 2.1.1, for generalized regressionmodels a correction term is usually included
in the score function to guarantee the conditional Fisher-consistency (see, for instance, Cantoni and Ronchetti, 2001, for
estimators bounding the quasi-likelihood, Bianco and Yohai, 1996; Croux and Haesbroeck, 2003, for estimators bounding
the deviance under a logistic model). Bianco et al. (2005) note that, when bounding the deviance for continuous responses,
the correction term equals 0.

The following theorem states the behaviour of theβ under the null hypothesis and under contiguous alternatives. Its
proof is given in the Appendix.

Theorem 3.1. Assume that (yi, xti , δi), 1 ≤ i ≤ n are independent random vectors satisfying (2) and such that yi|xi ∼

F(·, µi, τ ) where µi = H(xti βn), with βn = β0 + cn−
1
2 . Assume that N1–N6 hold and that τn p

−→ τ . Let Σ = A−1BA−1,
where the symmetric matrices A and B are defined in (6) and (7), respectively. Then, we have that

(a) Under H0 : c = 0k, i.e., under H0 : β = β0,
√
n
β − β0


D

−→ N (0k,Σ).

(b) Under H1,n : c ≠ 0k, i.e., under H1,n : β = βn, if E

|H ′(xtβ0)| ∥x∥2


< ∞,

√
n(β − β0)

D
−→ N (−c,Σ). Moreover,B−1/2A√

n(β − β0)
D

−→ N

−B−1/2Ac, Ik


whereA andB are defined in Section 2.2.

The following theorem states the asymptotic behaviour of the proposed Wald-type test statistics and its proof follows
easily applying Theorem 3.1 and Lemma A.1 in the Appendix.

Theorem 3.2. Assume that (yi, xti , δi), 1 ≤ i ≤ n are independent random vectors satisfying (2) and such that yi|xi ∼

F(·, µi, τ ) where µi = H(xti βn), with βn = β0 + cn−
1
2 . Let Σ = A−1BA−1, where the symmetric matrices A and B are

defined in (6) and (7), respectively. Assume that N1–N6 hold and thatτn p
−→ τ , then we have that

(a) Under H0 : c = 0k, i.e., under H0 : β = β0, Wn
D

−→ χ2
k .

(b) Under H1,n : c ≠ 0k, i.e., under H1,n : β = βn, if E

|H ′(xtβ0)| ∥x∥2


< ∞, Wn

D
−→ χ2

k (θ), where θ = ctΣ−1c.

From Theorem 3.2, as mentioned in Section 2.2, to test the null hypothesis H0 : β = β0 at a given asymptotic level α, the
decision rule rejecting H0 if Wn > χ2

k,α leads to a consistent test.
In regression, one of the most frequent hypothesis testing problems involves only a subset of the regression parameter.

Let β = (βt
(1),β

t
(2))

t,β = (βt
(1),
βt
(2))

t and x = (xt(1), x
t
(2))

t, where β(1) ∈ Rk1 with k1 < k. In order to test H0β(1) : β(1) =

β(1),0,β(2) unspecified, one may use the statistic W1,n = n(β(1) −β(1),0)
t Σ−1

11 (
β(1) −β(1),0), whereΣ11 denotes the k1 × k1

sub-matrix of Σ, corresponding to the coordinates of β(1).
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Theorem 3.3. Assume that (yi, xti , δi), 1 ≤ i ≤ n are independent random vectors satisfying (2) and such that yi|xi ∼

F(·, µi, τ ) where µi = H(xti βn), with βn = β0 + cn−
1
2 with c = (ct(1), 0

t
k−k1

)t. Assume that N1–N6 hold and thatτn p
−→ τ .

Denote by Σ11 the k1 × k1 submatrix of Σ = A−1BA−1, corresponding to the coordinates of β(1) where the symmetric matrices
A and B are defined in (6) and (7), respectively. Then, we have that

(a) Under H0β(1) : c(1) = 0k1 , i.e., under H0 : β(1) = β(1),0, W1,n
D

−→ χ2
k1
.

(b) Under H1β(1),n : c(1) ≠ 0k1 , i.e., under H1β(1),n : β = βn, if E

|H ′(xtβ0)| ∥x∥2


< ∞, W1,n

D
−→ χ2

k1
(θ), where

θ = ct(1)Σ
−1
11 c(1).

Remark 3.2. For any τ > 0 and µ > 0, we denote by Γ (τ , µ) the parametrization of the Gamma distribution given by
the density f (v, τ , µ) = τ τ vτ−1 exp(−(τ/µ)v){µτ Γ (τ )}−1 Iv≥0. Note that, if v ∼ Γ (τ , µ), we have that E(v) = µ and
Var(v) = µ2/τ , where τ is a shape parameter.

Assume that (yi, xti , δi), 1 ≤ i ≤ n, is a sample from a generalized linear model such that (yi, xti , δi) ∼ (y, xt, δ) where
y|x ∼ Γ (τ , µ(x))with link function log(µ(x)) = xtβ. It isworth noticing that, in this case, the responses can be transformed
so that they aremodelled through a linear regressionmodelwith asymmetric errors. Indeed, let z = log(y), then z = xtβ+u,
where u ∼ log(Γ (τ , 1)) and u and x are independent. Besides, the density of u is g(u, τ )where

g(u, τ ) =
τ τ

Γ (τ )
exp(τ (u − exp(u))), (8)

is asymmetric and unimodal with maximum at u0 = 0. Since we are dealing with the situation in which some of the
responses y, the transformed responses z = log(y), may bemissing according to theMARmodel (2), δ and z are conditionally
independent given x, so δ and u are independent.

When nomissing responses arise, the estimators defined in Bianco et al. (2005) bound the deviances using a loss function
ρ. We describe briefly how to adapt the estimators defined therein to allow missing responses and a weight function to
control leverage points which will be effective when testing hypothesis on the regression parameter.

Denote by di(b, τ ) the deviance component of the i-th observation, i.e., di(b, τ ) = 2τ d∗(yi, xi, b) where d∗(y, x, b) =

−1 − (log(y)− xtb)+ y exp(−xtb).
First note that, since the tuning constant of the loss function depends on the unknown parameter τ , Bianco et al. (2005)

introduce an adaptive sequence of tuning constantscm,n to define a sequence of M-estimators,βm,n, for data sets with no

missing observations. These estimators, which satisfyβm,n = argminb
n

i=1 φ
√

d∗(yi, xi, b)/cm,n, withcm,n p
−→ c0, have

an asymptotic covariance matrix equal to

B(φ, τ , c0)/A2(φ, τ , c0)


E (xxt)−1. The constants B(φ, τ , c0) and A2(φ, τ , c0)

depend only on the derivative of the score function φ and the shape parameter τ , but not on the covariates. Hence, the
estimators can be calibrated to attain a given efficiency. From now on, denote Ce(τ ) as the value of the tuning constant c0
such that theM-estimator has efficiency e with respect to the maximum likelihood estimator.

In our modification, we consider the following three step algorithm to compute a generalizedMM-estimator.

• Step 1. We first compute an initial S-estimateβn of the regression parameter and the corresponding scale estimateσn,
taking b =

1
2 supφ with the complete data set. To be more precise, for each value of b let σn(b) be theM-scale estimate

of
√
d∗(yi, xi, b) given by

n
i=1

δiφ

√
d∗(yi, xi, b)
σn(b)


= b

n
i=1

δi,

where φ is Tukey’s bisquare function,

φ(u) = min

u2

2
min


1 − u2

+
u4

3


, 1

.

The S-estimate of β for the considered model is defined asβn = argminb σn(b) and the corresponding scale estimate asσn = minb σn(b).
Let u be a random variable with density (8), h(u) = 1 − u − exp(u) and G the distribution of the errors u. Write σ ∗(τ )

the solution of EG

φ
√

h(u)/σ ∗(τ )


= b. Under mild conditions,βn
a.s.

−→ β and σn a.s.
−→ σ ∗(τ ). Besides, σ ∗(τ ) is a

continuous and strictly decreasing function so, an estimator of τ can be defined asτn = σ ∗−1(σn) leading to a strongly
consistent estimator for τ .

• Step 2. As mentioned above, let Ce(τ ) be the constant given efficiency e for data sets with no missing responses. In the
second step, we computeτn = σ ∗−1(σn) andcn = max(σn, Ce(τn)) = max(σn, Ce(σ

∗−1(σn))). Then, we have thatcn p
−→ c0 = max{σ ∗(τ ), Ce(τ )}.
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• Step 3. Letβn be the adaptive estimator of β defined by

βn = argmin
b

n
i=1

δiφ


d∗(yi, xi, b)/cnw1(xi). (9)

Note that in this case, ρ(yi, xti b, t) = φ
√

d∗(yi, xi, b)/c(t)

, where c(t) = max{σ ∗(t), Ce(t)}, so that ρ(y, v, t) =

φ
√

−1 − log(y)+ v + y exp(−v)/c(t)

. Hence, for differentiable loss functions φ, we have that

Ψ (y, v, t) = φ′


−1 − log(y)+ v + y exp(−v)/c(t)

 (1 − y exp(−v))
2c(t)

√
−1 − log(y)+ v + y exp(−v)

.

Taking conditional expectation and using Lemma 1 in Bianco et al. (2005), we have that the conditional Fisher-consistency
required in N6 holds for differentiable loss functions φ such that

(i) φ(0) = 0.
(ii) 0 < ∥φ∥∞ = supu φ(u) < 1.
(iii) If 0 ≤ u < v, then φ(u) ≤ φ(v).
(iv) If φ(u) < ∥φ∥∞ and 0 ≤ u < v, then φ(u) < φ(v).
(v) ψ = φ′ is twice continuously differentiable, ψ(0) = 0, ψ ′(0) > 0 and ψ ′ ′(0) = 0.

More generally, let us consider the regressionmodel zi = xti β+ui where the errors ui have a (symmetric or not) continuous
distribution with strictly positive and strictly unimodal density, f0. Denote d(y, v) = 2 (log f0(u0)− log f0(y − v)) , u0 =

argmaxf0(u) and assume that φ satisfies (i) to (v). Then, Lemma 1 in Bianco et al. (2005) also ensures that N6 holds for the
estimators defined asβn = argminb

n
i=1 δiφ


d(yi, xti b)/c


w1(xi).

As a consequence of Theorem 3.1 and sincecn p
−→ c0, we have that

√
n(βn − β)

D
−→ N


0k,

B(φ, τ , c0)/A2(φ, τ , c0)


D


where D = C−1E

p(x)w2

1(x)xx
t

C−1 with C = E (p(x)w1(x)xxt). Note that when a 0–1 weight function is considered,

the asymptotic matrix D reduces to D = E (p(x)w1(x)xxt)−1. Besides, when w1 ≡ 1, we get the same efficiency e as the
MM-estimators defined in Bianco et al. (2005) for data sets with no missing responses.

When dealing with missing responses, the asymptotic relative efficiency of βn depends on the asymptotic efficiency
for the complete data set and on the matrix D. For the sake of simplicity, in the simulation study we have calibrated the
estimators to attain an efficiency e when w1 ≡ 1 so, an extra loss of efficiency should be expected for the GM-estimators,
leading to a loss of power.

4. Monte Carlo study for Gammamodels

We have performed a simulation study for the following Gamma regression model

yi|xi ∼ Γ (τ , µ(xi)) with log(µ(xi)) = β1x1i + β2x2i + β3, 1 ≤ i ≤ n, (10)

with τ = 3, β1 = β2 = β3 = 0, xti = (x1i, x2i, 1) and (x1i, x2i) ∼ N(02, I). The sample size was n = 100 and the number of
Monte Carlo replications was K = 1000. The results of a simulation study when τ = 1 are reported in Bianco et al. (2011b).

We studied the behaviour of the test statistics for samples without outliers and samples contaminated with 5% outliers.
In the contaminated samples, the outliers were all equal, say (y0, xt0). Since the magnitude of the effect of these outliers
depends on x10 and x20 only throughout x210 + x220, without loss of generality they were taken of the form (y0, xt0) with
xt0 = (x0, 0, 1) and y0 = exp(m x0). The value m represents the slope of the outlying observations. We chose two values
of x0 corresponding to moderate (x0 = 3) and high (x0 = 10) leverage outliers and also, the value x0 = 1 to take into
account the effect of having only vertical outliers when m is large. As values for m we considered m = 0.5 and 2.5. These
contaminations are denoted by Cm,x0 . In Bianco et al. (2011b) other contamination schemes are considered, however those
reported here are representative of most of them.

We considered Wald test statistics related to the maximum likelihood estimators,βml, the robust estimators based on
the deviance withw1 ≡ 1,βm, and two robust weighted estimators,βgm andβhr. The robust estimators were computed as
described in Remark 3.2 choosing as score function φ the Tukey’s function. Besides, for all robust estimators, the tuning
constant was chosen equal and such that βm attains an efficiency e = 0.90 with respect to the maximum likelihood
estimator. For bothweighted robust estimators, theweightswere computed over the robustMahalanobis distances based on
an S-estimator, (µx,Σx), with breakdown point 0.5 using 1000 sub-samples. Forβgm, we used the Tukey’s bisquare weight
function with tuning constant c = χ2

k,0.95, while forβhr a hard rejection weight function was considered, that is,w1(x) = 1

when (x −µx)
tΣ−1

x (x −µx) ≤ χ2
k,0.95 andw1(x) = 0 elsewhere.

From now on, we denote by Wml, Wm, Wgm and Whr the tests based onβml,
βm,

βgm andβhr, respectively.
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Table 1
Observed frequencies of rejection in the non-contaminated case C0 with p ≡ 1, p(x) = 0.4 + 0.5(cos(xtλ + 0.4))2 and p(x) = 1/(1 + exp(−xtλ − 2))
with λ = (2, 2, 0)t .

n p ≡ 1 p(x) = 0.4 + 0.5(cos(xtλ + 0.4))2 p(x) = 1/(1 + exp(−xtλ − 2))
50 100 250 500 50 100 250 500 50 100 250 500Wml 0.114 0.097 0.062 0.051 0.174 0.114 0.081 0.061 0.163 0.111 0.068 0.047Wm 0.136 0.101 0.066 0.061 0.253 0.142 0.074 0.063 0.233 0.121 0.053 0.051Wgm 0.121 0.084 0.055 0.053 0.207 0.110 0.063 0.049 0.192 0.108 0.062 0.046Whr 0.147 0.091 0.076 0.052 0.236 0.141 0.077 0.052 0.203 0.104 0.060 0.053

We considered three models for the missing probability p ≡ 1, p(x) = 0.4 + 0.5(cos(xtλ + 0.4))2 with λ = (2, 2, 0)t
and p(x) = 1/(1+exp(−xtλ−2))with λ = (2, 2, 0)t, i.e., a logistic model for themissing probability. In order to study the
convergence speed to the χ2 distribution, Table 1 reports the observed frequencies of rejection in the non-contaminated
case C0, for different sample sizes n = 50, 100, 250 and 500 for a nominal level 5%. In all cases the convergence is quite
slow. Note that the hard rejection test Whr has a similar performance to the situation in which Tukey’s weights are used
to downweight high leverage points. For that reason, only the results corresponding to Wgm are reported for contaminated
samples.

Figs. 1 and 2 allow us to study the power performance of the tests when n = 100 for p(x) ≡ 1 and for the logistic
missingness model p(x) = 1/(1 + exp(−xtλ − 2)). Therein, we have plotted the observed frequencies of rejection under
the null hypothesis H0 : β = 03 and the alternatives β = β0 + 1n−1/2(1, 0, 0)t with ∆ = ±6,±4.8,±3.6,±2.4,±1.2,
±0.8,±0.4 and±0.2. The solid (black), broken (green) anddashed (red) lines correspond to the test statistics Wml, Wm, Wgm,
respectively, while the horizontal broken (- -) line corresponds to the nominal level 0.05. Fig. S.1 in the supplementary file
reports the observed frequency of rejection when p(x) = 0.4 + 0.5(cos(xtλ + 0.4))2.

As expected, under C0 the test procedures based on classical or robust estimators perform quite similarly, under all the
missing schemes. For large values of m and/or x0, the classical procedure is non-informative. When considering moderate
vertical outliers, we observe some loss of power and level for the Wgm, in particular, when missing responses arise, while
the level of the classical procedure Wml is sensitive to large values of the responses (m = 2.5) combined with x0 = 1. On
the other hand, the test based on Wm shows its sensitivity to moderate outliers (m = 0.5 and x0 = 3) for all the missingness
models. This test is also sensitive to extreme outliers (x0 = 10) when p ≡ 1, while for a logistic missingness model, it shows
a poor performance under C0.5,10 probably due to the effect of high leverage points on the estimation of the asymptotic
covariance matrix. Their weighted versions are more stable with respect to all the contaminations considered. It is worth
noting that the situation with vertical outliers is not as harmful as when high leverage points arise.

5. Empirical breakdown point

A popular measure of robustness is the finite sample breakdown point (BDP). For test statistics the level and power BDP
should be distinguished (see, for instance He et al., 1990). Indeed, it is desirable to keep a stable level and a good power
under small departures from specified alternative values. As expected and according to the results reported in Section 4,
the classical test statistics are sensitive to atypical observations, so they will breakdown both in level and power with just
few atypical observation. It is well known that in some situations, estimators with the maximum possible breakdown point
(0.5) may lead to test statistics that may breakdownwith smaller amounts of contaminations due to the performance of the
estimated asymptotic covariance matrix. This phenomenon was illustrated in Bianco and Martínez (2009) and also in the
results obtained in Section 4 where the Wald tests, Wm, based on the unweighted robust estimators show their sensitivity
when a 5% of moderate outliers (m = 0.5 and x0 = 3) are included in the sample.

To have a deeper comprehension of the test performance, we begin by investigating in the complete data case, i.e.
p ≡ 1, the sensitivity to outliers of both robustWald tests, Wm and Wgm, when different amounts/sizes of contamination are
included in the sample. This allows us to get some insight into its finite sample breakdown point. To be more precise, we
conducted a simulation study with a similar scheme of that used in Section 4, but with different amounts of contamination
included in the sample. As before, the contaminated samples, include n0 outliers all equal, say (y0, xt0)where xt0 = (x0, 0, 1)
and y0 = exp(m x0). We choose n0 = 5, 10, 15, 20 corresponding to 5%, 10%, 15% and 20% of contamination. Figs. S.2 and
S.3 in the supplementary file report the observed frequencies of rejection of the Wald test statistics Wml and Wm, while
Fig. 3 reports the same quantities for Wgm when p ≡ 1. Besides, Figs. 4 and S.4 in the supplementary file correspond to Wgm
when the same missing probabilities studied in Section 4 are included in the sample. In all figures, the solid lines in black
correspond to the uncontaminated samples, while the solid line with triangles (blue), the broken line (green), the dashed
line (red) and the solid one with squares (purple) correspond to samples containing 5, 10, 15 and 20 outliers, respectively.

Fig. S.2 in the supplementary file shows the severe effect of different contaminations on the behaviour of the classical
test, perhaps, with the exception of scheme C0.5,1 where contamination percentages smaller than 15% are less harmful. It
is also apparent from these plots that in some contamination schemes, the symmetric pattern of the power function of the
classical test is completely altered even with 5 outliers. On the other hand, from Fig. S.3 in the supplementary file and Fig. 3,
we can conclude that the statistic Wgm leads to a much more stable power function than Wm. Only under contamination
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Fig. 1. Observed frequencies of rejection under the Gamma model when p(x) = 1. The solid, broken and dashed lines correspond to the tests based onWml, Wm and Wgm , respectively.

schemes C0.5,1 and C0.5,3 the power of Wgm shows some instability for large percentages of contamination, mainly due to the
fact that, in these two contaminations, the mild vertical outliers combined with low or moderate leverage points are hard
to be controlled. It is also evident, from these two figures, the different performance of the robust tests for the considered
percentages of contamination: one can explain these differences in terms of their covariance matrices since in the case of
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Fig. 2. Observed frequencies of rejection under the Gammamodel when p(x) = 1/(1+ exp(−xtλ−2))with λ = (2, 2, 0)t . The solid, broken and dashed
lines correspond to the tests based on Wml, Wm and Wgm , respectively.

the Wgm statistic the leverage is downweighted by the weights and hence, the covariance matrix is controlled. Even if the
performance of Wm looks satisfactory in power under C0.5,1, except for 20 outliers, its performance is very poor both in
level and power when 5 outliers are introduced in the sample under C0.5,3, C0.5,10 and C2.5,10. In this sense, the plots suggest
that Wgm may manage without any problems 5 outliers, while some level sensitivity is observed for 10 outliers under C0.5,1
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Fig. 3. Observed frequencies of rejection under the Gamma model for the test based on Wgm when p(x) = 1. The solid lines (black) correspond to the
uncontaminated samples, while the solid line with triangles (blue), the broken (green), dashed (red) and solid line with squares (purple) correspond to
samples containing 5, 10, 15 and 20 outliers, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

and C0.5,3. The test handles without any trouble, up to 20 outliers, with large vertical residuals or large leverage points (see
the plots for C0.5,10 and those C2.5,x0 with x0 = 1, 3 and 10).

Figs. 4 and S.4 in the supplementary file summarize the performance of the Wald test statistic Wgm under the logistic
and cosine missing probability models. As it can be seen the main features of these plots resemble those obtained for p ≡ 1,
except for samples with 20% of contamination, where some loss in the level is observed in some situations.

6. Examples

6.1. Hospital cost data

Marazzi and Yohai (2004) introduced a data set that corresponds to the costs of 100 patients in a Swiss hospital in 1999
for medical back problems. They concerned on the relationship between the hospital cost of stay, y, (Cost, in Swiss francs)
and the following administrative explanatory variables:

• LOS: length of stay in days
• ADM: admission type (0 = planned; 1 = emergency)
• INS: insurance type (0 = regular; 1 = private)
• AGE: years
• SEX: (0 = female; 1 = male)
• DEST : discharge destination (1 = home; 0 = other).
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Fig. 4. Observed frequencies of rejection under the Gamma model for the test based on Wgm when p(x) = 1/(1 + exp(−xtλ − 2)) with λ = (2, 2, 0)t .
The solid lines (black) correspond to the uncontaminated samples, while those solid line with triangles (blue), the broken (green), dashed (red) and solid
line with squares (purple) correspond to samples containing 5, 10, 15 and 20 outliers, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Cantoni and Ronchetti (2006) fitted to the complete data set the model log(E(yi|xi)) = βtxi which for Gamma responses is
equivalent to

log(yi) = βtxi + ui,

where ui has log Γ (τ , 1) and x = (log LOS, ADM, INS, AGE, SEX,DEST , 1). Using their robust proposal, they identified 5
outliers corresponding to observations labelled as 14, 21, 28, 44 and 63, whose weights are less or equal than 0.5. They
realized that the atypical points affected the classical estimates of the coefficient of variable INS and the shape parameter. In
particular, the effect of the outliers on the classical estimate of the shape parameter is remarkable since it achieved almost
half the value obtained with the robust method.

As in the simulation study, we computeβml,
βm andβgm for the complete data set and also the maximum likelihood

estimator without the 5 outlying observations,β−{5}
ml , and the corresponding estimators of the shape parameter τ . Table 2

summarized the obtained estimators including the p-values for testing the significance of the covariates SEX and DEST . The
obtained estimators are analogous to those obtained by Cantoni and Ronchetti (2006). Moreover, the value ofβ−{5}

ml and the
related estimator of τ are very similar to those obtained usingβgm, showing its good performance in the presence of outliers.
With respect to the test, it is worth noticing that the classical Wald test Wml does not reject the null hypothesis of no effect
of SEX or DEST at 5% significance level, while from W−{5}

ml , the classical test statistic obtained after removing the 5 outliers,
the conclusion is reversed. On the other hand, as the classical procedure, the unweighted procedure Wm does not reject the
null hypothesis H0 : β5 = 0, while the Wald tests based on the weighted robust estimators reject the null hypothesis as
the classical method does after removing the outliers. For the variable DEST , both the weighted and unweighted procedures
lead to the same conclusions.
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Table 2
Analysis of hospital cost data.

Estimated coeff. Ho : βj = 0 p-value, 5% levelβml
β−{5}

ml
βm

βgm
Wml W−{5}

ml Wm Wgm

log LOS 0.8218 0.8473 0.8640 0.8892
ADM 0.2132 0.2151 0.2576 0.2375
INS 0.0960 −0.0235 −0.0523 −0.0437
AGE −0.0005 −0.0015 −0.0009 −0.0010
SEX 0.0954 0.0706 0.0489 0.0739 0.0561 0.0410 0.1620 0.0222
DEST −0.1040 −0.1413 −0.1024 −0.1225 0.1331 0.0026 0.0344 0.0064
Intercept 7.2331 7.2764 7.1796 7.1268

τ 20.1876 44.2838 48.9791 41.1086

Table 3
Analysis of hospital cost data with missing responses.

p(x) = 1/(1 + exp(0.2 log LOS − 2))
Estimated coeff. Ho : βj = 0 p-value, 5% levelβml

βm
βgm

Wml Wm Wgm

log LOS 0.8048 0.8194 0.8500
ADM 0.1891 0.2087 0.1852
INS 0.1487 −0.0021 −0.0106
AGE −0.0010 −0.0014 −0.0012
SEX 0.0905 0.0711 0.0906 0.0990 0.0562 0.0099
DEST −0.0998 −0.1214 −0.1518 0.0961 0.0243 0.0024
Intercept 7.3009 7.3259 7.2672

τ 17.3636 35.2136 41.8678

To evaluate the performance of the proposed estimators and test statistics for incomplete data sets, we introduced
artificially missing data to this example and we took the above analysis as a natural counterpart. Missing responses were
introduced at random among the non-outlying points reported by Cantoni and Ronchetti (2006) according to the logistic
scheme p(x) = 1/(1+ exp(0.2 log LOS − 2)) resulting in about 20% of missing responses. The estimators and test statistics
were computed over this new sample which includes missing responses. Table 3 reports the obtained results. Comparing
with the counterpart estimates based onβ−{5}

ml reported in Table 2, we observe that, for the new sample, all the estimates
based on βgm remain very stable and close to these values, while the maximum likelihood estimates and the estimates
based onβm are farther away; in particular, the estimators of the coefficient of INS and τ . Moreover, for the new sample,
according to the robust test statistic Wgm the variable SEX is significant at 5% level, while both the classical test and Wm lead
to the opposite conclusion. With respect to DEST , both robust Wald statistics lead to the same conclusion rejecting the null
hypothesis, while the classical statistic does not reject it, as when no missing responses arise. Besides, for this new sample
with missing responses, we recompute the Wald test based on the ml-estimator after removing the 5 outliers identified by
Cantoni and Ronchetti (2006). The results obtained for the p-values are now consistent with those given by Wgm. Indeed,
the tests lead now to the same conclusion obtained when no missing responses arise. As with the situation with no missing
responses, we can see the benefits of introducing weights in order to avoid the effect of high leverage outlying data in the
presence of missing responses.

As in Croux et al. (2008) and in Bianco and Martínez (2009), in order to assess the effect of contamination on the de-
cision, one observation is added to the data at position (x, y) with x = (s, 0, 0, 56, 1, 0, 1)t and y = exp(sm), for values
of (m, s) in [−3, 3] × [−10, 0] by steps of 0.1. Fig. 5 shows the p-values of the classical and the robust tests for the null
hypothesis H0 : β5 = 0, for the different values of s and m together with its contour plot beneath the surface. The function
ξ(m) = −7.5|m + 3|3/3.23

− 1.7 is plotted also in the different surface plots as a red line with diamonds. This function
was fitted to provide an approximation of the region where the shape of the p-values change. The p-values corresponding
to the classical test Wml and also to the test based on the robust estimators withw1 ≡ 1, Wm, increase rapidly along a curve.
Moreover, for large or moderate negative values of s, the Wald test based on the maximum likelihood estimators changes
the decision from non rejection to rejectionwhenmmoves from positive to negative values. On the other hand, the p-values
of the test statistic Wm have a lower bound which corresponds to the effect of the 5 outliers as noted in Table 2. On the con-
trary, Wgm is very stable and only shows a very small sensitivity along a curve without changing the decision. To explain
the sensitivity along this curve which is close to (m, ξ(m)), Fig. S.5 in the supplementary file shows surface plots for the ro-

bust test p-values together with the values of log(

d∗(y, x,βgm)) and those of the estimators of the SEX component,β5,gm

when x = (s, 0, 0, 56, 1, 0, 1)t and y = exp(sm). The flat green surface in the plot corresponding to log(

d∗(y, x,βgm))
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Fig. 5. Sensitivity of the p-value to an outlier located at (x, y), with x = (s, 0, 0, 56, 1, 0, 1)t and y = exp(sm)when testing the significance of the variable
SEX for the Hospital data set.

represents the logarithm of the tuning constant, log(cn), used in Step 3, which is almost constant and close to log(0.3722),

when (s,m) varies. Note that the robust estimators truncate the observations such that

d∗(y, x,βgm) >cn. Thus, the region

where the surface log(

d∗(y, x,βgm)) crosses the plane {(m, s, v) : v = log(cn)} correspond to mild outliers observations

(x, y)with x = (s, 0, 0, 56, 1, 0, 1)t and y = exp(sm) that can be suspected as atypical by the bounding deviance procedure.

6.2. Leukaemia data

The data of Feigl and Zelen (1965) represent the survivorship of 33 patients of acute myelogenous leukaemia divided in
two groups, that correspond to a factor variable AG which classifies the patients as positive or negative depending on the
presence or absence of a morphological characteristic in the white cells. The original data are time at death and also the
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Table 4
Analysis of Feigl and Zelen data. Complete data set.

Estimated coefficients H0 : β1 = 0 p-valueβml
β−{4}

ml
βm

βgm
Wml W−{4}

ml Wm Wgm

WBC
1000 −0.007 −0.051 −0.051 −0.089 0.2151 0 0 0.0001
AG −1.101 −1.574 −1.802 −1.510
Intercept 4.227 4.795 4.849 5.101

Table 5
Analysis of Feigl and Zelen data with two missing probabilities.

p(x) = 0.9
Estimated coefficients H0 : β1 = 0 p-valueβml

βm
βgm

Wml Wm Wgm

WBC
1000 −0.008 −0.050 −0.084 0.1477 0 0.0001
AG −0.974 −1.469 −1.364
Intercept 4.333 4.841 5.055

p(x) = 1/(1 + exp(0.2WBC − 4))
WBC
1000 −0.0012 −0.0004 −0.1210 0.8000 0.9375 0.0000
AG −1.3718 −1.4371 −1.4315
Intercept 4.4432 4.5055 5.2617

white blood cells countWBC , which is a useful tool for diagnosing the initial condition of the patient; indeed higher counts
seem to be associated with more severe conditions. Bianco et al. (2005) fit, to the complete data set, the model

log(yi) = β1WBC i + β2AGi + β3 + ui,

where ui has log Γ (τ0, 1) distribution using an m-estimator based on deviance. The QQ-plot of the residuals of the m-
estimate computed by Bianco et al. (2005) reveals 4 clear outliers corresponding to patients with very high values of WBC
who survived more than expected.

In this example, since AG is a factor variable, when computingβgm the weights w1(x) were based only on the variable
WBC and the tuning constant was chosen as c = χ2

1,0.95. The robust Mahalanobis distance of WBC equals in this case
|WBC i − mediani(WBC i)|/mad(WBC i).

Table 4 reports the values of βml,
βm,

βgm and the classical estimate without the 4 outliers, β−{4}
ml , together with the

p-values of the related Wald-type statistics to check H0 : β1 = 0 versus H1 : β1 ≠ 0. It is worth noticing that according to
the results given byβml, the coefficient of the variable WBC is non-significant at a 5% significance level. On the other hand,
the ml-estimator applied to the sample without the 4 outliers and the robust estimators lead to the opposite conclusion.

As in Ibrahim (1990), in order to evaluate the performance of the proposed tests for incomplete data sets, we introduced
artificially missing data to this example and we took the above analysis as a natural counterpart. Missing responses among
the non-outlying points were introduced at random according to two missing schemes, a completely at random situation
with p(x) = 0.9 and a missing at random case with logistic probability of missing p(x) = 1/(1 + exp(0.2WBC − 4)). In
this way, for the logistic case, 8 responses (almost 25% of the data) result in missing observations. The analysis was repeated
for each of the obtained samples. In Table 5 we summarize the corresponding results. Different conclusions are derived
depending on the missing scheme. As expected, when missing responses occur completely at random, analogous results
to those obtained with the complete data set are obtained. In this sense, when p(x) = 0.9, according to the computed
robust tests the variableWBC is significant, while from theml-estimator we conclude otherwise. On the other hand, for the
incomplete sample obtained through a logisticmissing probability, the estimatorsβml andβm take similar values. Moreover,
according to the robust test statistic Wgm, based on Tukey’s weights, the variableWBC is significant, while both the classical
test and Wm lead to the opposite conclusion. Besides, for this sample with missing responses, we recompute the Wald test
based on theml-estimator after removing the 4 outliers. The results obtained for the p-values are now consistent with those
given by Wgm. Indeed, the tests lead again to the same conclusion obtained when no missing responses arise.

As in Section 6.1 a sensitivity analysis is conducted, but this time to measure the influence of the missing probability
on the resulting p-value. We considered a logistic probability of missing p(x) = 1/(1 + exp(aWBC − b)) where (a, b) ∈

[0, 0.20] × [4, 10] among the non-outlying responses. The grid step was 0.01 for a and 0.5 for b. In this way, at most 25% of
the data result in missing observations. We compute the p-values of the classical and the robust tests for the null hypothesis
H0 : β1 = 0, for the different values of a and b. The surface plots in Fig. 6 show clearly that the p-values corresponding to the
robust test Wgm are more stable leading to p-values almost 0 except when the probability of missing results in more than
20% of missing responses in which the p-value rapidly grows to 0.00026 without changing the decision. As in the previous
example, the p-values corresponding to Wml and Wm increase rapidly and attain values close to 1. Moreover, for the Wald
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Fig. 6. Sensitivity of the p-value under the logistic missing model p(x) = 1/(1 + exp(aWBC − b)), when testing the significance of the variable WBC for
the Leukaemia data set.

test based on the maximum likelihood estimators has p-values always larger than 0.2413 and smaller than 0.8529, while
for the Wald test based onβm the p-values move from 0 to 0.9688 changing the decision from rejection to no rejection.

These results show the advantage of introducing weights as a useful tool to prevent from outlying points under the
different missing schemes considered.

7. Influence functions of the test functionals

Influence functions are measures of robustness with respect to single outliers. The influence function allows us to study
the local robustness and the asymptotic efficiency of the estimators, providing a rationale for choosing appropriate weight
functions and tuning parameters. It can be thought as the first derivative of the functional version of the estimator. The
influence function of a functional T (F) is defined as IF(z0, T , F) = limϵ→0(T (Fz0,ϵ)−T (F))/ϵ, where Fz0,ϵ = (1−ϵ)F +ϵ∆z0
and∆z0 denotes the probability measure which puts mass 1 at the point z0 = (y0, xt0, δ0) and represents the contaminated
model.

The examples given in Section 6 show the importance of measuring the effect of a single outlier on the p-value. Rieder
(1978) studied the effect of contamination on level and power, while a link between the influence function of a test statistic
and its power and level influence functions is given in Hampel et al. (1986).

For that reason, in this section, we derive the influence function of theWald test statistic.Wewill also give an appropriate
definition that takes into account the missing responses.

For any distribution F1, let V(F1) be a Fisher-consistent scatter functional at F , i.e., such that V(F) = Σ.
Denote by β(F1) and τ(F1) the functionals related to the estimators β and τ , respectively, and assume that β(F1),

the solution of S(1)(β(F1), τ (F1)) = EF1 (δΨ (y, x
tβ(F1), τ (F1)) w1(x)x) = 0k, is a Fisher-consistent functional at F , i.e.,

β(F) = β. Bianco et al. (2011a) derived the influence function of the regression functional β(F1) at F and showed that,
under N3, N4 and N6, IF (z0,β, F) exists and, when τ(F) = τ ,

IF(z0,β, F) = −Ψ

y0, xt0β, τ


w1(x0)δ0A−1x0. (11)
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To obtain the influence function of the test, define the functionals
A(F1) = EF1


δχ

y, xtβ(F1), τ (F1)


w1(x)xxt


B(F1) = EF1


δΨ 2 y, xtβ(F1), τ (F1)w2

1(x)xx
t .

The Wald-type test functional related to the statistic used to test H0 : β = β0 versus H1 : β ≠ β0 is given by W(F1) =

(β(F1)− β0)
tV(F1)−1(β(F1)− β0). It is easy to see that, under H0, IF(x,W, F) = 0.

As in Hampel et al. (1986), in order to obtain a non-null influence function related to the level and power influence, we
consider the square root of the test statistics, T (F1) = W(F1)1/2. As for the linear model, using that, W(F) = 0 under H0,
we have that IF(x, T , F) =


(1/2) ∂2W(Fx,ϵ)/∂ϵ2|ϵ=0

1/2. The following theorem gives the value of the influence function
of the test functional T (F).

Theorem 7.1. Let V(F1) be a scatter functional such that V(F) = Σ = A−1BA−1, where A = A(F) and B = B(F) are the
symmetric matrices defined in (6) and (7). Assume that the influence function IF (z0,β, F) and that ∂2β(Fx,ϵ)/∂ϵ2|ϵ=0 exist.
Then, the influence function at F of the functional T (F1) to test H0 : β = β0 versus H1 : β ≠ β0 is given by

IF(z0, T , F)2 = IF(z0,β, F)tΣ−1IF(z0,β, F). (12)

Besides, under N3, N4 and N6, we have

IF(z0, T , F)2 = Ψ 2 y0, xt0β(F), τ (F)w2
1(x0)δ0 xt0B

−1x0. (13)

Remark 7.1. It is worth noticing that the influence function depends on the indicator of the missing response δ0 so, it
will be 0 if no responses arise. A more reliable function to measure the sensitivity to outliers of a given functional T (F1)
under a missing scheme may be to consider the expected influence function of an observed data z∗

0 = (y0, xt0)
t, denoted as

EIF(z∗

0, T , F), i.e., EIF(z
∗

0, T , F) = E(IF(z0, T , F)|(y0, x0)). For the functionals under study, we have that

EIF(z∗

0,β, F) = −Ψ

y0, xt0β, τ


w1(x0)p(x0)A−1x0

EIF(z∗

0, T , F)
2

= Ψ 2 y0, xt0β(F), τ (F)w2
1(x0)p

2(x0) xt0B
−1x0.

When considering a test, a different measure may be to consider the expected squared influence function EIF2(z∗

0, T , F) =

E(IF(z0, T , F)2|(y0, x0)). In our case, we obtain

EIF2(z∗

0, T , F) = Ψ 2 y0, xt0β(F), τ (F)w2
1(x0)p(x0) x

t
0B

−1x0.

Note that EIF(z∗

0, T , F)
2

= EIF2(z∗

0, T , F)p(x) so, the difference between both measures is the role played by the missing
probability.

7.1. Expected influence functions for the Gamma model

Wewill compute the influence function for the Gamma regression model considered in the simulation study, that is, the
response y given the covariates x has distribution Γ (τ , µ(x))with τ = 3 and µ(x) = β1x1 + β2x2 + β3, where β1 = β2 =

β3 = 0, xt = (x1, x2, 1) and (x1, x2) ∼ N(02, I).
Figures S.6 and S.7 in the supplementary file show the square of the expected influence functions (EIF2) and the expected

squared influence (EIF2) at y = exp(1) of theWald tests corresponding to themaximum likelihood estimators, the estimators
related to those introduced in Bianco et al. (2005) based on the deviance, i.e., with w1 ≡ 1, and the weighted estimators
computed with the Tukey’s bisquare weight function, denoted by Wml, Wm and Wgm, respectively, as in Sections 4 and 6.
In the latter, the weights were computed over the Mahalanobis distances with tuning constant c = χ2

k,0.95. The missing
probabilities correspond to the complete case situation, i.e., p ≡ 1, the logistic model p(x) = 1/(1 + exp(−xtλ − 2))with
λ = (2, 2, 0)t and p(x) = 0.4 + 0.5(cos(xtλ + 0.4))2 with λ = (2, 2, 0)t, respectively. To plot the influence functions a
grid of values for each component xj, j = 1, 2, was taken between −4 and 4 with step 0.1.

When p ≡ 1, a reduced range was also considered to compare the behaviour near the origin by using a grid of points
between −1 and 1 with step 0.025. These plots can be seen in Bianco et al. (2011b). As expected, the shape of both EIF2 and
EIF2 for the test functionals Wm and Wgm are comparable to that of their classical relatives at the centre of the distribution of
the covariates. Note that EIF2 and EIF2 are unbounded due to leverage points for the classical test and also for that based on
the Bianco et al. (2005) estimators. This feature makes us suspect that even when the latter are based on a robust procedure
to estimate the regression parameter, the test statistic may be sensitive to outliers as observed in the examples studied.
On the other hand, when using a weight function to downweight carriers with large Mahalanobis distances, the expected
influence at points further away is downweighted.

8. Concluding remarks

We have introduced a resistant procedure to test hypotheses on the regression parameter under a generalized linear
regressionmodel,when there aremissing observations in the responses and it can be suspected that anomalous observations
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are present in the sample. The estimators turn out to be asymptotically normally distributed. The test statistics are robust
versions of the classical Wald-type statistic. Even when the tests statistics have a limiting χ2-distribution under the
null hypothesis and under contiguous alternatives, the Monte Carlo study illustrates the convergence to the asymptotic
distribution.

The simulation also confirms the expected inadequate behaviour of the classicalWald-type test in the presence of outliers
and of the unweighted robust estimators under some contamination schemes. The proposed weighted robust procedure for
the regression parameter is stable both in level and power when 5% of contamination is included, while some sensitivity
is observed at 10% for some of the considered situations. The effect of high leverage points is also observed through the
influence function.

Finally, through real data sets, we confirm the stability of the decision rule induced by Wgm, which is based on weights
that control high leverage points, when outlying observations are present and under different missing probability patterns.
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Appendix A

The following lemma will be useful when deriving the asymptotic distribution of the robust estimators defined in
Section 2.1. We omit its proof since it follows using analogous arguments to those considered in Lemma 1 of Bianco and
Boente (2002).

Lemma A.1. Assume that (yi, xti , δi), 1 ≤ i ≤ n are independent random vectors satisfying (2) and such that yi|xi ∼

F(·, µi, τ ) where µi = H(xti β). Let ϕ(y, u, v) be a continuous function and assume that τ p
−→ τ and β p

−→ β. Define
V = EF (ϕ(y, xtβ, τ )w1(x)p(x)xxt) andV = (1/n)

n
i=1 δiϕ(yi, x

t
i
β,τ)w1(xi)xixti . Then, under N1 and N2,V p

−→ V.

Proof of Theorem 3.1. (a) Since S(1)n (β,τ) = 0, a Taylor’s expansion of order one leads to

1
n

n
i=1

δiΨ

yi, xti β0,τw1(xi)xi +

1
n

n
i=1

δiχ

yi, xtiβ,τw1(xi)xixti (β − β0) = 0k,

so, we have that
√
n(β − β0) = −A−1

n
n

i=1 δiΨ

yi, xti β0,τw1(xi)xi/

√
n. Note that Lemma A.1 entails that An =n

i=1 δiχ

yi, xtiβ,τw1(xi)xixti /n

p
−→ A. Using thatτ p

−→ τ , N5 and the standard empirical processes arguments, we
easily get that

1
√
n

n
i=1

δiΨ

yi, xti β0,τw1(xi)xi −

1
√
n

n
i=1

δiΨ

yi, xti β0, τ0


w1(xi)xi

p
−→ 0.

Hence,
n

i=1 δiΨ

yi, xti β0,τw1(xi)xi/

√
n

D
−→ N(0k, B) entailing that

√
n(β − β0) = −A−1 1

√
n

n
i=1

δiΨ

yi, xti β0, τ


w1(xi)xi + op(1) (A.1)

so,
√
n(β − β0)

D
−→ N(0k,Σ).

(b) Let Tn stand for
√
n(β − β0)

t or B−1/2A√
n(β − β0)

t. In order to prove (b), we will use Le Cam’s third Lemma
(see Van der Vaart, 2000, p. 90). Therefore, we need to obtain the asymptotic distribution of (Tn, ln(qn(y,X, δ)/pn(y,X, δ))),
under H0 : β = β0, where pn(y,X, δ) is the joint density under the null hypothesis and qn(y,X, δ) is the corresponding one
under the alternative, y = (y1, . . . , yn)t,X = (x1, . . . , xn) and δ = (δ1, . . . , δn).

Let σ 2
= ctE(H ′(xti β0))xixti c/A(τ ). Using standard arguments (see Bianco et al., 2011b, for details), we have that the

following expansion holds

A(τ ) ln
qn(y,X, δ)
pn(y,X, δ)

=
1

√
n

n
i=1

[yi − H(xti β0)]x
t
i c −

1
2n

n
i=1

H ′(xti β0)(x
t
i c)

2
+ op(1),

implying that ln (qn(y,X, δ)/pn(y,X, δ))
D

−→ N(−σ 2/2, σ 2).
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On the other hand, from (A.1), we have that
√
n(β − β0) = −A−1 Cn + op(1), where A is defined in (6) and

Cn =
n

i=1 δiΨ

yi, xti β0, τ


w1(xi)xi/

√
n. Moreover, Lemma A.1 entails that A p

−→ A and B p
−→ B, thus, using that

Cn is asymptotically normally distributed, we get thatB−1/2A√
n(β − β0) = −B−1/2 Cn + op(1). Hence, to derive the

joint asymptotic distribution of (Tn, ln(qn(y,X, δ)/pn(y,X, δ)))t, it is enough to compute the covariance between Cn and
R1 = (1/A(τ ))

n
i=1[yi − H(xti β0)]xti c/

√
n. Using that EF (yi − H(xti β0)) = 0, we get that

Cov(Cn, R1) =
1

A(τ )
EF [(yi − H(xti β0))Ψ (yi, x

t
i β0, τ )p(xi)w1(xi)xixti ]c.

Using N6 we get EF [(y1 − H(xt1β0))Ψ

y1, xt1β0, τ


|x1] = −A(τ )EF [χ


y1, xt1β0, τ


|x1], so, Cov(Cn, R1) = −A c, which

implies that

(
√
n(β − β0)

t, ln(qn(y,X, δ)/pn(y,X, δ)))t
D

−→ N


0k

−
1
2
σ 2


,


Σ −c
−c σ 2



so,
√
n(β − β0)

D
−→ N (−c,Σ) under H1,n, concluding the proof. �

Proof of Theorem 7.1. Weneed to compute ∂2W(Fz0,ϵ)/∂ϵ
2
|ϵ=0. Using that, under the null hypothesis,β(F) = β0, straight-

forward calculations lead to

∂2W(Fz0,ϵ)/∂ϵ
2
|ϵ=0 = 2


∂(β(Fz0,ϵ)− β0)/∂ϵ

t V−1(Fz0,ϵ)(∂(β(Fz0,ϵ)− β0)/∂ϵ)|ϵ=0

so,

IF(z0, T , F)2 = IF(z0,β, F)tΣ−1IF(z0,β, F). (A.2)

The proof follows now applying the expression for the influence function of β(F) given in (11). �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2012.05.008.

References

Adimari, G., Ventura, L., 2002. Quasi-profile loglikelihoods for unbiased estimating functions. Ann. Inst. Statist. Math. 54, 235–244.
Amaral Turkman, M.A., Silva, G., 2000. Modelos Lineares Generalizados—da Teoria à Prática. Edições SPE, Lisboa.
Bianco, A., Boente, G., 2002. On the asymptotic behavior of one-step estimates in heteroscedastic regression models. Statist. Probab. Lett. 60, 33–47.
Bianco, A., Boente, G., Rodrigues, I.M., 2011a. Resistant estimators in Poisson and gamma models with applications to outlier detection.

Available on: www.ic.fcen.uba.ar/preprints/biancoboenterodrigues_2011.pdf.
Bianco, A., Boente, G., Rodrigues, I.M., 2011b. Robust test in generalized linear models with missing responses.

Available on: www.ic.fcen.uba.ar/preprints/test_GLM_TR.pdf.
Bianco, A., García Ben, M., Yohai, V., 2005. Robust estimation for linear regression with asymmetric errors. Canad. J. Statist. 33, 511–528.
Bianco, A., Martínez, E., 2009. Robust testing in the logistic regression model. Comput. Statist. Data Anal. 53, 4095–4105.
Bianco, A., Yohai, V., 1996. Robust estimation in the logistic regressionmodel. In: Lecture Notes in Statistics, vol. 109. Springer-Verlag, New York, pp. 17–34.
Cantoni, E., Ronchetti, E., 2001. Robust inference for generalized linear models. J. Amer. Statist. Assoc. 96, 1022–1030.
Cantoni, E., Ronchetti, E., 2006. A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures. J. Health Econ. 25,

198–213.
Croux, C., Haesbroeck, G., 2003. Implementing the Bianco and Yohai estimator for logistic regression. Comput. Statist. Data Anal. 44, 273–295.
Croux, C., Haesbroeck, G., Joossens, K., 2008. Logistic discrimination using robust estimators: An influence function approach. Canad. J. Statist. 36 (2),

157–174.
Feigl, P., Zelen, M., 1965. Estimation of exponential survival probabilities with concomitant information. Biometrics 21, 826–838.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., 1986. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York.
Heritier, S., Cantoni, E., Copt, S., Victoria-Feser, M.P., 2009. Robust Methods in Biostatistics. In: Wiley Series in Probability and Statistics, Wiley.
Heritier, S., Ronchetti, E., 1994. Robust bounded-influence tests in general parametric models. J. Amer. Statist. Assoc. 89, 897–904.
He, X., Simpson, D., Portnoy, S., 1990. Breakdown robustness of test. J. Amer. Statist. Assoc. 85, 446–452.
Ibrahim, J., 1990. Incomplete data in generalized linear models. J. Amer. Statist. Assoc. 85, 765–769.
Künsch, H., Stefanski, L., Carroll, R., 1989. Conditionally unbiased bounded influence estimation in general regression models with applications to

generalized linear models. J. Amer. Statist. Assoc. 84, 460–466.
Marazzi, A., Yohai, V., 2004. Adaptively truncated maximum likelihood regression with asymmetric errors. J. Statist. Plann. Inference 122, 271–291.
Maronna, R., Martin, D., Yohai, V., 2006. Robust Statistics: Theory and Methods. Wiley, New York.
McCullagh, P., Nelder, J., 1989. Generalized Linear Models, second ed. Chapman and Hall, London.
Neyman, J., 1938. Contribution to the theory of sampling human populations. J. Amer. Statist. Assoc. 33, 101–116.
Rieder, H., 1978. A robust asymptotic testing model. Ann. Statist. 6, 1080–1094.
Stefanski, L., Carroll, R., Ruppert, D., 1986. Bounded score functions for generalized linear models. Biometrika 73, 413–424.
Van der Vaart, A., 2000. Asymptotic Statistics. In: Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

http://dx.doi.org/10.1016/j.csda.2012.05.008
http://www.ic.fcen.uba.ar/preprints/biancoboenterodrigues_2011.pdf
http://www.ic.fcen.uba.ar/preprints/test_GLM_TR.pdf

	Robust tests in generalized linear models with missing responses
	Introduction
	Robust inference
	Framework and the robust estimators
	Test statistics

	Asymptotic behaviour of the test statistics
	Monte Carlo study for Gamma models
	Empirical breakdown point
	Examples
	Hospital cost data
	Leukaemia data

	Influence functions of the test functionals
	Expected influence functions for the Gamma model

	Concluding remarks
	Acknowledgements
	Appendix A
	Supplementary data
	References


