
Physica A 444 (2016) 905–913

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Entropic measures of joint uncertainty: Effects of
lack of majorization
Alfredo Luis a,∗, Gustavo Martín Bosyk b, Mariela Portesi b,c
a Departamento de Óptica, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain
b Instituto de Física La Plata (IFLP), CONICET, and Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, Casilla de Correo 67, 1900 La Plata, Argentina
c Laboratoire Grenoblois d’Image, Parole, Signal et Automatique (GIPSA-Lab, CNRS), 11 rue des Mathématiques, 38402
Saint Martin d’Hères, France

h i g h l i g h t s

• Different Renyi entropies lead to contradicting uncertainty relations.
• Contradicting uncertainties are explained as lack of majorization of statistics.
• The comparison between joint and product distributions depends on purity.
• Most popular measures of complementarity are blind this these features.
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a b s t r a c t

We compute Rényi entropies for the statistics of a noisy simultaneous observation of two
complementary observables in two-dimensional quantum systems. The relative amount of
uncertainty between two states depends on the uncertainty measure used. These results
are not reproduced by a more standard duality relation. We show that these behaviors are
consistent with the lack of majorization relation between the corresponding statistics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Historically, the joint uncertainty of pairs of observables has beenmostly addressed in terms of the product of their vari-
ances. Nevertheless, there are situations where such formulation is not satisfactory enough [1], thus alternative approaches
have been proposed, mainly in terms of diverse entropic measures [2–5] (see also the reviews in Ref. [6]). In this work we
consider in particular the so-called Rényi entropies [7] and the corresponding entropic uncertainty relations, for the statistics
associated to two complementary observables [8]. There has been an increasing activity to obtain different and improved en-
tropic uncertainty relations not only for foundational reasons but also for the different applications in quantum information
problems (a non-exhaustive list includes information-theoretic formulation of error–disturbance relations [9], connection
with duality relations [10] and nonlocality [11], entanglement detection [12], EPR-steering inequalities [13], quantummem-
ory [14], and security of quantum cryptography protocols [15]). Also, entropic uncertainty relations have a deep connection
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with the majorization of statistical distributions [16,17], which has been already applied to examine uncertainty of thermal
states [18] (this is closely related to the idea of mixing character [19]).

However, previous works [4,8] have shown that entropic uncertainty relations may lead to unexpected results, derived
from the fact that the amount of uncertainty for a pair of observables depends on the uncertaintymeasure used. This is quite
natural; actually, one of the benefits of using entropic measures is that they adapt to assess different operational tasks. Nev-
ertheless, onemay find it surprising that differentmeasures lead to opposite conclusions in entropic relations: this is, that the
states of maximum uncertainty for one measure are the minimum uncertainty states for the other measure, and vice versa.

In this regard, the aim of this work is twofold. On the one hand, we show that these unexpected behaviors are fully com-
patible with the lack of majorization relation between the corresponding statistics. This connection holds because entropic
measures are monotone with respect to majorization. Thus, such surprising entropic results are not tricky features of en-
tropic measures, but may have a deeper meaning that is actually overlooked by more popular measures of uncertainty or
complementarity. On the other hand, we extend the application of entropicmeasures to the statistics of a simultaneous joint
observation of two complementary observables in the same system realization [20–22]. This setting of complementarity in
practice provides a rich arena to examine the interplay between entropic measures and majorization. The simultaneous
measurement provides a true joint classical-like probability distribution that enables alternative assessments of joint un-
certainty, different from the ones given by the product of individual statistics, either intrinsic or of operational origin.

For simplicity we address these issues in the simplest quantum system described by a state in a two-dimensional
Hilbert space. This comprises very relevant practical situations such as the path–interference complementarity in two-beam
interference experiments. This allows us to contrast the performance of entropic measures with respect to more standard
descriptions of complementarity [23–25].

The paper is organized as follows: in Section 2 we introduce the discussion on statistics of simultaneous measurements
for spin 1/2 observables. Section 3 exhibits noticeable results for entropic quantities, and an explanation for that behavior is
given in Section 4. In Section 5, a duality relation for complementarity is analyzed and compared with the entropic results.
Finally, some concluding remarks are outlined in Section 6.

2. Statistics and simultaneous measurements

Let us consider two complementary observables represented by the Pauli spin matrices σx and σz . In practical terms
they may represent phase and path, respectively, in two-beam interference experiments. The system state is described by
a density matrix operator acting on the Hilbert space HS that in Bloch representation acquires the form ρ =

1
2 (I + s · σ),

where I is the identity matrix, σ represents the three Pauli matrices, and s = Tr(ρ σ) is a three-dimensional Bloch vector
with |s| ≤ 1. The modulus |s| expresses the degree of purity of the state as Tr(ρ2) =

1
2 (1 + |s|2), being |s| = 1 in the case

of a pure state. We make use of the Bloch-sphere parametrization:

sx = |s| sin θ cosϕ, sy = |s| sin θ sinϕ, sz = |s| cos θ. (1)

The intrinsic statistics for the observables σx and σz are

pXj =
1
2

(1 + j sx) and pZk =
1
2

(1 + k sz) , (2)

with j = ±1 and k = ±1.
The simultaneous measurement of noncommuting observables requires involving auxiliary degrees of freedom, usually

referred to as apparatus. In our case we consider an apparatus described by a two-dimensional Hilbert space HA.
The measurement performed in HA addresses that of σz , while σx is measured directly on the system space HS . The
system–apparatus coupling transferring information about σz from the system to the apparatus is arranged via the following
unitary transformation acting on HS ⊗ HA,

U = |+⟩ ⟨+| ⊗ U+ + |−⟩ ⟨−| ⊗ U−, (3)

where U± are unitary operators acting solely on HA, while |±⟩ are the eigenstates of σz with corresponding eigenvalues
±1. For simplicity the initial state of the apparatus, |a⟩ ∈ HA, is assumed to be pure, so that the system–apparatus coupling
leads to

U|+⟩ |a⟩ → |+⟩ |a+⟩, U|−⟩ |a⟩ → |−⟩ |a−⟩, (4)

where the states |a±⟩ = U±|a⟩ ∈ HA are not orthogonal in general, with cos δ = ⟨a+|a−⟩ assumed to be a positive real
number with 0 ≤ δ ≤ π/2, without loss of generality. The measurement in HA introducing minimum additional noise is
given by projection on the orthogonal vectors |b±⟩ (see Fig. 1):

|b+⟩ =
1

cosφ


cos

φ

2
|a+⟩ − sin

φ

2
|a−⟩


,

|b−⟩ =
1

cosφ


− sin

φ

2
|a+⟩ + cos

φ

2
|a−⟩


, (5)
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Fig. 1. Schematic representation of the states |a±⟩ and |b±⟩, given in Eqs. (4) and (5) respectively.

where φ =
π
2 − δ. The added noise is minimum in the sense that the Euclidean distance between pZ and the marginal

probability p̃Z (defined in Eq. (7)) is minimum [26]. It is worth noting that there is a deep connection of this measurement
with the problem of state discrimination between two nonorthogonal states, such as |a±⟩ (see e.g. Ref. [27]).

The joint statistics for the simultaneous measurement of σx acting on HS and of σz addressed by the orthogonal vectors
|b±⟩ in HA is

p̃X,Z
j,k =

1
4
(1 + j sx cos δ + k sz sin δ), (6)

where j = ±1 represents the outcomes of the σx measurement, and k = ±1 those of the σz measurement. The marginal
statistics for both observables are

p̃Xj =
1
2
(1 + j sx cos δ) and p̃Zk =

1
2
(1 + k sz sin δ). (7)

When contrastedwith the intrinsic statistics (2) we get that the observation of σx is exact for δ = 0, while the observation of
σz is exact for δ =

π
2 . For δ =

π
4 , the extra uncertainty introduced by the unsharp character of the simultaneous observation

is balanced between observables.
The expressions given above are valid for any system state ρ. However for the sake of simplicity, and given that we focus

on the observables σx and σz , we will frequently particularize to the set S of states with Bloch vector s lying in the XZ plane,
this is, for sy = 0 and ϕ = 0.

3. Entropic uncertainty assessments

3.1. Rényi entropies and entropic uncertainty relations

Wemake use of generalized entropies to quantify the uncertainty (or ignorance) related to a probability distribution. Let
p = (p1, . . . , pN) be the statistics of some observable with N outcomes, then the Rényi entropy [7] of order α reads

Rα(p) =
1

1 − α
ln


N
i=1

pα
i


, (8)

where α ≥ 0 is the so-called entropic index.1 Notice that Shannon entropy [28], −


i pi ln pi, is recovered in the limiting
case α → 1. For vanishingly small α, one has R0 = ln ∥p∥0, where ∥p∥0 is the number of nonzero components of the
statistics, whereas for arbitrary large α, R∞ = − lnmaxi pi only takes into account the greatest component of the statistics
and is known as min-entropy, due to the nonincreasing property of Rα versus α for a given p.

An important property of Rényi entropies is related tomajorization (see e.g. Ref. [29]). It is said that a statistics pmajorizes
a statistics p′, denoted as p′

≺ p, if after forming with p an N-dimensional vector with components in decreasing order
(p1 ≥ p2 ≥ · · · ≥ pN ) and similarly with p′, the inequalities

k
i=1 p

′

i ≤
k

i=1 pi are fulfilled for all k = 1, 2, . . . ,N − 1
and

N
i=1 p

′

i =
N

i=1 pi = 1. Notice that, by definition, the values of Rα remains unaltered under rearrangement of the
probability vector. The Rényi entropies are order-preserving or Schur-concave functions, this means:

If p′
≺ p, then Rα(p′) ≥ Rα(p) for any α ≥ 0.

1 The entropic index α plays the role of a magnifying glass: for α < 1 the contribution of the terms in the sum in (8) becomes more uniform than in the
case α = 1; whereas for α > 1, the leading probabilities of the distribution are stressed.
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However, majorization is a relation of partial order, so that there are distributions that cannot be compared. We will see
that the behaviors that we report in the next section are consistent with lack of majorization.

The Schur-concavity property allows to show that Rényi entropies are lower and upper bounded: since ( 1
N , . . . , 1

N ) ≺

p ≺ (1, 0, . . . , 0) then, for everyα, one has 0 ≤ Rα(p) ≤ lnN , where the bounds are attained if and only if the corresponding
majorization relations reduce to equalities (i.e., for the completely certain situation and the fully random, respectively).

Other relevant property of Rα is additivity, that is, for the product of two statistics p and q one has

Rα(p q) = Rα(p) + Rα(q). (9)

However Rényi entropies do not satisfy, in general, subadditivity and concavity properties.2
Following Ref. [8], it can be seen that the Rényi entropic uncertainty relations corresponding to the intrinsic statistics

(2) are:

Rα(pXpZ ) ≥


ln 2 if 0 ≤ α ≤ αI

2
1 − α

ln


1 +

1
√
2

2

α

+


1 −

1
√
2

2

α
if α > αI ,

(10)

where αI ≈ 1.43. There are two subsets of states within the set S that compete to be the minimum uncertainty states (as
well as those of maximum uncertainty), depending on the value of the entropic index used.We refer to them as extreme and
intermediate states:

• Extreme states are eigenstates of σx or σz . These are pure states with θ = mπ
2 for integer m, then sx = ±1, sy = 0 = sz ,

or sx = 0 = sy, sz = ±1. They present full certainty for one observable, and complete uncertainty for the other one.
• Intermediate states are eigenstates of σx ± σz . These are pure states with θ = (2m + 1)π

4 for integer m, then sx = ±sz ,
sy = 0 and sz = ±

1
√
2
. They have essentially the same statistics for both complementary observables so they can be

considered as a finite-dimensional counterpart of the Glauber coherent states.

More generally, one has the following mixed versions of extreme and intermediate states, respectively,

ρX
ex =

1
2

(I ± |s|σx) , ρZ
ex =

1
2

(I ± |s|σz) , ρin =
1
2


I ±

|s|
√
2

(σx ± σz)


, (11)

with |s| expressing the degree of purity.

3.2. Extreme versus intermediate states

In order to assess the uncertainty related to σx and σz , we compute the Rényi entropies of the joint statistics p̃X,Z (6) and
of the product of marginal statistics p̃X p̃Z (7), for any given value of the entropic index α, as functions of θ within the set S of
states. These quantities are calculated for balanced measurement, δ =

π
4 . We also take into account the Rényi entropies of

the product of intrinsic statistics pXpZ (2). For the sake of clarity and to simplify comparisons, wemostly focus on normalized
quantities of the form

Rnorm
α (p) =

Rα(p) − Rα,min(p)
Rα,max(p) − Rα,min(p)

, (12)

where Rα,max and Rα,min are the maximum and minimum values of Rα , respectively, within the set S.
Fig. 2(a) shows Rnorm

α (p̃X,Z ) forα = 1 and 2.5 as functions of θ , takingϕ = 0 and |s| = 1 for simplicity.We observe that for
α = 1 the minimum uncertainty states are the intermediate states θ =

π
4 , whereas for α = 2.5 the minimum uncertainty

states are the extreme states θ = 0 or π
2 . The opposite happens for the product of marginal statistics Rα(p̃X p̃Z ), as illustrated

in Fig. 2(b) (that is, for α = 1 the minimum uncertainty states are the extreme states θ = 0 or π
2 , whereas for α = 2.5 the

minimum uncertainty states are the intermediate states θ =
π
4 ). The latter result coincides with the conclusions derived

from the intrinsic entropies Rα(pXpZ ) as shown in Fig. 2(c) (see also Ref. [8]).
In order tomakemore explicitly the extreme–intermediate competition forminimumuncertainty, we plot the difference

of Rényi entropies between extreme and intermediate states as functions of the entropic index α for ϕ = 0 and |s| = 1,
namely,

1Rα[p] = Rα(pext) − Rα(pint), (13)

where p stands for the joint, product of marginals, and product of intrinsic statistics, considering balanced measurement
δ =

π
4 (see Fig. 3). 1Rα < 0 implies that extreme states are of minimum uncertainty while, on the contrary, 1Rα > 0

implies that intermediate states are the minimum uncertainty ones.

2 Subadditivity is valid only for α = 0 and α = 1 [30, p.149]; concavity holds for all α ∈ [0, 1], whereas for α > 1 the concavity is held up to an index
α∗ that depends on N [31, p.57].
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Fig. 2. Normalized Rényi entropies (12) of: (a) the joint statistics Rnorm
α (p̃X,Z ), (b) the product of marginal statistics Rnorm

α (p̃X p̃Z ), and (c) the product of
intrinsic statistics Rnorm

α (pXpZ ), for α = 1 (dashed lines) and α = 2.5 (solid lines), as functions of θ for ϕ = 0, |s| = 1 and δ =
π
4 . The states corresponding

to minimal uncertainty vary depending the entropic index used, within each statistical description.

Fig. 3. Differences (13) between Rényi entropies for intermediate and extreme states in the cases of joint statistics 1Rα[p̃X,Z
] (solid line), product of

marginals 1Rα[p̃X p̃Z ] (dashed line), and the product of intrinsic statistics 1Rα[pXpZ ] (dotted line), as functions of α for ϕ = 0, |s| = 1, and δ =
π
4 . A

negative value of 1Rα means that extreme states give the minimum uncertainty, whereas a positive value corresponds to minimizing intermediate states.

We observe that, for the joint statistics, 1Rα[p̃X,Z
] is negative if α ∈ (2, 3), thus there are two critical values of the

entropic index at which the minimizer changes. On the other hand, for the products of marginal and intrinsic statistics,
1Rα[p̃X p̃Z ] and 1Rα[pXpZ ] change their sign at one critical value: αM ≈ 1.34 in the former case and αI ≈ 1.43 in the latter;
in both situations, the difference changes from negative to positive as the entropy index increases.

Let usmention that similar results can be obtained by using the family of Tsallis entropies [32], since there is a one-to-one
correspondence between Rényi and Tsallis families of entropies.

4. Majorization assessments

4.1. Extreme and intermediate states are incomparable

Let us call λ̃ = p̃X,Z
ex and µ̃ = p̃X,Z

in the four-dimensional vectors obtained by arranging the values of p̃X,Z in decreasing
order, for extreme and intermediate states, respectively. After Eqs. (6) and (11) we get for δ = π/4:

λ̃ =
1
4


1 +

|s|
√
2
, 1 +

|s|
√
2
, 1 −

|s|
√
2
, 1 −

|s|
√
2


,

and

µ̃ =
1
4

(1 + |s|, 1, 1, 1 − |s|) .

Thus for all |s| ≠ 0 we have clearly µ̃1 > λ̃1 but µ̃1 + µ̃2 < λ̃1 + λ̃2 so that neither λ̃ ≺ µ̃ nor µ̃ ≺ λ̃. This shows
that contradictions hold for pure as well as for mixed states, while naturally the differences between the extreme and
intermediate states are larger for larger |s|. The lack of majorization is consistent with the change of sign of 1Rα[p̃X,Z

]

reported in Fig. 3 (solid line).
The other behaviors seen in Fig. 3 can be explained in the same way. For the products of marginals p̃X p̃Z the four-

dimensional ordered vectors for extreme and intermediate states are, after Eqs. (7) and (11), respectively:

λ̃′
= λ̃

and

µ̃′
=

1
4


1 +

|s|
2

2

, 1 −
|s|2

4
, 1 −

|s|2

4
,


1 −

|s|
2

2


,
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for balancedmeasurement. Thus for all |s| ≠ 0we have µ̃′

1 > λ̃′

1 but µ̃
′

1+ µ̃′

2 < λ̃′

1+ λ̃′

2, so that neither λ̃′
≺ µ̃′ nor µ̃′

≺ λ̃′.
This correlates with the change of sign of the dashed line in Fig. 3.

The same result is obtained for the comparison of the product of intrinsic statistics pXpZ :

λ =
1
4

(1 + |s|, 1 + |s|, 1 − |s|, 1 − |s|) ,

and

µ =
1
4


1 +

|s|
√
2

2

, 1 −
|s|2

2
, 1 −

|s|2

2
,


1 −

|s|
√
2

2


,

so that for all |s| ≠ 0 we get µ1 > λ1 but µ1 + µ2 < λ1 + λ2. This is consistent with the change of sign of the dotted line
in Fig. 3.

Finally, in the three cases (joint, product of marginals and product of intrinsic statistics) the greatest component of the
probability vector for the intermediate state is greater than the corresponding one for the extreme state. Consequently, for
sufficiently large α the intermediate states provide the minimum, as seen in the three curves drawn in Fig. 3. However a
complete explanation of this figure cannot be provided by the lack of majorization relation.

4.2. Comparison between joint and products of statistics

It is well known that the Rényi entropies do not fulfill in general the subadditivity property. Therefore for the same state
the entropy of the joint statistics p̃X,Z can be larger than the entropy of the product of its marginals p̃X p̃Z . It can be easily
checked that this is actually the case for intermediate states. This behavior implies that p̃X,Z and p̃X p̃Z cannot be compared
since otherwise subadditivity will follow from Schur-concavity after the case α = 1 where subadditivity holds.

Nevertheless, one may still wonder whether p̃X,Z and pXpZ are comparable or not for intermediate states. We can easily
show that there are cases for which they are comparable.

In this regardwe can begin noting that p̃X ≺ pX and p̃Z ≺ pZ , since these statistics are related through a doubly stochastic
matrix


p̃X

+

p̃X
−


=


1 + η

2
1 − η

2
1 − η

2
1 + η

2

pX+pX
−


, (14)

and similarly replacing X by Z , where η = cos δ, sin δ for X, Z , respectively. Notice that all the matrix entries are positive
and that each row and column sums to unity. However this does not imply any trivial relation between p̃X,Z and pXpZ . When
comparing the corresponding ordered distributions µ̃ and µ for balanced joint measurements, we get µ̃1 < µ1 as well as
µ̃1 + µ̃2 < µ1 + µ2 for all |s| ≠ 0. However, we have µ̃1 + µ̃2 + µ̃3 ≤ µ1 + µ2 + µ3 for all |s| ≤ 2(

√
2− 1) ≈ 0.83, while

the opposite holds for |s| above this value. This is to say, for intermediate states we get that the natural relation p̃X,Z
≺ pXpZ

holds for mixed enough states with |s| ≤ 2(
√
2 − 1), while otherwise the statistics are incomparable.

On the other hand, for extreme states we have always p̃X,Z
= p̃X p̃Z ≺ pXpZ .

4.3. Majorization uncertainty relations

Majorization provides a rather neat form for uncertainty relations in terms of suitable constant vectors that majorize the
statistics associated to the observables for every system state [16,17]. In our case these are

p̃X,Z
≺ ω̃, p̃X p̃Z ≺ ω̃′ and pXpZ ≺ ω, (15)

where ω̃, ω̃′, and ω are constant vectors. By readily applying the procedure outlined in Ref. [17] we obtain

ω̃ =
1
4


2,

√
2, 2 −

√
2, 0


,

ω̃′
=

1

16
√
2


9
√
2, 8 −

√
2, 7

√
2 − 8,

√
2


, (16)

ω =
1
8


3 + 2

√
2, 5 − 2

√
2, 0, 0


.

Then corresponding uncertainty relations hold, for example for the joint distribution one has: Rα(p̃X,Z ) ≥ Rα(ω̃).
It is worth noting that there is a definite majorization relation between ω and the other two vectors, that is

ω̃ ≺ ω and ω̃′
≺ ω. (17)
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These two relations are quite natural and express that the uncertainty lower bound is larger for the statistics derived from
simultaneous joint measurement, either p̃X,Z or p̃X p̃Z , than for the exact intrinsic statistics. This is the majorization relation
counterpart of thewell-known result that the variance-based lower bound for operational position–momentumuncertainty
is at least four times the intrinsic one [20].

However, there is nomajorization relation between ω̃ and ω̃′ sincewhile ω̃′

1 > ω̃1, we have ω̃′

1+ω̃′

2+ω̃′

3 < ω̃1+ω̃2+ω̃3.
Finally we show that there are no system states leading to statistics equating the distributions (16). To this end we use

Eqs. (2), (6), and (7) to determine the values of sx and sz that would lead to p̃X,Z , p̃X p̃Z and pXpZ , equating ω̃, ω̃′ and ω,
respectively. Without loss of generality we consider sx and sz to be positive. For the joint statistics, the null component in
ω̃ implies that sx = sz =

1
√
2
. Thus according to (6) the other values for p̃X,Z should be 1

2 ,
1
4 and 1

4 , which are not equal
to the corresponding values in ω̃. For the product of marginals p̃X p̃Z , the sum of the greatest and lowest components of
ω̃′ imply that sx = sz =

1
√
2
. Thus after (7) the other two components for p̃X p̃Z should be both 3

16 , which are not equal
to the corresponding values in ω̃′. For the intrinsic statistics, we have that the two zeros of ω imply that either sx = 0 or
sz = 0. In any case (2) would then imply that the other components of pXpZ should be both 1

2 , which is different from the
corresponding values in ω.

5. Duality relation

Following the approach in Ref. [25] we may compare these entropic results with some other assessments of joint
uncertainty or complementarity. Among them, one of the most studied is the duality relation between path knowledge
and visibility of interference in a Mach–Zehnder interferometric setting [23,24]. This fits with our approach by regarding
|±⟩ as representing the internal paths of a Mach–Zehnder interferometer, while |a±⟩ represent the states of the apparatus
monitoring the path followed by the interfering particle.

One of the most used duality expression is [23]

D2
+ V 2

≤ 1, (18)

where D = TrA
w+ρ

(+)
A − w−ρ

(−)
A

 is the so-called distinguishability. Regarding the particular case where the system

and apparatus are in pure states, we have ρ
(±)
A = |a±⟩⟨a±| and w+ = 1 − w− = cos2 θ

2 , so that

D =


1 − 4w+w− |⟨a+|a−⟩|

2. (19)

This represents the knowledge available about the path followed by the particle, which is grossomodo inversely proportional
to path uncertainty. On the other hand, the interference is assessed by the standard fringe visibility V obtained when the
relative phase ϕ is varied in Eq. (1),

V = 2
√

w+w− |⟨a+|a−⟩| . (20)

This roughly speaking represents the phase uncertainty, the counterpart of the uncertainty of σx in our approach. Note that
in these duality relations path and interference are not treated symmetrically, contrary to the approach developed here in
terms of entropic measures.

After Eqs. (19) and (20) we can appreciate thatD2
+V 2

= 1whenever the system and apparatus are in pure states. This is
to say that this duality relation is blind to the differences between extreme and intermediate states, in sharp contrast to the
more complete picture provided by the entropic measures with equal entropic indices. This was already shown in Ref. [25]
regarding its intrinsic counterpart P2

+ V 2
≤ 1, where P = |w+ − w−| is the predictability. Nevertheless, an equivalence

with the duality relation is obtained, using conjugated entropic indices that lead to the so-calledmin–max entropies, as was
recently shown in Ref. [10].

Since the duality relation does not discriminate between pure states itmay be interesting to complete the duality analysis
by examining the states of maximum D or V , as well as those states with D = V .

From Eq. (19) the maximum distinguishability, D = 1, holds either when w+ = 0, w− = 0, or ⟨a+|a−⟩ = 0. These are all
the cases where the particle actually follows just a single path, or when the apparatus can provide full information about the
path followed. On the other hand, after Eq. (20), the maximum visibility, V = |⟨a+|a−⟩|, holds when both paths are equally
probable w+ = w− =

1
2 . Furthermore the maximum visibility reaches unity, V = 1 when |a+⟩ is proportional to |a−⟩. This

is when both paths are equally probable and the apparatus provides no information about the path. Within the set S, the
extreme states sz = ±1 satisfy the requirements for extreme distinguishability, while those with sx = ±1 reach maximum
visibility. This agrees with the case of unobserved duality [25].

On the other hand, D = V holds provided that w+w− |⟨a+|a−⟩|
2

=
1
8 . For balanced detection, |⟨a+|a−⟩| =

1
√
2
so that

w+w− =
1
4 and thenw+ = w− =

1
2 . Within the set S this is satisfied by the extreme states being eigenstates of σx. Contrary

to what happens for the unobserved duality relation, the intermediate states do not satisfy D = V . The extreme sx = ±1
can reach both maximum visibility and D = V since for balanced joint detection we get D ≥

1
√
2

≥ V for all states.



912 A. Luis et al. / Physica A 444 (2016) 905–913

6. Concluding remarks

We have presented several examples of application of Rényi entropies as measures of quantum uncertainty in the case
of simultaneous measurements. We have explored those situations leading to unexpected or contradicting predictions
for different entropies and states as reported in Section 3.2. We have shown that the interplay between extreme and
intermediate states as those of minimal uncertainty, shown in Figs. 2 and 3, is consistent with lack of majorization relation
between the corresponding statistics, as we have discussed in Section 4.1.

Moreover, we have compared the joint and products of statistics in connection withmajorization in Section 4.2.We have
obtained that for the intermediate states, the joint distribution ismajorized by the product of intrinsic statistics up to certain
degree of purity. On the other hand, for extreme states this situation holds for any degree of purity as naturally one could
have expected.

In Section 4.3 we have obtained the corresponding majorization uncertainty relations for the joint, product of marginal
and product of intrinsic statistics, obtaining the corresponding majorizing constant distributions ω̃, ω̃′ and ω. We have seen
that there existmajorization relations betweenω and ω̃, and betweenω and ω̃′. Thismeans that the uncertainty lower bound
is larger for the statistics derived from simultaneous joint measurement, either p̃X,Z or p̃X p̃Z , than for the exact intrinsic
statistics. This can be interpreted as the majorization relation counterpart of the well-known result that the variance-based
lower bound for operational position–momentum uncertainty is at least four times the intrinsic one. In addition, we have
proved that these majorization uncertainty relations are not tight, in the sense that there is no state reaching the bounds.

In Section 5, we have shown that the new uncertainty relations are much more comprehensive than the traditional
assessment of complementarity in terms of distinguishability D and visibility V . For a more fruitful comparison we have
developed the traditional approach inquiring about the states with extreme D or V , as well as about the intermediate states
D = V .

The results presented in this work intend to provide a better understanding of uncertainty relations. In recent times
there has been a growing interest in applying advanced statistical tools to quantum problems, going beyond the simple use
of variances or entropies. Thus, majorization emerges as a powerful tool to understand fundamental aspects of quantum
uncertainty and complementarity in the most complete and simple form.
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