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Land use and land cover (LULC) maps from remote sensing are vital for monitoring, understanding and
predicting the effects of complex human–nature interactions that span local, regional and global scales. We
present a method to map annual LULC at a regional spatial scale with source data and processing techniques
that permit scaling to broader spatial and temporal scales, while maintaining a consistent classification
scheme and accuracy. Using the Dry Chaco ecoregion in Argentina, Bolivia and Paraguay as a test site, we
derived a suite of predictor variables from 2001 to 2007 from the MODIS 250 m vegetation index product
(MOD13Q1). These variables included: annual statistics of red, near infrared, and enhanced vegetation index
(EVI), phenological metrics derived from EVI time series data, and slope and elevation. For reference data, we
visually interpreted percent cover of eight classes at locations with high-resolution QuickBird imagery in
Google Earth. An adjustable majority cover threshold was used to assign samples to a dominant class. When
compared to field data, we found this imagery to have georeferencing error b5% the length of a MODIS pixel,
while most class interpretation error was related to confusion between agriculture and herbaceous
vegetation. We used the Random Forests classifier to identify the best sets of predictor variables and percent
cover thresholds for discriminating our LULC classes. The best variable set included all predictor variables
and a cover threshold of 80%. This optimal Random Forests was used to map LULC for each year between
2001 and 2007, followed by a per-pixel, 3-year temporal filter to remove disallowed LULC transitions. Our
sequence of maps had an overall accuracy of 79.3%, producer accuracy from 51.4% (plantation) to 95.8%
(woody vegetation), and user accuracy from 58.9% (herbaceous vegetation) to 100.0% (water). We attributed
map class confusion to limited spectral information, sub-pixel spectral mixing, georeferencing error and
human error in interpreting reference samples. We used our maps to assess woody vegetation change in the
Dry Chaco from 2002 to 2006, which was characterized by rapid deforestation related to soybean and
planted pasture expansion. This method can be easily applied to other regions or continents to produce
spatially and temporally consistent information on annual LULC.
.
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1. Introduction

Land use and land cover (LULC) maps are vital for monitoring,
understanding and predicting the effects of complex human–nature
interactions that span local, regional and global scales. For example, a
spatial depiction of land conversion, such as deforestation for
agriculture or pastures, or incremental changes, such as forest
degradation and reforestation, are important for reducing uncertainty
in carbon stocks and emissions, developing strategies for biodiversity
protection, and understanding how globalization affects local and
regional land use trends (Houghton, 2005; De Fries et al., 2007).
Assessment of rapid land use changes, such as deforestation in the
tropics (Archard et al., 2002), requires frequent measurements if it is
to be incorporated into management and policy decisions. Further-
more, global issues span political and cultural boundaries, and so LULC
maps need to be produced with spatially and temporally consistent
information and accuracy. To meet these requirements, we need to
develop cost-effective ways for automating the processing of satellite
images and the production of LULC maps with high temporal
resolution (Defries & Belward, 2000; Skole et al., 1997).

There is a strong tradition of using data from medium resolution
sensors (10–60 m)–especially Landsat–for mapping LULC change at
local to national scales (Alves & Skole, 1996; Steininger et al., 2001;
Roberts et al., 2002; Zak et al., 2004; Boletta et al., 2006; Killeen et al.,
2007; Gasparri & Grau 2009; Huang et al., 2009). This level of spatial
resolution is generally sufficient for detecting fine-scale land use
patterns. However, data costs, small image extent, cloud cover, haze,
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Fig. 1. The Dry Chaco ecoregion study site. MODIS tile extents are shown as the grid, and
tile numbers are given with horizontal and vertical reference numbers (e.g., h11v10).
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and infrequent measurements can make data from medium resolution
sensors impractical for regional and global mapping (Asner, 2001;
Hansen et al., 2008).

Satellites such as MODIS, SPOT-Vegetation, and MERIS offer
multispectral measurements with lower spatial resolution (250 to
1000 m), relatively large scenes, and near-daily coverage that allow
multiple observations in a year despite cloud coverage. Multi-
temporal and multispectral analysis of these data can be used to
produce LULC maps and other land cover descriptors, such as the
timing, length and frequency of vegetation growing seasons. Several
global land cover maps have been produced from low resolution
satellites: 1.1-km AVHRR (IGBP DISCover , Loveland et al., 2000; UMD
GLCC, Hansen et al., 2000), 1-km SPOT-Vegetation (GLC2000,
Bartholomé & Belward, 2005), 500 m and 1000 m MODIS
(MOD12Q1, Friedl et al., 2002; MCD12Q1, Friedl et al., 2010), and
300 m MERIS (Globcover, Bicheron et al., 2008). These map products
generally focus on separating natural vegetation types for global
carbon assessment and differ by source images, spatial scale, reference
data, classification techniques and class rules, making comparison
problematic (Herold et al., 2008). Evergreen broadleaf trees and areas
without vegetation (snow, ice, barren) tend to be well classified, but
accuracy is poor with large pixels that mix spectral and temporal
signals from trees, shrubs and herbaceous vegetation (Herold et al.,
2008). Most global maps provide “baseline” information from a single
time period (mostly circa 2000), thus precluding analysis of LULC
change using one product with consistent error. The 500 mMCD12Q1
MODIS product offers annual LULC maps from 2001 to 2007, with
plans to continue into the future, but these products have just been
released and have not been thoroughly assessed for class accuracy and
change detection (Friedl et al., 2010).

In summary, there is a lack of LULC map products at regional to
continental scales with spatially and temporally consistent informa-
tion content and error, which prevents analyses of coupled natural
and human systems across political boundaries and through time. To
satisfy this need, we develop a scalable method for mapping annual
LULC at these spatial scales. We use the Dry Chaco ecoregion in South
America as a case study; however, the main impetus for this study is a
larger project focused on recent LULC change in Latin America and the
Caribbean. Our method is novel in that it integrates: 1) reference data
interpreted from high-resolution imagery sampled in space and time
within an Internet-based tool (Google Earth), 2) a flexible classifica-
tion scheme based on percent cover thresholds, 3) predictor variables
that respond to phenological variation in MODIS vegetation index
time series data, 4) annual maps produced at 250 m scale, and 5) a
Random Forests classifier that is robust in the face of heterogeneous
classes and reference data error.

2. Study area: Dry Chaco ecoregion

To develop and test our method, we worked in the Dry Chaco
ecoregion that spans Argentina, Bolivia and Paraguay (Olson et al.,
2001). This is the second largest ecoregion in Latin America, covering
790,000 km2 between 17°32′26″S and 33°52′7″S latitude and 67°43′
12″W and 57°59′26″W longitude (Fig. 1), and includes the largest
continuous neotropical dry forest (Eva et al., 2004). The ecoregion is
characterized by a monsoonal climate with a strong seasonality (dry
winters, rainy summers), but average temperature and in particular
rainfall vary significantly across the area. Annual mean temperature
varies from 18°C in the southern part of the ecoregion to 21°C in the
north, and precipitation varies from 500 mm/year in the center to
1000 mm/year in the eastern and western extremes (Minetti, 1999).
The vegetation is dominated by dry forest trees and shrubs, but
natural grasslands occur in areas with sandy soils and frequent fires.
Most of the ecoregion is flat, with elevation rising in the wetter,
western side. Elevation above mean sea level for the ecoregion
calculated from a digital elevationmodel (see Section 2.7) had a range
of 56 to 3577 m and average of 326±289 m. Lowland areas, having
elevation below 700 m, cover 91% of the ecoregion.

Historically, much of the ecoregion has been severely degraded by
extensive cattle ranching and timber and charcoal extraction. In
addition, agriculture has occurred in the foothills of the Andes and in
irrigated valleys for more than a century. Citrus plantations (mostly
lemon, some grapefruit and oranges) and sugar cane are important
crops near the Andes. In the northern humid zones there are some
banana plantations, while olives are cultivated in the drier southwest.
The region also has some scattered tree plantations (pine, eucalyptus
and poplar) and minor fruit orchards including blueberries, peaches,
figs, and walnuts. During the last 30 years, the conversion of forest to
agriculture has accelerated, mostly driven by growing global food
demand (Grau et al., 2005). In Argentina, the majority of this new
deforestation has occurred in the wetter eastern and western parts of
the ecoregion, where millions of hectares of Chaco forest have been
replaced with soybeans and pastures (Gasparri & Grau, 2009).

As a consequence of its large area and rapid land use change, the
ecoregion has the largest carbon stock and the largest source of
emissions fromdeforestation in LatinAmericaoutside theAmazonbasin
(Gasparri et al., 2008). The ecoregion is part of the Tropical/Subtropical
Dry Broadleaf Forest biome,whichglobally has a high percentage of area
converted and relatively low protection (Hoekstra et al., 2005), and it
has the largest continuous habitat for large mammals (e.g., jaguars,
peccaries) outside the Amazon basin, making it important for regional
conservation (Altritcher and Boaglio, 2004; Altritcher et al., 2006;
Redford et al., 1990). Given its large extent and rapid changes,
developing remote sensing methods to monitor LULC is a priority for
theDryChaco. Existing studieshaveused Landsat images, coveringparts
of the ecoregion in Bolivia (Killeen et al., 2007), Paraguay (Huang et al.,
2009) and Argentina (Zak et al., 2004; Boletta et al., 2006; Gasparri &
Grau 2009). Methods varied from automated per-pixel classification to
visual interpretation; however, despite the lack of consistent products,
all studies reported accelerated deforestation since the 1990s.



Table 1
Visual criteria used for estimating percent cover of land use/land cover classes in Google
Earth QuickBird image samples (Section 3.2). The class label of each sample, and
subsequent classification scheme for a map, was determined by a variable majority
cover threshold (Section 3.8.1).

Class Abbreviation Visual criteria

Built-up areas Built Urban and industrial buildings, infrastructure
and associated roads

Water Water Lakes and large rivers
Bare areas Bare In addition to including areas of bare soil,

which could be common in deserts, this class
also includes ice, snow, sand dunes, rock, salt
flats, and dry riverbeds. Open-pit mines with
exposed soil/rock are included in this class.

Agriculture Ag Agricultural fields with annual crops (e.g., sugar
cane, corn, wheat, soybean, rice). Perennial crops
(e.g., citrus plantations) are included in the
plantation class. Crops can usually be detected by
plow lines, rectilinear shapes, and nearby roads
and infrastructure. Bare soil in this context was
classified as crops, but fallow agricultural land
was classified as herbaceous or woody.

Plantations Plant The major characteristics of plantations are:
perennial vegetation and the regular spacing of
the plants. Common examples in the Chaco are
pine and eucalyptus plantations, citrus and olive
orchards, and vineyards. Roads, bare ground, or
grass within the plantation were considered as
part of the plantation.

Herbaceous
vegetation

Herb This class is usually dominated by native or
planted grasses and herbs. The most common
land use in this class is cattle pasture, which
can be distinguished by trails and watering holes.
This class can be confused with agriculture but
is usually more heterogeneous in color (green,
gray, brown) and texture.

Woody
vegetation

Woody Trees and shrubs are the major components of
this class. Although most areas in this class are
natural areas, woody vegetation can also occur
within agricultural and urban regions.

Mixed woody
vegetation

MixWoody Not interpreted directly in Google Earth.
Woody, Herb and Bare percent cover make up
this class (see Section 3.8.1)
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3. Methods

3.1. Google Earth reference data collection

We collected reference data with human interpretation of high-
resolution imagery in Google Earth (GE, http://www.earth.google.
com). In Latin America, most of this imagery is from Digital Globe's
QuickBird satellite. Google superimposes high-resolution images over
coarser images according to image availability, quality and date, and
the final imagemosaic is streamed to the GE application fromGoogle's
servers. The use of GE provides scalability to our method in that its
high-resolution imagery is free to access, easy to navigate, is
distributed across the region, and can be interpreted with a consistent
set of rules.

We first selected random points across the Dry Chaco ecoregion,
with point centers at least 1000 m apart. Points were snapped to the
closest MODIS pixel (Section 3.4). At each pixel center, a 250×250 m
square (62,500 m2) representing the pixel was generated alongwith a
4×5 internal grid of cells. Each cell covered 5% of the grid (each
internal cell was 62.5×50 m=3125 m2). Reference sample points
and associated grid layers were developed in the Interrupted Goode
Homolosine (IGH) projection, WGS84 datum within ArcGIS 9.2 and
then projected to the geographic coordinate system (GCS, i.e., simple
cylindrical projection with latitude, longitude) within a KMZ file for
viewing in GE (v4.3 to v5.0). Samples with no high-resolution
QuickBird imagery in GE were removed from the sample set. Within
each sample grid, two technician-level interpreters estimated the
percent cover of seven classes with increments of 10%: woody
vegetation (Woody), herbaceous vegetation (Herb), agriculture (Ag),
plantations (Plant), built-up areas (Built), bare areas (Bare), and water
(Water). Each interpreter estimated percent cover based on criteria
presented in Table 1 (mixed woody is explained below and in
Section 2.8.1). Fig. 2 shows typical examples of six classes (excluding
Water and MixWoody) as seen in GE QuickBird imagery with the
250×250 m interpretation grid, which is slightly larger than a MODIS
pixel. Each interpreter was allowed to consider the larger landscape
context around the sample in assessing component classes, but all
percent cover estimates were confined to the land cover in the sample
grid. QuickBird image date is available in GE's status bar and the year
was recorded for each sample. Samples were then labeled with the
class that had themajority cover, one label from each technician. If the
two class labels agreed, the estimates of class cover were averaged to
provide one estimate for the sample. If the two class labels disagreed,
then the technician interpretations were discarded and an “expert”
interpreter (one of the authors) estimated the sample's final percent
cover, and then the majority-class label came from the expert's
estimation. A mixed woody/natural vegetation (MixWoody) class was
created from samples with a blend ofWoody, Herb and Bare cover (see
Section 3.8.1).

Our initial interpretations with random sampling yielded 3147
samples, with an overabundance of non-riparian woody vegetation. In
contrast, there were relatively few samples for bare, built, plant,
water, and riparian area woody, as these areas covered a small
fraction of the landscape; and thus, we implemented a stratified
random sampling approach for these areas. We first digitized
polygons in GE for Bare, Built, Plant, Water and riparian vegetation
areas with QuickBird images. Random samples were generated within
these polygons and then interpreted using the same protocol, yielding
an additional 461 reference samples (13% of total).

3.2. Reference data accuracy assessment

Reference data collected from GE were expected to have spatial
and interpretation error. Spatial error may be caused by terrain
displacement in QuickBird images that have not been orthorectified.
Interpretation error could be in percent cover estimates for the seven
land cover classes or in recording QuickBird image dates. These errors
are expected to vary among interpreters (Congalton & Mead, 1983;
Powell et al., 2004), and can result from disagreement on class percent
cover, level of training, fatigue, and data recording errors.

To test the spatial and interpretation accuracy of our GE reference
data, we collected an independent set of points from field observa-
tions. Points were collected with a Trimble GeoExplorer 3 GPS
receiver (PDOP b 6.0, N 4 satellites, and average of 70 positions per
point) on January 2 and 3, 2009 along a highway route through the
Santiago del Estero, Tucuman, and Salta provinces of NW Argentina,
160 to 950 m elevation.We applied differential corrections to 18 of 62
locations using a public base station (SOPAC, UNSA Salta, 24°43′38.84″
S, 65°24′27.52″W); the remaining 44 locationswere not corrected due
to missing base station data. At each location, we recorded the
compass bearing and estimated distance to the center of patches
dominated by one of our land cover classes. Google Earth “place-
marks”were digitized with reference to GPS field locations and notes.
A 250×250 m sample grid was then generated for each placemark
and loaded into GE. Four technicians and one expert estimated
percent cover and recorded image date for each field sample using the
interpretation criteria in Table 1 (see Section 3.6). Some GPS points
were located at road intersections visible in GE QuickBird imagery.
The point location (placemark) of the GPS receiver was digitized in GE
using detailed field notes and photographs as reference. The
difference in IGH projected coordinates (see Section 3.4) between
the placemark and GPS point was then used to determine GE
QuickBird spatial error in meters.

http://www.earth.google.com
http://www.earth.google.com


Fig. 2. Example reference samples in Google Earth for six land use/land cover classes. The grid is centered on a MODIS pixel and covers 250×250 m. Each grid cell is 5% of the total
sample area.
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3.3. MODIS imagery

We used the MODIS MOD13Q1 Vegetation Indices 250 m product
(Collection 5) for LULC classification. The product is a 16-day composite
of the highest-quality pixels from daily images and includes the
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), blue, red, near infrared (NIR), mid-infrared reflectance and
pixel reliability (Huete et al., 2002). We focused our study on MODIS
tiles H12V10, H12V11, and H12V12, which covermost of the Dry Chaco
(Fig. 1). Scenes fromday 289, year 2000 to day 273, and year 2008 (184,
16-day scenes) were analyzed in this study. For each day, scenes were
reprojected from their native Sinusoidal projection to the IGHprojection
(sphere radius of 6,378,137.0 m) using nearest-neighbor resampling.
The original cell size of 231.7 mwasmaintained in the reprojection. The
IGH projection is a composite, equal-area projection that is useful for
calculating area over regional to global scales. A key component of this
research was to have the GE sample grids and MODIS pixels cover the
same area. Ideally, theMODIS scenes should be reprojected to IGH after
classification to minimize geolocation mismatch with GE sample grids.
However, GE requires GCS and sample grids projected from the
sinusoidal projection to GCS were extremely skewed, especially at
higher latitudes, which added error to our percent cover estimates. By
projecting rasters to IGH first, we could generate GE sample grids
centered onMODIS pixels thatwere relatively squarewhen projected to
GCS for overlay in GE.

3.4. Temporal profiles of classes

The NDVI and EVI vegetation indices (VIs) target the red and NIR
spectral regions and respond to vegetation photosynthetic pigment
concentrations (mostly chlorophyll) and structure. Detailed time
series of these data follow the annual growth cycles–or phenology–of
vegetation found in a pixel. Fig. 3 plots the temporal profiles of EVI and
NDVI for example classes shown in Fig. 2, with vertical bars indicating
the QuickBird image date. In native Chaco forest, trees and shrubs are
mostly green (leaf-on) in the wet summers, producing higher VI
values (Fig. 3—woody). Winters are relatively dry and many trees and
shrubs lose their leaves (Fig. 2—woody), causing VI values to decrease.
NDVI and EVI values follow the same temporal trend, but NDVI values
are higher. At the other extreme are bare areas, such as dry lake beds
(Fig. 2—bare). There is minimal to no vegetation in these areas, and VI
values remain fairly flat through the year (Fig. 3—bare). Built-up areas
have EVI and NDVI profiles that partly follow the seasonal cycle of
precipitation due to urban vegetation, such as trees and herbaceous
lots, yet vegetation index (VI) values are relatively low (Fig. 3—built-
up) due to high cover of non-photosynthetic surfaces, such as roof-
tops and streets (Fig. 2—built-up). Plantations have VI profiles that
respond to seasonal precipitation cycles, yet since they are generally
irrigated, values are relatively high in the dry winter months relative
to native forest (Fig. 3—plantation vs. woody). In this example, the
plantation's temporal profile shows a steady increase in VI values
from 2001 to 2008, likely the result of increasing biomass and
productivity. Herbaceous vegetation is highly variable in the Dry
Chaco landscape and includes natural grasslands and pastures for
livestock. The QuickBird image for the herbaceous example shows
trails radiating from awatering hole, indicating that the area is a cattle
pasture (Fig. 2—herbaceous). As with most classes, the herbaceous VI
profiles follow seasonal precipitation, yet values are more erratic than
woody vegetation. Agriculture in the Dry Chaco is predominantly
rain-fed, and areas with mechanized agriculture (e.g., soybeans) have

image of Fig.�2


Fig. 3. Temporal profiles of NDVI (closed circles) and EVI (open circles) for the samples shown in Fig. 2. Vertical bars indicate the date when the sample's Google Earth high-resolution
image was acquired.
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steep and high amplitude VI profiles as crops are planted, mature and
are harvested (Fig. 3—agriculture). In between crop cycles, when
there are often fallow or tilled fields, VI values plummet to levels
between bare soil or herbaceous vegetation in the dry season. In the
agriculture example, likely a soybean field, the QuickBird image was
taken at the beginning of the growing season when the VI values were

image of Fig.�3
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increasing rapidly (Figs. 2 and 3—agriculture). The VIs in this example
track one growing season in 2003 and 2004, while there appear to be
two crop cycles in 2005 and 2006.

3.5. Phenological variables

We started with the assumption that land cover classes have
different phenological signals that can be used for automated
classification. Our goal was to derive predictor variables from the VI
time series that are sensitive to annual phenological change, yet
reduce data volume and signal noise.

3.5.1. Annual statistics
We calculated the annual statistics mean, standard deviation,

minimum, maximum and range for EVI, NDVI, red reflectance and NIR
reflectance values from calendar years 2001 to 2007. The MOD13Q1
pixel reliability layer was used to remove all unreliable pixels
(value=3) prior to calculating statistics. We explored restricting
our analysis to highly reliable pixels (value=0), but this eliminated
too many data points, and so signal error from marginally reliable
pixels (value=1) contributes to the total error in our process. Annual
metrics are referenced by the input band evi, ndvi, red or nir and the
statistic _mean, _stddev, _min, _max, and _range. For example,
evi_mean is the mean EVI for 1 year.

3.5.2. TIMESAT processing of time series data
The TIMESAT program (Jönsson & Eklundh, 2004) was designed to

analyze phenological signals found in time series data from satellite
sensors. The program fits local functions to the time series data points,
and then combines these functions into a global model. Phenological
variables for each growing season are then extracted from the smooth
model function, thereby reducing the influence of signal noise in the
raw data. We used TIMESAT v.2.3 (Jönsson & Eklundh, 2004) to
process EVI and NDVI data from Julian day 289, year 2000 to Julian day
273, year 2008 (23 points per years×8 years=184 points). This
temporal window does not align with calendar years, but allowed the
program to have ample data to fit a full function to the main Southern
Hemisphere growing seasons 2001–2002 to 2007–2008. The MOD13
pixel reliability band was used to weight each point in the time series:
value 0 (good data) had full weight (1.0), values 1–2 (marginal data,
snow/ice) had half weight (0.5), and value 3 (cloudy) had minimal
weight (0.1). Function-fitting parameters used in TIMESAT were: a
Savitzky-Golay filter procedure, 3- and 4-point window over 2 fitting
steps, adaptation strength of 2.0, no spike or amplitude cutoffs, season
cutoff of 0.0, and begin and end of season threshold of 20%.
Fig. 4. Example TIMESAT function fit (black line) to 16-day MOD13 NDVI data (open circles w
the function are numbered on the figure for the 2006/2007 growing season, with variable n
An example fit to NDVI data from an agriculture sample is shown
in Fig. 4. Phenological variables extracted for each growing season
included: 1. length of the season (seas_length); 2. base level, average
of the left and right minimum values (base_level); 3. largest data value
for the fitted function during the season (maximum); 4. seasonal
amplitude (amplitude); 5. rate of increase at the beginning of the
season (left_der); 6. rate of decrease at the end of the season
(right_der); 7. small seasonal integral (small_int); 8. large seasonal
integral (large_int); 9. number of seasons in a calendar year
(num_seas); 10. time for the start of the season (day_start); 11. time
for the end of the season (day_end); and, 12. time for the mid of the
season (day_mid). A custom program was created to output these
phenological variables as raster bands in a stack for each calendar
year, 2001 to 2007. TIMESAT outputs fractions of band number for
variables 10, 11, and 12. Julian day within a calendar year (0 to 366)
was linearly interpolated from a lookup table of MODIS bands and
Julian day. Each image pixel was processed independently and
phenological variables were labeled with the year in which the
season started. Only data for the first growing season in a calendar
year were used in our analyses. If TIMESAT failed to retrieve a growing
season for a year, the phenological variables for the year were set to a
no data value.

3.6. Terrain variables

Additional auxiliary predictor variables used in the classification
included elevation and slope derived from the Shuttle Radar
Topography Mission (SRTM) 90 m Digital Elevation Model (DEM)
that had missing data filled by the Consultative Group for Interna-
tional Agriculture Research (CGIAR, DEM Version 4, http://www.srtm.
csi.cgiar.org). Degree slope was derived from the DEM at 90 m and
then both elevation and slope were projected to the IGH projection
using a bilinear interpolationmethod and a 231.7 m cell size, tomatch
the MODIS-derived datasets.

3.7. Classification with Random Forests

We implemented per-pixel mapping of land cover with the
Random Forests (RF) tree-based classifier (Breiman, 2001). Decision
tree classifiers have an advantage overmore traditional classifiers, like
the maximum likelihood classifier, in that they make no assumptions
about data distributions (e.g., normality), can handle data with
different scales, and can adapt to noise and non-linear relationships
inherent in remote sensing data (Friedl & Brodley, 1997). For example,
a highly variable class such as agriculture, which includes different
ith dashed line) for an agriculture pixel. TIMESAT phenological variables derived from
ames and actual values in the table. See Section 3.6.2 for more information.

http://www.srtm.csi.cgiar.org
http://www.srtm.csi.cgiar.org
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crops, cropping patterns and fallow periods, may have multiple
decision paths through a tree that all lead to the agriculture class.

The RF classifier builds multiple decision trees from bootstrapped
sampling of the reference data. A final class is determined from the
majority vote of the ensemble of trees—the forest. To decrease the
time it takes to construct trees, RF tests subsets of the predictor
variables for each decision branch (node). Roughly 2/3 of the
reference data are sampled with replacement to build each tree,
while 1/3 of the reference data are withheld from tree construction
(called “out-of-bag”, or OOB samples). The OOB samples are sent
down trees for which they were not used, and the difference between
the predicted and actual class is used to calculate an error matrix and
unbiased estimate of accuracy (Breiman, 2001). RF also tracks
predictor variable importance, which is calculated as a decrease in
overall or class-level classification accuracy when the variable is
permuted in the OOB samples.

Random Forests have been used in remote sensing to map land
cover (Chan & Paelinckx, 2008; Gislason et al., 2006; Pal, 2005; Sesnie
et al., 2008), forest biomass and structural parameters (Baccini et al.,
2004; Hudak et al., 2008), forest successional stage (Falkowski et al.,
2009), habitat (Korpela et al., 2009; Martinuzzi et al., 2009) and
invasive species (Lawrence et al., 2006). In land cover studies, the RF
classifier has been found to be stable and relatively fast, involve few
user-defined parameters and yield overall accuracies that are either
Fig. 5. Distribution of reference samples collected in Google Earth. Year corresponds to the im
year is shown in parentheses.
comparable to or better than other classifiers, such as maximum
likelihood, spectral angle mapper and conventional decision trees
(Lawrence et al., 2006), AdaBoost decision trees and neural networks
(Chan & Paelinckx, 2008), and support vector machines (Pal, 2005).

3.7.1. Reference data preparation
Annual statistics and TIMESAT phenology were extracted for the

year corresponding to the QuickBird image year (2002 to 2007) for
each GE reference sample. Since samples came from different years,
they included variability in space and time. Sample class labels were
assigned according to the class with majority cover. Each GE sample
thus included a majority class and its percent cover, and a suite of
predictor variables: annual statistics, TIMESAT phenology and terrain
variables. This dataset was filtered to remove samples with no
TIMESAT values when using EVI or NDVI. This filtered version of
samples is called the “reference dataset”. There were 3309 total
samples, spanning years 2002 to 2007 (Fig. 5). The spatial distribution
of samples was clumped, reflecting the patchy distribution of
QuickBird scenes in Google Earth.

The reference dataset was then split by randomly selecting 70%
and 30% of samples per class for training and testing, respectively,
with a maximum limit of 700 samples in any given class (Table 2). The
training and test datasets were filtered to provide 5 datasets with 60%,
80% and 100% majority cover thresholds. For example, the 60%
age date of the high-resolution imagery under a sample. Total number of samples for a
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Table 2
Reference samples derived from Google Earth interpretations and used in Random
Forests classifier training and testing (accuracy assessment). Samples were labeled
with their majority class with≥60% to≥100% cover thresholds. MixedWoody samples
had woody cover less than the threshold and remaining cover with herbaceous
vegetation or bare less than the threshold.

Training dataset

No. of samples by majority-class percent cover

Majority class ≥60% ≥70% ≥80% ≥90% ≥100%

Ag 304 294 280 252 213
Bare 88 78 65 50 34
Built 87 76 71 55 23
Herb 341 298 247 182 107
Plant 92 85 83 76 56
Water 76 76 76 73 72
MixWoody 54 145 249 401 484
Woody 700 660 620 568 485
Total 1742 1712 1691 1657 1474

Testing dataset

Majority class ≥60% ≥70% ≥80% ≥90% ≥100%

Ag 131 128 124 110 85
Bare 38 32 21 19 15
Built 37 34 28 18 14
Herb 146 122 99 66 37
Plant 40 39 37 35 29
Water 33 32 32 31 30
MixWoody 24 63 99 172 206
Woody 300 286 273 249 215
Total 749 736 713 700 631
All Samples 2491 2448 2404 2357 2105

Table 3
Disallowed class transitions used in the temporal filter (Section 3.9). The filter was a 3-
year moving window through each map pixel, starting in 2001 and ending in 2007. The
class of the start and end year (n and n+2) of the filter are in rows and the class of the
middle year (n+1) is in columns. A permitted class transition in the middle year
between the start and end year class is indicated with “yes”, while a disallowed
transition is indicated with “no”.

Year n+1

Class Bare Built Ag Herb Plant Water Woody Mix
Woody

Year n and
n+2

Bare Yes No No Yes No Yes No No
Built No Yes No No No No No No
Ag Yes No Yes Yes No Yes No No
Herb Yes No Yes Yes No Yes No Yes
Plant No No Yes Yes Yes No No No
Water Yes No Yes Yes No Yes No No
Woody No No No No No No Yes Yes
MixWoody No No No Yes No No Yes Yes
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threshold training and test datasets included those reference samples
whose majority class was ≥60% cover. Samples from a mixed woody
(MixWoody) class were added to these datasets by using samples that
had woody vegetation less than the threshold and with remaining
area filled with herbaceous vegetation or bare areas with percent
cover less than the threshold. So for the 60% threshold dataset,
MixWoody samples had b60% woody cover with b60% herbaceous
vegetation or bare areas (e.g., 50% Woody, 10% Bare, 40% Herb).

As an experiment to test the sensitivity of classification accuracy to
class sample size, we randomly selected samples from the 80%
threshold training dataset to create subsets with 20 to 100 maximum
samples per class, in 20-sample increments. Each subset had the same
samples from the smaller sample subset. For example, we randomly
selected 20 samples per class and then added an additional 20 random
samples per class to have a training subset with 40 samples per class.

The test datasets were not used in RF training and functioned to
independently assess the accuracy of all classifications. Unless
indicated, we report accuracy based on an independent test dataset
rather than RF's OOB accuracy statistics. With traditional classifiers,
including training data in the accuracy assessment of remotely sensed
products can overestimate class accuracy (Conglaton, 1991). Further-
more, using an independent dataset allowed us to estimate the gain in
accuracy from our post-classification, transition-rule filtering (Sec-
tion 3.8.3). Breiman (2001) found that OOB statistics from RF are
unbiased, and so here we sought to verify this result using our
independent test dataset.

3.7.2. Building Random Forests (RF)
We implemented the RF classifier using R (v. 2.7.0; R Development

Core Team, 2010) and the “randomForest” package (v. 4.5-27; Liaw &
Wiener, 2002). Parameters used for all RFs were: 1000 trees
(ntree=1000), minimum of 5 samples in terminal nodes (nodesize =
5), and sqrt(p) as number of variables randomly sampled as candidates
at each split, where p is number of variables (mtry = default). A large
node size reduces the complexity of trees and runs faster. Initial
experiments showed that anodesize=5consistentlyproducedRFswith
slightly higher accuracy than RFs from nodesize = 10.

Random Forests were generated with the reference data at varying
percent cover thresholds and with 6 different predictor variable sets
for EVI and NDVI, respectively: 1. EVI/NDVI TIMESAT variables; 2. EVI/
NDVI annual statistics; 3. set 2 + Red and NIR annual statistics; 4. sets
1 and 3; 5. set 4+ terrain variables (elevation, slope); and, 6. set 3 and
terrain variables. All variable set and cover threshold tests were
conducted using an R script that output the trained randomForest as
an R object, a confusionmatrix based on our independent test dataset,
and predictor variable importance. We designed a program to apply a
selected randomForest object to every pixel in the ecoregion for each
year. The script is based on Python 2.5.1 and modules rpy-1.0.3,
pywin32-212, numpy-1.1.0, and GDAL-1.5.2. It reads in predictor
variable stacks from the appropriate year for each image line and for
each pixel performs these steps: 1. apply the randomForest object
(e.g., 1000 trees) to the predictor variables, 2. determine the pixel's
class from the forest majority vote, and 3. store the class in a data
matrix for storage in an output raster. The classification process
resulted in land cover maps for each year from 2001 to 2007.

3.8. Temporal filtering with transition rules

We used a temporal filter to remove disallowed LULC transitions
from the final classified maps (sensu Roberts et al., 2002). For
example, it would be unlikely that a woody pixel could be deforested
and turn into a built-up area, and then transition back to a woody area
in the span of a few years. In contrast, pixels may transition from
herbaceous vegetation to agriculture and back to herbaceous
vegetation according to land management decisions. We implemen-
ted a temporal filter by passing a 3-yearmovingwindow through each
map pixel, starting in 2001 and proceeding annually to 2007. The filter
window thus had year n, n+1, and n+2. We first tested to see if the
classes from year n and n+2 were equal; if the classes were equal,
and class n+ 1 was a disallowed transition from n to n+2, then class
n+1 was filled with the class from year n. The filter was then
advanced 1 year in the temporal sequence, including fill values from
previous years in the test for disallowed transitions. Disallowed
transitions are defined in Table 3. An example of a disallowed 3-year
transition is Woody–Built–Woody, while an allowed transition is Ag–
Herb–Ag.

4. Results

4.1. Google Earth reference data accuracy

Themean horizontal distance between differentially corrected GPS
and GE QuickBird control points was 4.3±2.9 m (n=5, min=1.0 m,



Table 5
Accuracy results for Random Forests with the 6 variable sets, excluding and including
the MixWoody class, and a 60%, 80% and 100% cover threshold. Overall=independent
test overall accuracy; OOB=out-of-bag overall accuracy.

No MixWoody With MixWoody

Variable set Overall OOB Overall OOB

Set 1
60 66.5% 65.6% 64.5% 63.7%
80 71.0% 68.9% 62.3% 59.8%
100 76.0% 76.0% 60.2% 62.3%

Set 2
60 62.3% 60.1% 59.3% 57.9%
80 66.6% 63.5% 58.2% 53.6%
100 74.4% 72.1% 55.9% 57.5%

Set 3
60 74.9% 75.2% 71.6% 72.8%
80 79.0% 78.8% 69.6% 69.1%
100 84.9% 83.8% 69.6% 72.2%

Set 4
60 77.7% 76.9% 75.6% 74.0%
80 82.1% 80.4% 73.1% 71.1%
100 85.9% 84.9% 72.4% 74.6%

Set 5
60 80.3% 78.6% 77.7% 75.7%
80 82.9% 82.0% 74.2% 71.7%
100 86.1% 86.7% 72.9% 74.9%

Set 6
60 76.8% 78.1% 75.2% 76.3%
80 81.6% 81.4% 71.9% 71.6%
100 86.1% 84.9% 71.0% 73.7%

1. Timesat; 2. VI; 3. VI+Red+NIR; 4. VI+Red+NIR+Timesat; 5. VI+Red+NIR+
Timesat+Terrain; 6. VI+Red+NIR+Terrain.
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max=8.6 m). However, uncorrected points had a mean horizontal
error of 14.9±13.1 m (n=16, min=1.3 m, max=43.0 m). This
suggests that GPS horizontal position error could account for 10 m of
the discrepancy between GPS and GE QuickBird control points. With
corrected and uncorrected points combined, the mean horizontal
error between GPS and GE QuickBird points was 12.4±12.3 m,
(n=21, min=1.0 m, max=43.0 m), which is only 5.4% of the length
of a MODIS pixel.

Technicians agreed in their majority class interpretation of GE
images for 83% of the reference samples (Table 4, top panel).
Consequently, 17% of the reference samples were reviewed by an
expert, who then determined the final class label. Technicians
disagreed more often on Herb samples or samples that had no clear
majority cover (i.e., 50% cover by 2 classes). They had moderate
disagreement on Ag and Bare, while they had N90% agreement for the
other classes. Expert and technician interpretation of the majority
class in GE imagery had an 88% and 86% overall agreement with
observations from the field, respectively (Table 4, bottom panel). Most
of the errors were in discriminating Ag and Herb samples.

4.2. Experiments with variable sets

We first added sets of predictor variables to the RF classifier
(Section 3.8.2) while adjusting the percent cover threshold. Sets with
variables based on EVI generally outperformed those based on NDVI,
and so we present only results using EVI (Table 5). The overall
accuracy calculated from the RF OOB process relative to the
independent test dataset, across all variable sets and five percent
cover thresholds, differed on average by −1.0±1.1% without
MixWoody and −0.3±1.1% with MixWoody (OOB–independent);
that is, the OOB and independent test accuracies were very similar,
with OOB providing accuracy estimates that were on average, slightly
pessimistic. In discussing results, we focus on accuracy estimates
using the independent test dataset.

For all variable sets, overall accuracy was higher when the
MixWoody class, which had spectrally mixed pixels, was excluded
from the classification (Table 5). Overall accuracy steadily improved
when mixed pixels were further filtered from the classification by
raising the percent cover threshold, i.e., 100% had the highest pixel
“purity” (Table 5—noMixWoody). In contrast, overall accuracy tended
to decrease with a higher cover threshold when the MixWoody class
was included in the classification (Table 5—with MixWoody).

For each cover threshold, there was a steady increase in overall
accuracy with the addition of more predictor variables, with higher
overall accuracies reached with sets 4 to 6. The lowest overall
accuracies were with annual statistics (set 2), while TIMESAT
Table 4
Accuracy assessment of Google Earth interpretation. The top table shows percent
agreement of 2 technicians in majority cover class for reference samples (training and
testing ≥70% majority cover in Table 2). The bottom table shows agreement for
samples visited in the field. There were 4 technician-level interpreters and one expert.
Error matrices were calculated for each comparison: expert against field observations
and technicians against field observations. Accuracies are percent of points in
agreement for all points available (overall) or individual classes.

Reference samples with ≥70% majority cover (training and testing)

Overall Ag Built-
up

Herb Plant Bare Water Woody No
majority

Technician
agreement

83% 77% 92% 59% 96% 74% 90% 92% 48%

Agreement of expert and technicians with field observations

Overall Ag Built Herb Plant Woody

No. of samples 105 27 15 19 16 28
Expert 88% 78% 100% 63% 95% 100%
Tech mean 86% 63% 100% 73% 97% 100%
phenology variables (set 1) had improved accuracy. When Red and
NIR annual statistics were combined with EVI annual statistics (set 3),
accuracy improved on average 8.5% and 7.5% without and with
MixWoody, respectively. Adding TIMESAT variables to set 3 (set 4)
increased overall accuracy on average 2.3% and 3.3% without and with
MixWoody, respectively. Combining set 4 variables with elevation and
slope terrain variables (set 5) increased accuracy on average 1.4%
without MixWoody and 1.5% with MixWoody. Finally, adding terrain
variables to annual statistics (set 4) variables, to create set 6,
decreased accuracy slightly. The highest overall accuracy achieved
was 86.1% without the MixWoody class and a 100% cover threshold.
The highest overall accuracy with MixWoody was 77.7%, using a 60%
threshold and variable set 5, yet the user and producer accuracies
were 0.0% for MixWoody (Table 6). With the 80% cover threshold and
set 5, overall accuracy was 74.2% and MixWoody user accuracy
improved substantially to 54.9% (Table 6).

For operational mapping, we sought a classifier that had a
relatively high overall and class accuracy, while accommodating
mixed pixels—which are prevalent in the Dry Chaco landscape. We
thus chose a classifier with MixWoody and a relatively low cover
threshold (i.e., less pixel purity).We focused on RFswith variable set 5
since they had the highest overall accuracy (Table 5). The 60%
Table 6
Class producer and user accuracy results for the Random Forests classification with the
MixWoody class, variable set 5 and a 60%, 80% and 100% cover threshold.

Ag Bare Built Herb Mix Woody Plant Water Woody

Class producer accuracy
60 74.0% 68.4% 78.4% 67.8% 0.0% 47.5% 78.8% 95.3%
80 73.4% 81.0% 78.6% 53.5% 50.5% 51.4% 78.1% 92.3%
100 83.5% 80.0% 57.1% 29.7% 66.5% 27.6% 83.3% 87.4%

Class user accuracy
60 82.9% 74.3% 76.3% 58.2% 0.0% 90.5% 96.3% 83.9%
80 82.7% 68.0% 81.5% 47.7% 54.9% 79.2% 100.0% 84.0%
100 74.0% 85.7% 80.0% 55.0% 65.6% 66.7% 100.0% 76.7%



Table 7
Class user accuracy for Random Forests classifications with a maximum limit on training samples per class (see Section 3.8.1). The label “All” refers to the classification using all
available training data (Table 2—training dataset). All accuracies were assessed with the independent dataset (Table 2—testing dataset).

Samples per class Overall Ag Bare Built Herb MixWoody Plant Water Woody

20 61.2% 71.4% 57.6% 53.2% 20.9% 39.1% 38.4% 93.1% 89.0%
40 68.2% 76.4% 61.3% 60.5% 46.7% 41.9% 39.7% 100.0% 89.2%
60 71.0% 80.4% 62.5% 65.9% 48.3% 45.5% 51.7% 100.0% 89.5%
80 71.8% 79.3% 62.5% 66.7% 51.1% 47.6% 51.7% 100.0% 90.4%
100 73.6% 84.1% 66.7% 77.1% 55.8% 47.7% 52.8% 96.2% 88.8%
All 74.2% 82.7% 68.0% 81.5% 47.7% 54.9% 79.2% 100.0% 84.0%
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threshold was excluded because it could not classify MixWoody. The
100% threshold RF was also excluded because it was trained on
samples with very high pixel purity. Producer and user accuracy for
MixWoody was 33.0% and 10.9% higher for the 80% threshold over an
RF with a 70% threshold, respectively (data not shown). In contrast,
Herb producer and user accuracy was 12.9% and 4.8% lower with the
80% threshold relative to the 70% threshold, respectively (data not
shown). Accuracy trends for other classes were less clear when
comparing the 70% and 80% thresholds; however, we found that the
80% threshold produced more conservative maps depicting change in
woody vegetation, and so this threshold was used for subsequent
analyses (Section 4.3 to 4.5).

4.3. Sensitivity of Random Forests classifier to class sample size

Our final experiment involved adjusting themaximum sample size
per class in the training dataset. We used an 80% cover threshold,
variable set 5 (all variables) and included MixWoody. There was a
general increase in overall and user accuracy with more samples per
class (Table 7). Overall accuracy climbed steadily with the addition of
training samples. In general, 60 to 100 samples per class produced
only slightly lower overall map accuracy relative to using all training
samples. Water and Woody were well classified with only 20 training
samples. With 100 samples per class, the RF overall accuracy was 0.6%
lower, and Ag, Herb and Woody had higher user accuracy relative to
the RF trained with all samples. In contrast, the RF with all training
samples had 7.2% and 26.4% higher user accuracy for MixWoody and
Plant, respectively.

4.4. Final classification

Overall classification accuracy for our finalmapwas 74.2% (Table 5—
set 5, 80% threshold, MixWoody). In reviewing 182 misclassified
samples, we found that some test samples were clearly misinterpreted.
An expert re-estimated the percent cover for the 182 misclassified
samples without prior knowledge of the original class label or RF class
prediction. A new class label was then assigned to each sample and
accuracy statistics were recalculated (Table 8). Nine test samples were
Table 8
Error matrix for the final classification using all predictor variables (Set 5) with an 80% cove
samples (Section 4.4).

Classification Reference

Ag Bare Built Herb MixW

Ag 96 – – 8 4
Bare – 17 – 2 3
Built – – 22 2 2
Herb 18 – 3 63 13
MixWoody 1 1 1 13 63
Plant 1 – – 1 1
Water – – – – –

Woody 3 – – 6 25
Total 119 18 26 95 111
Producer 80.7% 94.4% 84.6% 66.3% 56.8%
excluded from the revised accuracy assessment because they no longer
had N80% majority cover, nor fit into the MixWoody class. For the
remaining results and discussion of the final map, we use accuracy
statistics from Table 8. Class producer accuracywas lowest for Plant and
highest forWoody, while user accuracywas lowest for Herb and highest
for Water. Most Woody misclassified (omitted) samples went to
MixWoody. Woody had lower user accuracy, due to misclassified
(committed) Herb, MixWoody and Plant samples. Herb samples were
confused with most classes, especially Ag and MixWoody, while most
misclassified Ag samples were confused with Herb. Plant had low
producer accuracymainly due to confusionwithWoody.MixWoodywas
also difficult to map. Most misclassified MixWoody samples were
confused with Herb and Woody. The user accuracy of MixWoody was
higher than its producer accuracy because samples were committed
from Herb and Woody.

Fig. 6 shows the mean decrease in OOB overall and class producer
accuracy when a given predictor variable was withheld from the RF. A
variable that created a greater decrease in accuracy was thus
considered to be relatively important in the RF. In terms of overall
accuracy, the most important variables were the Red mean, minimum
and maximum, NIR mean and base level. The TIMESAT variables were
generally less important than Red and NIR annual statistics. Important
variables for discriminating Woody were similar to those for overall
accuracy. Red mean, EVI standard deviation and season length were
important for classifying Ag. Plantations were best separated with
elevation, EVI minimum and base level. Red mean was particularly
important for Built accuracy, while NIR mean was important forWater
accuracy.

There were some pixels in the EVI images that did not have clear
seasonality (e.g., bare areas, water), which prevented TIMESAT from
fitting a function and resulted in null values. Prior to transition-rule
filtering, we filled pixels with null TIMESAT variables with the class
from the RF using set 6 variables, 80% cover threshold (Table 5, does
not include TIMESAT).

We extracted the class value from our transition-rule filteredmaps
(years 2001 to 2007) for the location and year of samples in the test
dataset; filtered map and class values (test dataset with secondary
review)were then compared as an errormatrix (data not shown). The
r threshold and independent test data with a secondary expert review of misclassified

oody Plant Water Woody Total User

1 1 – 110 87.3%
– 3 – 25 68.0%
1 – – 27 81.5%
5 4 1 107 58.9%
1 1 9 90 70.0%
19 – 1 23 82.6%
– 25 – 25 100.0%
10 – 253 297 85.2%
37 34 264 704
51.4% 73.5% 95.8% 79.3%



Fig. 6.Mean decrease in overall and class producer accuracy from 1000 trees in Random Forests. Input predictor variables were EVI set 5 (all variables). Those variables with higher
mean decrease in accuracy are considered to be more important for overall or class-level classification.
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transition-rule filter improved overall accuracy 0.1% relative to the
unfiltered maps. User accuracy increased 6.5% for Built, 0.7% for Plant,
and 0.5% for Woody. Bare, Herb and Water showed no improvement
with transition-rule filtering, while Ag and MixWoody user accuracy
decreased 0.8% and 1.2%, respectively.

4.5. Land use/Land cover change from 2002 to 2006

The area of LULC for the Dry Chaco ecoregion from 2002 to 2006 is
presented in Fig. 7. Note that only years 2002 through 2006 had class
values changed by the transition-rule filter, and sowe describe change
within those years. Woody decreased each year while Ag, Herb and
MixWoody expanded (Fig. 7). From 2002 to 2006, our maps showed a
6,969,951 ha decrease inWoody, or 11.9% of the 2002 area. In contrast,
Ag increased by 1,650,564 ha, Herb increased by 984,634 ha and
MixWoody increased 4,392,469 ha, whichwere 44.9%, 17.5% and 55.0%
increases from their 2002 area, respectively. Of the pixels that were
Woody in 2002 and another class in 2006, 68.9% went to MixWoody
(5,695,721 ha), 13.3% went to Ag (1,100,303 ha) and 16.7% went to
Herb (1,382,515 ha). There were also 659,233 ha of MixWoody that
transitioned into Woody between 2002 and 2006. Given the classifier
confusion of Woody and MixWoody, some of the Woody loss or gain is
certainly related tomisclassification withMixWoody; however, part of
this change is likely related to forest degradation (e.g., Woody to
MixWoody) or woody growth (e.g., MixWoody to Woody). There was
much less confusion between Woody and Ag or Herb samples, and

image of Fig.�6


Fig. 7. Area of the Dry Chaco ecoregion covered by woody vegetation, agriculture,
herbaceous vegetation, mixed woody and all other classes (plantations, water, bare,
and built-up) for years 2002 to 2006.
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transitions between these classes are more confident and represent
deforestation (e.g., Woody to Ag, Herb) or reforestation (Ag, Herb to
Woody).

The LULC maps for 2002 and 2006 show zones of deforestation in
southwest Paraguay near Mariscal Estigarribia and northwest
Argentina in the provinces of Salta, Tucuman and Santago del Estero
(Fig. 8). Deforestation tended to be either on the periphery or in-fill of
existing agricultural zones. Forests were converted mainly to
agriculture in Argentina, while they were converted to pastures
(Herb) in Paraguay. In both countries, converted areas typically
featured large, regularly cut blocks, which were often established by
first thinning forests (e.g., with tractors and chains) resulting in
Woody transitioning to MixWoody, followed by Herb or Ag in
subsequent years (Fig. 9—inset). There was a large increase in
MixWoody from 2002 to 2006 in the southern part of the ecoregion
between La Rioja and San Luis, Argentina (Fig. 8). It is not clear what
created this consistent trend—MixWoody increased in every year
during the study period. Given that this area includes comparatively
more open-canopy forests (i.e., with spectral characteristics similar to
MixWoody) due to drier conditions than the rest of the ecoregion, this
may reflect subtle changes in canopy cover due to changes in grazing
pressure or decreasing rainfall.

5. Discussion

An objective of this study was to establish a method for mapping
annual LULC that can be easily applied at broader spatial scales with
internally consistent information content and error. We were
interested in producing annual maps of woody vegetation, herba-
ceous vegetation and agriculture, as these are the dominant classes
responding to recent economic activity and other social factors. The
final classification scheme used all predictor variables—TIMESAT
phenological metrics, annual statistics from EVI, Red and NIR,
elevation and slope. Our reference dataset included mixed pixels,
with 80% or greater class cover. The exception was mixed woody
vegetation, which was a heterogeneous class with 20–80% woody
cover with bare or herbaceous understory. We performed a
statistically rigorous accuracy assessment with an independent test
dataset that had the same spatial scale and class evaluation protocol as
the training dataset (sensu Stehman & Czaplewski, 1998). Samples
were randomly selected from the entire region and through time and
included mixed pixels, which lower accuracy statistics but provide a
realistic assessment of a map's utility (Powell et al., 2004).

The final overall accuracy for our 2001–2007 maps was 79.3%.
Woody vegetation had an 85.2% user's accuracy—the probability that a
mapped pixel would be woody vegetation if we were to visit the pixel
in the field, or virtually in Google Earth. Mixed woody was an
intermediate class between herbaceous and woody vegetation, and so
it was confused with both of these classes. Agriculture had similar
user accuracy as woody vegetation (87.3%), while herbaceous
vegetation had a low user accuracy of 58.9%. There was considerable
confusion among herbaceous and agriculture samples, and when we
combined the two classes, the resulting class had 85.3% user accuracy
and overall map accuracy was 83.0%. If we considered just woody
vegetation and combined all other classes, overall map accuracy was
92.2% and woody vegetation and the other class had 85.2% and 97.3%
user accuracy, respectively. This Woody/Other classification has
sufficient accuracy for detecting changes in woody vegetation, such
as deforestation and reforestation zones.

5.1. Using Google Earth for reference data

The Dry Chaco ecoregion covers 79 million hectares and spans
three countries with relatively low road density. Ground-based
reference data collection was thus impractical for this study area. In
addition, we sought amethod that could scale tomap LULC over larger
regions. We thus explored collecting reference data from “virtual”
field visits within Google Earth (GE). This relatively new source of
data has recently been combined with other information (e.g., expert
opinion, additional imagery) to provide reference data for classifica-
tion and accuracy assessment of regional and global scale land cover
maps (Bicheron et al., 2008; Helmer et al., 2009; Friedl et al., 2010).
We found the main advantages of using Google Earth for reference
data to be: 1) access is free, includes an intuitive globe interface, and
permits quick viewing of a large archive of high-resolution images
that are streamed over the Internet; 2) QuickBird high-resolution
images were available across the region, particularly for areas with
human activity, allowing sampling of spatial variation in predictor
variables for LULC classes; 3) QuickBird images were acquired during
the same years as the MODIS imagery, allowing sampling of inter-
annual variation in MODIS-derived variables—each location was
linked to a specific year for extracting variables; 4) relative to a
physical field campaign, our time and monetary costs were extremely
low, and there were no access constraints (e.g., property ownership,
distance to roads, etc.); and, 5) we had a synoptic view of the entire
250×250 m sample plot, which is difficult to achieve on the ground.
We found the georeferencing of GE QuickBird scenes to be excellent,
with an average error on b5.4% the length of a MODIS pixel.

There are some obvious disadvantages in using GE for reference
data. For one, we had no control over the spatial and temporal
coverage of high-resolution imagery. Google attempts to provide the
most recent, cloud-free images, and most scenes in Latin America are
from the QuickBird satellite, launched in late 2001. In our random and
stratified random sampling of available scenes, there were over 310
samples for each year from 2002 to 2007, yet no samples from 2001.
Although not explored in this study, Google Earth does allow a user to
pan through an archive of high-resolution images, providing greater
opportunities for sampling reference data through time and verifying
mapped LULC change. QuickBird scenes in Dry Chaco tended to cover
areas of intense human activity (e.g., agriculture, pastures and urban
areas) and nearby natural vegetation, and so there is bias towards
these areas in random sampling. However, this bias is advantageous in
that it allows greater sampling of anthropogenic classes, which are a
relatively small fraction of Dry Chaco's area and spatially clustered.

Visual interpretation of high-resolution imagery has several
limitations. Vegetation phenology, atmospheric conditions, illumina-
tion, and view angle varied among GE QuickBird scenes, which can
increase variation in image interpretation. We used very general LULC
classes that could be reliably identified using generic features by
interpreters that had little a priori understanding of the landscape. For
this reason, our woody classes did not distinguish between shrubs and
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Fig. 8. Change in land use/land cover from 2002 to 2006 for the Dry Chaco ecoregion. The zoom extent is the area shown with more detail in Fig. 9.
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trees, and pastures and low vegetation where combined in the
herbaceous vegetation class. Even though natural vegetation degra-
dation, successional stage (e.g., secondary forests) and crop type are
important dimensions of LULC change, these properties were difficult
to accurately distinguish in the high-resolution imagery. Technician
and expert disagreements with field observations were mostly with
herbaceous vegetation and agriculture. These classes were often
difficult to distinguish in the imagery as the interpreter had to rely on
visual cues such as plow lines for agriculture and cattle trails and
watering holes for herbaceous pastures. However, some of the
confusion between these two classes resulted from the time
difference between interpreted GE images (years 2002 to 2007) and
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Fig. 9. A large block of agriculture expansion to the east of Salta, Argentina. The zone
includespartiallydeforestedblocks in2006,whicharedetectedasmixedwoodyvegetation.
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the field visit in January, 2009. Pastures could pre-date agriculture
fields visited in 2009 and some parcels can alternate annually
between food crops (Ag) and forage for cattle (Herb), depending on
factors such as climate and market prices; and thus, there could be
mismatch between LULC in field observations and imagery that
registers as an interpretation error. We tried to minimize this error by
selecting field sites thought to be under regular cultivation at least
7 years. We can further reduce this error from temporal mismatch by
combining Herb and Ag into a single class. With the Ag/Herb class,
expert and average technician accuracy was 95.3% and 88.4%,
respectively, and overall accuracy across all classes was 97.1% for
the expert and averaged 94.8% for technicians. Therefore, for all
classes except Herb and Ag, GE interpretation accuracy is quite high.
We sought to block interpretation errors from entering the RF by
comparing the majority cover class from 2 technicians for each
sample; the expert then determined the final class only for those
samples with technician disagreements. A disadvantage of this
approach is that it reduced the total number of samples we could
collect in a set time, as there were two technicians, and sometimes
one expert, that had to view each sample.

High-resolution imagery over large areas has historically been
expensive to acquire, and many past studies involving LULC mapping
with low resolution imagery have used Landsat-scale map products as
reference data (DeFries et al., 1998; Hansen et al., 2000; Carreiras
et al., 2006). These data, which are limited in spatial extent and time
periods, in turn have their own map generalization and error that
propagates into the analysis of coarser resolution pixels. Freely
available, GE high-resolution imagery removes some of these barriers,
permitting spatial and temporal sampling of land cover variability
that strengthens algorithm development and assessment of product
accuracy (Bicheron et al., 2008; Helmer et al., 2009). The percent
cover reference data collected in our study are flexible for use in other
applications. For discrete LULC mapping, different classes can be
defined with percent cover rules applied to “end members” (e.g.,
woody, agriculture, herbaceous). For example, an agriculture–wood-
land mosaic class could be created by selecting samples that are a mix
of agriculture and woody vegetation, with neither cover greater than
80%. The thresholds could also be set to approximate a standardized
system, such as the UN Land Cover Classification System (LCCS; Di
Gregorio, 2005). Google Earth reference data can be used for
calibration and validation of continuous field land cover products
over broad areas, such as Vegetation Continuous Fields (VCF, Hansen
et al., 2003) or fractional cover from spectral mixture analysis
(Roberts et al., 2002; Carreiras et al., 2006).

5.2. LULC classification with the MODIS vegetation index product

The MOD13Q1 product has several advantages for LULC mapping.
First, the product includes EVI and NDVI, as well as blue, red, NIR and
mid-infrared bands, with a 16-day compositing scheme that helps
eliminate cloudy and other unreliable pixels. Although there are
alternative compositing techniques for MODIS daily imagery
(reviewed in Dennison et al., 2007), MOD13 is favorable because
image compositing is done prior to download, greatly reducing data
download time, storage costs and processing time. Second, MOD13Q1
VI, red and NIR bands have 250 m resolution, whereas other MODIS
products, such as the Nadir BRDF-Adjusted Reflectance (NBAR) based
on Aqua and Terra (MCD43A4) have ≥500 m resolution. Although
500 m pixels are generally sufficient for the scale of land use in the Dry
Chaco ecoregion, there are other regions where land use has a finer
grain and requires 250 m or finer pixels (Hansen et al., 2008).

It is important to consider MODIS pixel georeferencing error, which
in combination with GE georeferencing error (Section 5.1), can
contribute to spatial mismatch between reference and MODIS data,
which in turn, can translate into error in both RF decision rules andmap
accuracy assessment. Pixel georeferencing error results from the
gridding of sensor observations that have inherent geolocation error
and tend to overlap and include photons from larger surface areas with
increasing view zenith angle (Wolfe et al., 2002; Tan et al., 2006). The
current MOD13 C5 compositing algorithm attempts to reduce view-
angle effects by selecting the best quality pixel (within highest 10% of
NDVI over 16days)with the smallest view angle (Didan&Huete, 2006).
Geolocation of MODIS data has improved since launch, and empirical
results estimate error to be on average 18±38 m and 4±40 m in the
across-track and along-scan directions, respectively (Wolfe et al., 2002).
Since GE samples were 250×250 m, or 18.3 m larger on each side than
the gridded MOD13 data (231.7 m), they accommodated some spatial
mismatch between the two datasets. However, georeferencing error is
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certainly part of the total error observed in our RF decision rules and
map accuracy statistics. We expect GE samples with mixed cover to
contribute the most error to our analysis, as a spatial shift between the
visually interpreted area to the actual area sensed by MODIS could
change the relative proportion of classes mixing in the integrated
spectral response through time. In contrast, GE sampleswith 100%cover
by a single class, which excludes the MixWoody class, were generally
fromhomogeneous patches, and so spatialmismatchwithMODIS pixels
caused minimal error in RF training and accuracy assessment. In our
analysis, this best-case scenario of minimal georeferencing error was
with the RF based on all predictor variables, which had an overall
accuracy of 86.1% (Table 5—set 5, 100%, no MixWoody), with user
accuracy ranging from 69.0% (Herb) to 100% (Water); and thus, the RF
still has difficulty separating some classes, likely from spectro-temporal
similarity and mislabeled classes in reference samples.

We used two approaches to extract predictive information from the
MOD13 time series—TIMESAT and annual statistics. Variables from
TIMESAT produced higher accuracies than did EVI annual statistics
(Table 5); however, combined EVI, Red andNIR annual statistics yielded
higher classification accuracies than TIMESAT. One advantage of
TIMESAT is that it produces phenological variables that are straightfor-
ward to interpret. These variables could be used for monitoring
functional and structural changes in natural vegetation due to forest
degradation, climate change, or invasive species. However, a major
disadvantage with TIMESAT was its multiple function-fitting para-
meters (see Section 3.6.2). We subjectively evaluated these parameters
for fitting all LULC types, but a rigorous optimization analysis would be
time consuming. Another disadvantage with TIMESAT is that samples
without clear EVI seasonality (e.g., bare areas, water) are not fit,
resulting in null values. This included 3.5% of reference samples in our
TIMESAT EVI analysis. Chaco and other dry forests have pronounced
seasonality that provides clear trends for TIMESAT function-fitting. In
Amazonian seasonally dry forests, EVI andwater indices are sensitive to
canopy phenological cycles (Huete et al., 2006; Xiao et al., 2005), yet
trends are noisy and temporal profiles may have missing data due to
cloud cover; and thus, we expect TIMESAT to be less useful in more
humid regions. Future research should explore alternative filtering
techniques, such as wavelets (Galford et al., 2008), and predictive
metrics based on MODIS time series data.

5.3. LULC classification with Random Forests

The Random Forests classifier is a relatively new technique for
remote sensing (Chan& Paelinckx, 2008; Gislason et al., 2006; Lawrence
et al., 2006, Pal 2005). Some advantages of RF include: fewparameters to
adjust—terminal node size, number of trees, and number of variables
tested at each node; only the most important variables will tend to be
used, and so havingmany correlated orweak predictor variables is not a
problem; insighton theclassification canbegainedbyanalyzingvariable
importance; and, classification accuracy estimated by OOB is unbiased
(Breiman, 2001; Lawrence et al., 2006). This last property of RF OOB
accuracy is a benefit for remote sensing in particular, since reference
data are time consuming to collect and are best used in training the
classifier rather than being withheld for testing. Our results using an
independent dataset indicate that RF OOB accuracy is generally more
conservative, i.e., negatively biased (Table 5). For example, thefinalmap
overall accuracy was 71.7% and 74.5% with OOB and the original (non-
reviewed) test dataset, respectively. However,when anexpert reviewed
the misclassified samples of our test dataset (Section 3.4), overall
accuracy increased to 79.3%, while OOB remained 71.7% because it was
based on training data. This result indicates that OOB accuracy statistics
will be closer to those from an independent dataset as long as errors are
similar, as they were before the secondary expert review of test data.
One of the most important features of the RF classifier is that it can
handle heterogeneous classeswithnon-parametric distributions; that is,
a tree can arrive at a class through multiple pathways, provided that
there are sufficient samples. In our study, an RF tree terminal node had a
minimum of 5 samples, and so a class would need≥10 total samples to
have two separate terminal nodes—more samples allow for more
terminal nodes. This property is particularly important for classes such
as agriculture, which includes fallow fields and various crops with
varying growing cycles. How many samples are needed per class to
achieve a reasonable accuracy? Our experiments show that overall
accuracywasonly0.6% lesswithup to100 samplesper class versususing
all 1691 samples. However, therewere differences in class user accuracy
that should be taken into consideration. Water had N90% user accuracy
with as few as 20 samples since it has a distinct low reflectance signal.
Most classes had user accuracy that stabilizedwhen the RF had between
60 to 100 samples per class, and only mixed woody and plantations
benefited with the addition of all available samples. Plantations
benefited the most from adding more than 100 samples per class;
however, there were only 83 total plantation samples available, and so
improvement in class accuracy was related to the addition of samples
from other classes, which reduced commission error.

5.4. Land change in the Dry Chaco

From 2002 to 2006, our maps showed that a net 6.9 million
hectares of closed-canopy (≥80% cover), woody vegetation was lost
from the Dry Chaco ecoregion. About 5.7 million hectares entered the
mixed woody class, which had b80% woody cover mixed with
herbaceous vegetation or bare soil, while about 0.7 million hectares
transition frommixed woody into woody vegetation. Some of the loss
of woody vegetation can be attributed to forest degradation, where
forests have trees and shrubs removed as an intermediate step to
agriculture or pastures. However, the classifier confused these two
woody classes, and so we cannot attribute the increase of mixed
woody only to forest degradation, and a large proportion of the
MixWoody–Woody transition (i.e., the southwest of the study area)
should be attributed to subtle and more reversible changes such as
increases in grazing pressure and decreases in canopy cover due to
changes in rainfall. There was less confusion of closed-canopy woody
vegetation with herbaceous vegetation or agriculture; and thus, we
considered pixels that transitioned between these classes from 2002
to 2006 to be reliable for mapping deforestation and reforestation.
With this logic, there were 2.5 million hectares of woody vegetation
(4% of 2002 area) that was deforested from 2002 to 2006. In
Argentina, these trends reflect the clearing of Chaco forest for soybean
production to meet demand from global markets during this time
frame (Gasparri & Grau, 2009; Grau et al., 2005). The maps from this
study will form the basis for a future analysis of socio-economic
factors that are linked to land use change in this ecoregion.

6. Conclusion

Wedeveloped amethod tomap annual land use/land cover (LULC)
at regional scales using source data and processing techniques that
permit scaling to broader spatial and temporal scales, while main-
taining a consistent classification scheme and accuracy. Our maps
have a 250 m pixel size, include 8 general classes, and can be produced
annually from year 2001 onward. Using the Dry Chaco ecoregion as a
test site, our 2001–2007 maps had an overall accuracy of 79.3%.
Herbaceous vegetation was difficult to distinguish from agriculture
and mixed woody vegetation with our technique, due to sub-pixel
mixing, limited spectral information, georeferencing error and
mislabeled reference data. A generalized map of areas with and
without closed-canopy, woody vegetation had an overall accuracy of
92.2%. When compared as a multi-temporal sequence, this level of
classification provides a land cover change “alarm”, similar to
Vegetation Cover Conversion (Zhan et al., 2002), that maps recent
human disturbance such as deforestation and large disturbances such
as fire. Conversely, the annual sequence of LULC maps can track the
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year pixels regenerate to woody vegetation, thus providing an
estimate of time since recovery, or forest age (Helmer et al., 2009).

Our procedure is transferable to other regions and could provide a
relatively inexpensive means to monitor annual LULC at regional to
continental scales. First, we implemented our method with free and
open-source tools available on many operating systems, which also
allows flexibility and scalability in processing data on workstations or
servers. Second, our input satellite imagery and reference data are
available across political boundaries. We used the free MOD13MODIS
product, which includes the most reliable pixels every 16 days and
greatly reduced pixels affected by clouds. Since compositing of
hundreds of reflectance scenes is done before download, our data
storage and processing costs were minimized. Although MOD13 data
do not have many spectral bands, they are temporally rich. This
allowed us to calculate predictor variables that describe vegetation
phenology and other temporal variation within pixels. The RF
classifier was successful at discriminating LULC classes using these
temporal variables, without the operator having to select optimal
predictor variables or classifier parameters. Random Forests can
handle classes with multi-modal distributions, which is particularly
important when mapping at broad scales since class variance
increases across environmental and anthropogenic gradients.

We relied on visual interpretation of high-resolution imagery in
Google Earth for collecting reference data. This approach allows
statistically rigorous sampling across broad spatial scales, with limits
set more by time and labor costs than data availability. We found that
available images covered all but one year in our study, and the ability to
view historical images in Google Earth increases sampling possibilities in
the spatial and temporal domains. Google Earth allows the remote
sensing community to sample more area, with arguably more accuracy,
than relying on medium resolution images or classified maps (e.g., from
Landsat) for training and validation data. There is great potential in
deployingGoogle Earth as part of aWeb-based LULC observation system,
whereby expert collaborators or facilitated volunteers (e.g., “crowd-
sourcing”) interpret imagery remotely via the Internet (Fritz et al., 2009).
However, there are caveats to using these virtual reference data in other
regions. Our results based on field data indicate that samples are well
georeferenced, but there is class interpretation error, especially in
distinguishing herbaceous vegetation and agriculture. Given the wide
range of global LULC types and differences in human perception of these
classes, it is important to control class error by establishing interpretation
rules and a training protocol, with understanding and accuracy
assessments based on field observations. In the future, we expect that
newWeb-based geospatial technology, such as Google Earth used in this
study,will promote greater international participation in developing and
validating remote sensing products that span spatial and temporal scales.
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