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The classic Shilov-Dukhin theory of the low frequency dielectric dispersion of colloidal suspensions in
binary electrolyte solutions [Shilov, V. N.; Dukhin, S. S., Colloid J. 1970, 32, 245.; Dukhin, S. S.; Shilov,
V. N. Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes; Wiley: New
York, 1974] was developed for the frequency range corresponding to the concentration polarization
phenomenon: up to a few megahertz. While a few extensions to a broad frequency range including the
Maxwell-Wagner-O’Konski dispersion exist, they all consist of modifications of the final results of the
theory rather than modifications of its hypothesis, extending their validity to high frequencies. In this work
we avoid this artificial process by providing a high frequency extension fully from within the theory.

Introduction

The classic Shilov-Dukhin theory of the low frequency
dielectric dispersion (LFDD) of colloidal suspensions in binary
electrolyte solutions1,2 is based on the dc formulation of the
concentration polarization.2-4 It was developed for the frequency
range corresponding to this phenomenon so that the obtained
analytical expressions are valid for frequencies lower than the
onset of the Maxwell-Wagner-O’Konski (MWO) dispersion
(typically in the low megahertz range).

Later works by different authors extended the applicability
of the theory to higher frequencies including the MWO
dispersion, making possible the interpretation of dielectric
measurements in a broad frequency range. However, all of these
extensions consist of modifications of the final results of the
LFDD theory, rather than modifications of the hypothesis used
in the original formulation extending their validity to high
frequencies.

In the present work we avoid this artificial process by
providing a high frequency extension fully from within the
theory. To avoid needles repetitions, we use the nomenclature
and equations appearing in refs 5 and 6 in which the original
formulation was reviewed in full detail and an extension to
different counterion and co-ion valences was presented.

Main Results of the Shilov-Dukhin LFDD Theory

The Shilov-Dukhin theory is based on the standard electro-
kinetic model,7 so that the suspended particle is represented by
an insulating sphere of radius a, with a uniform fixed surface
charge density σ0. The surrounding electrolyte solution is
characterized by its viscosity ηe, absolute permittivity εe, the
unsigned valences of its ions z(, their diffusion coefficients D(,
and their concentrations far from the particle C((∞) ) z-N.

The ion concentrations C((rb,t), electric potential Φ(rb,t), fluid
velocity Vb(rb,t), and pressure P(rb,t) are determined by the usual
set of the Nernst-Planck, continuity, Poisson, Navier-Stokes,
and incompressibility equations. These equations are first solved
in equilibrium, and then, considering that, a macroscopic ac
electric field Eeiωt is applied to the system. They are furthermore
simplified using the principle of local equilibrium: each suf-

ficiently small volume element of the system is considered to
be in a state of equilibrium, even when different volume
elements are not in equilibrium with one another. This condition
is expressed in terms of a virtual system that is defined by

where c*( and �* are the ion concentrations and the electric
potential of the virtual system while µ*( are the electrochemical
potentials. In these expressions the asterisk denotes a complex
magnitude while the tilde denotes a dimensionless magnitude
Φ̃ ) Φe/(kT), µ̃*( ) µ*(/(kT).

The resulting equation set is then linearized, writing all the
field-dependent magnitudes as an expansion in successive
powers of the applied field strength, for example

where the lower index 0 denotes an equilibrium value while a
magnitude preceded by the δ character is linear in the applied
field. Combining these expansions with the original equations,
dropping all the higher than first-order terms in the applied field,
and using the equilibrium expressions finally lead to the
following equation system valid outside the equilibrium double
layer:

(i) electroneutrality in its entire volume

c*( ) z-n*

(ii) equilibrium between its volume elements and the
corresponding element of the real system

µ̃*( ) ln
C*(

z-N
( z(Φ̃* ) ln

n*
N

( z(�̃*

C*( ) C0
( + δC*( + ...

∇2δñ* ) κ
2�*(δñ* + δF̃*z+z-∆) (1)
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In these equations,

is the reciprocal Debye length,

is the dimensionless field induced charge density, and

The equation set (1)-(3) is solved using the hypothesis of
approximate electroneutrality, which states that the electrolyte
solution outside the double layer that is electroneutral in
equilibrium, remains electroneutral when an ac field is applied:

A proof of the validity of this hypothesis is presented in
Appendix 1 of ref 6. Equation 10 transforms eqs 1 and 2 into

The appropriate solution of these equations is

where Kc* and Kd* are complex frequency dependent integration
coefficients. Finally, using eqs 6 and 10

while the field-induced charge density, obtained combining eqs
9, 3, and 11 is

The concentration and dipolar coefficients are determined using
as boundary condition the integral over r of the continuity
equations for the counterion and co-ion flows. The results
obtained considering that the double layer is thin as compared
to the radius of the particle

and assuming that the tangential gradient of the electrochemical
potential does not change across the double layer are

where Kd∞, H, A, and B are real frequency independent
coefficients:

∇2δ�̃* ) κ
2�*(δñ*∆ + δF̃*Q) (2)

∇2δF̃* ) κ
2δF̃* + κ

2�*(δñ*∆ + δF̃*Q) (3)

δñ* ) δn*/N

δµ̃*( ) δñ* ( z(δ�̃* (4)

�* ) iω
κ

2Def

κ ) �z+z-(z+ + z-)e2N
εekT

(5)

δF̃* ) e

κ
2εekT

δF* ) -(δΦ̃*-δ�̃*) (6)

∆ ) D- - D+

z+D+ + z-D- (7)

Def )
(z+ + z-)D+D-

z+D+ + z-D- (8)

Q ) z-D+ + z+D-

z+D+ + z-D- ) 1 + (z+ - z-)∆ (9)

δF̃* ) 0 (10)

∇2δñ* ) κ
2�*δñ* (11)

∇2δ�̃* ) κ
2�*δñ*∆

δñ* ) Kc*e�*1/2κ(a-r)(a
r )2 1 + √�*κr

1 + √�*κa

eEa
kT

cos θ (12)

δ�̃* ) (Kd*a2

r2
- r

a)eEa
kT

cos θ + δñ*∆ (13)

δΦ̃* ) δ�̃* (14)

δF̃* ) -�*∆
1 + (z+ - z-)�*∆

δñ* (15)

κa . 1 (16)

Kc* )
3

2z+z-

z+ + z-
R+ - R-

2B

1 + h*A/B
(17)

Kd* ) Kd∞ - Kc*H (18)

Kd∞ ) lim
ωf∞

Kd* ) z+D+(R+ - 1) + z-D-(R- - 1)

z+D+(R+ + 2) + z-D-(R- + 2)
(19)

H )
Def(R

+ - R-)

z+D+(R+ + 2) + z-D-(R- + 2)
(20)

A ) 2
z+D+(R+ + 2) + z-D-(R- + 2)

z+D+ + z-D-

B ) (R+ + 2)(R- + 2) - z+(R+ + 2)U- + z-(R- + 2)U+

z+ + z-

R( ) 2z((z+ + z-)e2

κ
2aεekT

G0
( ( 3m(z(

z-κa
Ieo
( (21)

U( ) 3m(z(

z-κa
((Ieo

( - z(Ico
( ) (22)
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while the complex coefficient

contains all the frequency dependence. Finally, the analytic
expressions for the coefficients G0

(, Ieo
(, and Ico

(, related to the
nonspecific ion adsorption and the electroosmotic and capillary
osmotic fluid flows, respectively, are presented in ref 5. Note
that the coefficients Kd∞, H, and A have been written in a simpler
form than in ref 6, by using the expressions for ∆ and Def, and
noting that

The first addend on the right-hand side of eq 18 is proportional
to the “fast” part of the dipole coefficient, which is always in
phase with the applied field. The second addend is proportional
to the “slow” part of this coefficient, which is always in phase
with the field-induced concentration change around the particle.

Figure 1 shows the frequency dependence of the real and
imaginary parts of the coefficients Kc* and Kd*. The system
parameters used in this and all the following figures are given
in Table 1. As can be seen, the concentration coefficient has
the expected behavior in the whole plotted frequency range: a
broad single relaxation tending to zero at high frequencies. On
the contrary, the frequency behavior of the dipolar coefficient
is only acceptable for low frequencies since, at higher frequen-
cies, an MWO relaxation is expected. Another difficulty not
readily seen in this figure is that the imaginary part of Kd* tends

too slowly to zero at high frequencies. This becomes evident
in Figure 2 where the conductivity and permittivity incre-
ments

are shown. In these expressions φ is the volume fraction of
particles and

is the conductivity of the suspending medium. As can be seen,
both curves lack the MWO dispersion and, furthermore, the
conductivity increment curve diverges instead of tending to a
constant limiting high frequency value. Actually, according to
rigorous numerical solutions of the full equation set,8,9 the
conductivity increment should reach a maximum and then

Figure 1. Spectra of the real and imaginary parts of the concentration and dipolar coefficients, eqs 17 and 18, calculated using the parameter
values given in Table 1.

m( )
2εe

3ηeD
(( kT

z(e)2
(23)

h* ) �*κ
2a2/2

1 + √�*κa

D+U+ ) D-U- (24)

TABLE 1: System Parameter Values Used in All the
Figures

particle radius a ) 100 × 10-9 m
particle absolute permittivity εi ) 2.0ε0

electrolyte solution viscosity ηe ) 8.904 × 10-4 poise
electrolyte solution absolute permittivity εe ) 78.54ε0

ion diffusion coefficients D+ ) D- ) 2 × 10-8 m2/s
ion concentrations such that κa ) 30, Ke ) 0.125 S/m
dimensionless surface potential 	̃ ) -8
temperature T ) 298 K

K - Ke

φ
) 3Ke[Re(Kd*) - Im(Kd*)

ωεe

Ke
] (25)

ε - εe

φ
) 3εe[Re(Kd*) + Im(Kd*)

Ke

ωεe
] (26)

Ke )
z+z-e2N(z+D+ + z-D-)

kT
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slowly decrease at very high frequencies due to inertial effects,
which are not included in the considered theory.

Existing Extensions

There are three existing ways to overcome the above-
mentioned difficulties. The first was presented in 1986 by
O’Brien,10 who realized that the high frequency limit Kd∞ of
the dipolar coefficient, eq 19, coincides with the low frequency
limit of the MWO relaxation. So he simply added the corre-
sponding relaxation term to the low frequency expression for
the dipolar coefficient transforming transforms eq 18 into:

where εi is the permittivity of the particle. Actually, he used
the low frequency expression proposed by Hinch et al.,11 which
is based on the Shilov-Dukhin model rather than their original
expression, because it is simpler. Figure 3 shows the frequency
dependence of the real part of the dipolar coefficient and of the
conductivity increment. As can be seen, O’Brian’s extension
removes the objection regarding the high frequency behavior
of the dipolar coefficient (the MWO relaxation is now present)
but does nothing to avoid the high frequency conductivity
divergence.

A second extension was proposed in 2001 by Shilov and co-
workers.12 Again, the same relaxation term was added to the
high frequency limit of the dipolar coefficient. Furthermore, a
factor decreasing exponentially with frequency was added to
the low frequency part of the dipolar coefficient:

As can be seen in Figure 3, this exponential factor successfully
solves the objection regarding the high frequency conductivity
divergence.

A third extension is based on the usual procedure that consists
of calculating the low frequency conductivity and permittivity
of the suspension neglecting the addend proportional to Im(Kd*)
in eq 25 and to Re(Kd*) in eq 26. This procedure, justified at
low frequencies because the neglected terms are (κa)2 times
smaller than the retained ones,6 eliminates the high frequency
divergence of the conductivity. In terms of the dipolar coef-
ficient, it is equivalent to multiplying its low frequency part by
the factor Ke/Ke*,6 where Ke* ) Ke + iωεe is the complex
conductivity of the suspending medium. Finally, adding the
MWO relaxation to the resulting expression leads to the final
result:13

As shown in Figure 3, this expression has a frequency
dependence that is very similar to that of eq 28, overcoming

Figure 2. Spectra of the conductivity and permittivity increments, eqs 25 and 26, corresponding to the dipolar coefficient values shown in Figure
1. Remaining parameter values are given in Table 1.

Kd* )
εi - εe

εi + 2εe
+

Kd∞ -
εi - εe

εi + 2εe

1 + iω
εi + 2εe

KeA/2

- Kc*H (27)

Kd* )
εi - εe

εi + 2εe
+

Kd∞ -
εi - εe

εi + 2εe

1 + iω
εi + 2εe

KeA/2

- Kc*He-ωεe/Ke

(28)

Kd* )
εi - εe

εi + 2εe
+

Kd∞ -
εi - εe

εi + 2εe

1 + iω
εi + 2εe

KeA/2

-
Kc*H

1 + iω
εe

Ke

(29)
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both objections regarding the high frequency dispersion and the
limiting behavior of the conductivity.

Proposed Extension

To extend the applicability of the theory to high frequencies
without introducing artificial modifications to the final low
frequency results, it is necessary to reexamine the way in which
these results were obtained. The integral over r of the continuity
equations for the counterion and co-ion flows, used as boundary
conditions to determine the coefficients Kc* and Kd*, eq 28 in
ref 6 can be written using eqs 4, 5, and 21-23 as

All the addends in these equations can be expressed in terms
of the coefficients Kc* and Kd*, except the last. This is why, to
obtain the solutions (17)-(18) for these coefficients, the last
term in eq 30 is neglected. This is justified noting that this term
is proportional to the frequency so that it should be small for
the LFDD range. Obviously, this argument no longer holds if
the theory is to be extended to high frequencies.

Instead of neglecting the last term in eqs 30, we multiply
these equations by z( and subtract the second from the first.
Using the expressions for the derivatives given in ref 6 together
with eqs 7, 8, 20, and 24 leads to

This expression is identical to the low frequency result, eq 18,
except for the last term in which the integral corresponds to
the field induced charge density surrounding the particle. In the
case D+ ) D-, this integral can be rigorously evaluated using
boundary conditions since all the field induced charge is located
inside the thin double layer, eq 19 in ref 6. In the general case,
however, the procedure is more involved since the charge
extends to much greater distances, eqs 12 and 15. In what
follows we consider the general D+ * D- case, keeping in mind
that the integral in eq 31 needs only be evaluated at high
frequencies since it is multiplied by the frequency so that the
last term becomes negligible for ω f 0.

The field-induced surface charge density of the thin double
layer is related to the discontinuity of the radial component of
the field-induced displacement:

where δΦi* is the field induced potential inside the particle while
the last addend corresponds to the field-induced charge density
outside the double layer.

The potential inside the insulating particle, solution of the
Laplace equation, can be written as

Figure 3. Spectra of the real part of the dipolar coefficients given in eqs 18, 27-29, and 36 and the corresponding conductivity increment spectra.
Parameter values are given in Table 1.

- D(

z(
∇rδµ̃*(|

a

) (R( - U()D(

2z(sin θ
∂

∂θ
(sin θ∇θδñ*|a) (

D(R(

2 sin θ
∂

∂θ
(sin θ∇θδ�̃*|a) -

iω
z+z-N

∫a

∞
(δC*( - z-Nδñ*) dr

(30)

Kd* ) Kd∞ - Kc*H - iω
Ke(A/2)E cos θ

×

∫a

∞
(z+eδC*+ - z-eδC*-) dr (31)

-εe
∂δΦ*

∂r |
a

+ εi

∂δΦi*
∂r |

a

) ∫a

∞
(z+eδC*+ - z-eδC*-) dr -

κ
2εekT

e ∫a

∞
δF̃* dr (32)
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where the coefficient Ki* can be determined using as boundary
condition the continuity of the field-induced potential across
the thin double layer:

In this expression, eqs 13 and 14 for the potential outside the
double layer should not be used since, as shown in Appendix I
in ref 6, they lead to an expression that is only valid for low
frequencies. The general expression valid in the whole frequency
range is

Combining eqs 33-35 and neglecting the last addend in eq 35
that rapidly decreases with frequency (and vanishes for ∆ ) 0
since the field induced charge is then confined to the double
layer) lead to

This result transforms eq 32 into

Using eqs 12 and 15, the last integral can be written as

where the integral can be analytically solved

The field-induced surface charge density of the double layer so
becomes

Neglecting the last addend that becomes negligible at high
frequencies (and vanishes for ∆ ) 0) and using eq 31 leads to
the final expression for the dipolar coefficient

As shown in Figure 3, this result has a behavior that is
very similar to the existing extensions, eqs 28 and 29,
overcoming both objections regarding the high frequency
dispersion and the limiting conductivity value. The high
frequency part of eq 36 is actually identical to that of eqs
27-29. As for the low frequency part, the obtained result is
very similar to that of eq 29: in both cases the low frequency
expression is multiplied by a single time constant relaxation
term. The only difference is in the corresponding relaxation
time: that of the electrolyte solution, eq 29, or the MWO
relaxation, eq 36. It should be noted, however, that the here
deduced extension to high frequencies consists of a single
modification of both the high and low frequency parts of the
dipolar coefficient, rather than two independent modifications
of these terms as in eqs 28 and 29.

Conclusion

An extension to the high frequency domain of the classic
Shilov-Dukhin LFDD theory is presented. Unlike existing
extensions that consist of artificial modifications of the final
low frequency results, eq 36 is deduced from within the
theory by merely avoiding the approximations that are only
justified at low frequencies.

The obtained analytical result is very similar to the existing
extensions, eqs 27-29, only differing by the factor that
multiplies the low frequency part of the dipolar coefficient.
Therefore, the conductivity and permittivity increments
deduced using all these expressions combined with eqs 25
and 26 are almost indistinguishable from one another, Figure
4. However, amplifying the part of the spectra that correspond
to the MWO dispersion range, Figure 5, shows some
differences: the obtained expression has a behavior that is
close to that of eq 27. This happens because O’Brien did
not introduce any factor multiplying the low frequency part
of the original eq 18, while in the presented result this factor
becomes different from unity at frequencies that are higher
than in eq 29 because the MWO relaxation time is smaller
than that of the electrolyte solution.

The differences observed in Figure 5 are not negligible,
which suggests that aside from a purely academic interest,
the presented extension may be useful for the interpretation
of broad frequency dielectric dispersion data of colloidal
suspensions. However, two main restrictions of the theory
should be kept in mind. First, the thin double layer assump-
tion, eq 16, that limits its applicability to relatively large
particles in electrolyte solutions that are not too dilute: κa
g 30 (the actual minimum value further depends on the
surface potential13). Second, the use of the standard electro-
kinetic model that does not allow for the existence of a
stagnant layer conductivity (an approximate extension of the
theory to include this conductivity is given in ref 12).
Therefore, in many cases of practical interest, an interpreta-
tion based on numerical solutions8,9 may be required.
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δΦ̃i* ) -Ki*r
eE
kT

cos θ (33)

δΦ̃i*(a) ) δΦ̃*(a) (34)

δΦ̃* ) (Kd*a2

r2
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a)eEa
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∞
(z+eδC*+ - z-eδC*-) dr -

κ
2εekT
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∞
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Figure 4. Conductivity and permittivity increment spectra corresponding to the existing, eqs 18 and 27-29, and the proposed, eq 36, dipolar
coefficient expressions. System parameter values are given in Table 1.

Figure 5. As in Figure 4 but for the frequency range corresponding to the MWO dispersion.

12526 J. Phys. Chem. B, Vol. 114, No. 39, 2010 Grosse



References and Notes

(1) Shilov, V. N.; Dukhin, S. S. Theory of low-frequency dispersion
of dielectric permittivity in suspensions of spherical colloidal particles due
to double-layer polarization. Colloid J. 1970, 32, 245.

(2) Dukhin, S. S.; Shilov, V. N. Dielectric Phenomena and the Double
Layer in Disperse Systems and Polyelectrolytes; Wiley: New York,
1974.

(3) Dukhin, S. S. In Research in Surface Forces; Derjaguin, B. V.,
Ed.; N.Y.L. Consultants Bureau: New York, 1971; Vol. 3. Translation from:
Dukhin, S. S. In IssledoVania V oblasti poVerchnostnych sil; Derjaguin,
B. V., Ed.; Nauka: Moscow, 1967.

(4) Dukhin, S. S.; Shilov, V. N. Theory of the static polarization of
the diffuse part of the thin double layer of spherical particles. Kolloidn.
Zh. 1969, 31, 706.

(5) Grosse, C. Generalization of a classic thin double layer polarization
theory of colloidal suspensions to electrolyte solutions with different ion
valences. J. Phys. Chem. B 2009, 113, 8911.

(6) Grosse, C. Generalization of a classic theory of the low frequency
dielectric dispersion of colloidal suspensions to electrolyte solutions with
different ion valences. J. Phys. Chem. B 2009, 113, 11201.

(7) Overbeek, J. Th. G. Theorie der Elektrophorese. Der Relaxation-
seffekt. Kolloid-Beihefte 1942, 54, 287.

(8) Hill, R. J.; Saville, D. A.; Russel, W. B. High-frequency dielectric
relaxation of spherical colloidal particles. Phys. Chem. Chem. Phys. 2003,
5, 911.

(9) Bradshaw-Hajek, B. H.; Miklavcic, S. J.; White, L. R. Frequency-
dependent electrical conductivity of concentrated dispersions of spherical
colloidal particles. Langmuir 2008, 24, 4512.

(10) O’Brien, R. W. The high-frequency dielectric dispersion of a colloid.
J. Colloid Interface Sci. 1986, 113, 81.

(11) Hinch, J. E.; Sherwood, J. D.; Chew, W. C.; Sen, P. N. Dielectric
response of a dilute suspension of spheres with thin double layers in an
asymmetric electrolyte. J. Chem. Soc., Faraday Trans. 2 1984, 80, 535.

(12) Shilov, V. N.; Delgado, A. V.; González-Caballero, F.; Grosse, C.
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