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A look into the invisible: ultraviolet-B
sensitivity in an insect (Caliothrips phaseoli)

revealed through a behavioural
action spectrum

Carlos A. Mazza1,2,*, Miriam M. Izaguirre2, Javier Curiale3,†

and Carlos L. Ballaré1,2,*
1Ifeva, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, and 2Facultad de Agronomı́a, Universidad de

Buenos Aires, Avenida San Martı́n 4453, C1417DSE Buenos Aires, Argentina
3Departamento de Radiobiologı́a LANAIS-CONICET-CNEA, Centro Atómico Constituyentes,

Comisión Nacional de Energı́a Atómica, B1650KNA Buenos Aires, Argentina

Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B;

l � 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual

system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant

than the UV-A (315–400 nm), to which many insects are sensitive. We constructed an action spectrum

of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under

confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm;

human-visible wavelengths (l � 400 nm) failed to elicit any response. All but six ommatidia of the

thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than

330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation

with l . 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter trans-

mittance and a visual pigment template of lmax ¼ 360 nm produced a sensitivity spectrum that was

strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest

that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off

internal filter that blocks longer UV wavelengths in the majority of the ommatidia.

Keywords: UV-B; insect vision; insect behaviour
1. INTRODUCTION
Ultraviolet-B (UV-B) radiation (280–315 nm) is a minor

part of the solar spectrum, usually representing 0.5 per

cent or less of the total short-wave quanta (l � 700 nm)

received at the ground surface. Nevertheless, UV-B

radiation can exert strong influences on terrestrial and

aquatic ecosystems (for reviews, see Ballaré et al. 2001;

Caldwell et al. 2003, 2007; Paul & Gwynn-Jones 2003;

Häder et al. 2007). In terrestrial environments, solar

UV-B has multiple effects on the interactions between

plants and their consumer organisms (Caldwell et al.

2003; Roberts & Paul 2006). Manipulative experiments

in a variety of ecological contexts have shown that the

attenuation of solar UV-B radiation using filters often

leads to large increases in insect abundance and herbivory

levels (reviewed in Ballaré et al. 1999; Caldwell et al.

2003). UV-B can exert its effects on insect populations

through direct and indirect mechanisms. The indirect

effects are mediated by modification of chemical or
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structural plant traits that affect the herbivores. These

effects have been studied in considerable detail

(Rousseaux et al. 1998, 2004; Izaguirre et al. 2003, 2007;

Bassman 2004; Caputo et al. 2006; Foggo et al. 2007).

Direct effects, on the other hand, are the consequence of

the impact of UV-B radiation on the insects themselves,

affecting insect performance and/or behaviour.

Whereas direct effects of UV-B on insect performance

(growth and mortality) have been well documented

(Bothwell et al. 1994; McCloud & Berenbaum 1994,

1999), the significance of UV-B radiation as a source of

information and behavioural signal for animals has not

received significant attention until recent years (Mazza

et al. 1999, 2002; Kelly & Bothwell 2002; Li et al.

2008a,b). The reason for this is probably the widespread

assumption that animals are generally unable to detect

UV-B photons under conditions of natural radiation

(discussed in Andrady et al. 2009).

Mazza et al. (1999, 2002) demonstrated that the thrips

Caliothrips phaseoli is able to perceive and respond to solar

UV-B radiation in the field. Moreover, the response trig-

gered by direct solar UV-B under natural conditions

(avoidance) is opposite to that induced by UV-A (attrac-

tion). Li et al. (2008a,b) demonstrated that females of a

jumping spider species (Phintella vittata) choose a mate

based on sex-specific UV-B reflectance patterns, and

observational studies with hornets showed that flight
This journal is q 2009 The Royal Society
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activity correlated with solar UV-B irradiance better than

with other environmental variables (Volynchik et al.

2008). Studies in vertebrates also reported experimental

evidence of UV-B perception in poison dart frogs (Han

et al. 2007). The finding that some animals can react

specifically to UV-B under natural conditions (Mazza

et al. 2002) has important implications for our under-

standing of the ecological functions of solar UV-B

radiation and, at the same time, raises questions about

the nature of the mechanism of UV-B sensitivity.

UV photoreceptors in insects typically have a peak of

sensitivity in the UV-A region, around 360 nm (Tovée

1995; Stavenga & Arikawa 2006; Briscoe 2008). In the

flower thrips Frankliniella occidentalis, Matteson et al.

(1992) demonstrated the activity of two photoreceptors,

one in the UV-A (the sensitivity peak was not determined)

and the other in the visible (lmax around 545 nm). Attrac-

tion of thrips of different species to UV-A radiation has

been documented in many previous studies (Costa &

Robb 1999; Kumar & Poehling 2006; Nguyen et al.

2009). The sensitivity of UV-A photoreceptors usually

‘tails’ into the UV-B region, but with a significant drop

in sensitivity below 300 nm (Stavenga & Arikawa 2006).

This residual sensitivity could explain the phenomenon

of UV-B vision in experiments where insects are exposed

to point sources of UV-B radiation in dark rooms (e.g.

Roberts et al. 1992), but not the response to variations

in the UV-B irradiance in the field, because (i) solar

UV-B radiation is typically between 10 and 100 times

less abundant than UV-A under natural conditions

(Caldwell 1971), and (ii) at least in thrips, UV-B and

UV-A elicit opposite behavioural responses in the field

(Mazza et al. 1999, 2002). Both observations strongly

suggest that UV-B perception in C. phaseoli is not

achieved by the use of the same photoreceptor cells

involved in the detection of UV-A radiation.

In order to explain the phenomenon of specific UV-B

sensitivity in thrips, two hypotheses readily arise: (i) the

existence of a novel photoreceptor with a very narrow

peak of sensitivity in the UV-B range, or (ii) the presence

of filtering compounds, in at least some elements of the

compound eyes, that reshape the sensitivity spectrum of

broadband UV photoreceptors. In the experiments

described in this paper, we constructed a detailed action

spectrum for a behavioural response of thrips to mono-

chromatic radiation, which covered UV-B, UV-A and

visible wavelengths. In addition, based on observations

of the fluorescence excitation spectrum of the thrips

ommatidia, we attempted to test the filtering hypothesis

by modelling the impact of a deduced filter pigment on

the spectral sensitivity of the visual system of these

insects.
2. MATERIAL AND METHODS
(a) Insects

Thrips for our experiments (C. phaseoli; Thysanoptera:

Thripidae) were collected in soybean crops grown at our

field site in Buenos Aires (for a description of the experimen-

tal site, see Mazza et al. 1999). The insects were either

immediately used in the experiments or transferred to rearing

chambers for later experimental use (conditions in the

chamber were 258C, white light provided by fluorescent

bulbs, potted soybean plants used as food source).
Proc. R. Soc. B (2010)
(b) Responses to monochromatic radiation

The sensitivity of thrips to monochromatic radiation was

tested using a simple behavioural experiment under con-

trolled conditions of illumination. Insects were placed in a

3 ml quartz cuvette (electronic supplementary material,

fig. S1), which was irradiated from the side with a mono-

chromatic light beam generated by a calibration lamp (LI

1800-02, Li-Cor) and a double monochromator (GM 200,

International Light). The size of the irradiated spot was

4 � 4 mm and served as a virtual ‘window’ in the cuvette

wall. The insects could move around freely within the cuv-

ette. When certain wavelengths were allowed to pass

through the monochromator, the insects swarmed to the

window, appeared to inspect the surface and walked back

to non-illuminated parts of the cuvette. The attractiveness

of the light source was characterized in terms of the

number of insects that inspected the window in a time inter-

val of 20 s. In a typical experiment, a group of 40 insects was

exposed to wavelengths between 250 and 590 nm in random

order. One operator controlled the monochromator, and a

second operator, who was not aware of the wavelength setting

(except when working within the visible range, where colours

were visually obvious), recorded the attraction response.

After a given light intensity was tested, the exposures were

repeated at four other light intensities to obtain dose–

response curves for each wavelength. The test group of

thrips was replaced by a fresh one after the whole spectrum

was completed. The light intensity at a given wavelength

was varied using neutral density filters, and it was measured

with a microspectroradiometer (S2000, Ocean Optics).

Microspectrophotometer calibration was performed with a

LI 1800-02 calibration source (Li-Cor). The experimental

room was illuminated with dim, diffuse white light provided

by a halogen bulb (less than 1 mmol m22 s21 of visible (400–

700 nm) at the cuvette level); the temperature was 258C. The

action spectrum for the attraction response was constructed

on the basis of the hyperbolic dose–response curves fitted

to the sensitivity data, essentially as described in Eisinger

et al. (2000). From the monochromatic dose–response func-

tions, we obtained an action spectrum for the attraction

effect using 45 hits as the standard response criterion. We

tested the robustness of the sensitivity function using 11

response criteria (from 40 to 50 hits). The resulting ‘average

sensitivity’ function closely matched the one calculated for

45 hits; the differences in calculated sensitivities were less

than 2 per cent, and the 95 per cent confidence intervals

were less than 20 per cent of the average sensitivity for all

wavelengths (data not shown).

(c) Fluorescence determinations for individual

ommatidia

To obtain the excitation spectrum of UV-fluorescent omma-

tidia, thrips were chloroform-anaesthetized and the

fluorescence was determined on intact compound eyes.

The compound eyes were epi-illuminated with a Carl Zeiss

MPM800 microspectrophotometer fitted with a 75 W Xe

lamp (Osram XBO75W/2) and Ultrafluar objectives (high

UV transmittance). The instrument had a monochromator

that allowed selection of the excitation wavelength. For

each wavelength, the spectral irradiance at the sample level

was measured with a microspectroradiometer (S2000,

Ocean Optics). Images of the fluorescent compound eyes

were acquired with a SBIG ST-7CCD camera (Santa

Barbara Instruments Group); the CCDOPS v. 4.03 software

http://rspb.royalsocietypublishing.org/
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(Santa Barbara Instruments Group) was used for quantifi-

cation of fluorescence intensity. Four specimens were

analysed. For each specimen, 14 images were recorded

(one for each excitation wavelength, at 10 nm intervals in

the range 260–390 nm). In each image, four fluorescent

ommatidia were quantified and averaged. Dark measure-

ments were obtained at three different and fixed positions

in the images and subtracted from the readings obtained on

the ommatidium areas. The subsequent average of the four

specimens (i.e. 4 specimens � 4 ommatidia ¼ 16 single

determinations for each wavelength) was divided by the inci-

dent irradiance at the relevant wavelength. In order to obtain

the relative fluorescence excitation spectrum, data were

normalized to 390 nm (the highest value). The transmission

of the hypothetical filter was estimated by assuming that the

fluorescence excitation spectrum was proportional to the

absorption spectrum of the filtering pigment. Transmittance

through the putative filter was calculated assuming a log

relationship between absorbance and transmittance, accord-

ing to the Lambert–Beer law, but imposing 1 and 0 as the

upper and lower limits for transmittance. This constraint

was established to account for the fact that the fluorescence

data (here used as a proxy for absorbance) were relative

values and not actual intensities. Thus, complete absorption

of UV-A photons by the fluorescent pigment (i.e. 0% trans-

mittance) was assumed for the wavelength that yielded the

highest fluorescence (390 nm).

(d) Modelling

The absorption spectrum of the visual pigment was modelled

using the template for A1 pigments proposed by

Govardovskii et al. (2000). Equation parameters for a and

b bands were as specified (Govardovskii et al. 2000). lmax

was set to 360 nm, as this value was the one that yielded

the spectral function that provided the best fit of the observed

behavioural data. The spectral sensitivity of photoreceptors

located in non-fluorescent ommatidia was assumed to be iden-

tical to the template-generated pigment absorbance function.

The spectral sensitivity of photoreceptors belonging to

fluorescent ommatidia was obtained by multiplying this tem-

plate-generated pigment absorbance function by the

calculated transmittance spectrum of the putative filter (see

above). Unlike direct light responses, such as those obtained

in electroretinograms, the results of a behavioural assay are

the final outcome of potentially complex response cascades

that may be affected by factors such as photoreceptor sensi-

tivity, relative area responsible for capturing different

wavelengths and neural processing of the received light

information. Therefore, the maxima in the modelled

responses of fluorescent and non-fluorescent ommatidia

were deliberately set to 1 and 0.4, respectively, in order to

fit the behavioural data.
3. RESULTS
(a) Spectral sensitivity

We designed a set of experiments with C. phaseoli to

obtain a detailed action spectrum of their visual sensitivity

using a behavioural reaction as the readout of their

response to light. We found that, under confinement con-

ditions and a background of very dim light, thrips were

attracted to point sources of radiation within the UV

range. We suspect that this behaviour was a response to

confinement in a novel environment: thrips interpreted
Proc. R. Soc. B (2010)
the point light source as a signal of open space, in much

the same way as insects in canopies are attracted to gaps

or to spider webs with high UV reflectance (Craig &

Bernard 1990). We determined the spectral sensitivity

of this attraction response (see §2) by constructing

dose–response curves at 20 nm intervals from 250 to

590 nm. Under the conditions of this experiment, the

intensity of attraction was a function of the applied irradi-

ance; this function was well described by a hyperbolic

equation (figure 1a). Hyperbolic behaviour would be

expected for a simple model in which light activates a

receptor and the activated receptor or a subsequent

product triggers the response (Hartmann 1983).

Short wavelengths, in the UV range, showed the high-

est efficiency, whereas wavelengths above 430 nm failed

to elicit any behavioural response (figure 1a; data not

shown for wavelengths between 430 and 590 nm).

From the monochromatic dose–response functions,

we obtained an action spectrum for the attraction effect

using 45 hits as the standard response criterion. The cal-

culated action spectrum showed a peak of sensitivity in

the short UV range (figure 1b). These results may indi-

cate that thrips are maximally sensitive in the UV-B and

short UV-A spectral region (between 290 and 330 nm)

or that they are particularly attracted by these wavelengths

under confinement conditions. Independent of the

interpretation, the action spectrum demonstrates that

(i) C. phaseoli is highly sensitive to wavelengths as short

as 290 nm, and, (ii) in contrast with the observations in

flower thrips (Frankliniella occidentalis; Matteson et al.

1992), this insect appears to be blind to human-visible

radiation.
(b) Ultraviolet-A-induced fluorescence

in ommatidia and ocelli

Thrips have three ocelli and rudimentary compound eyes,

each having approximately 70 ommatidia. Six ventrally

located ommatidia of this compound eye are larger than

the rest (figure 2a(ii); Nakahara 1988) and their facets

(corneal lenses) are brown. We found that the ocelli and

all but the six large ommatidia were strongly fluorescent

under UV-A radiation (figure 2a(iii)), but none of them

were fluorescent under UV-B radiation. We constructed

a detailed fluorescence excitation spectrum of the omma-

tidia using a microspectrophotometer. This analysis

showed that the effectiveness of UV radiation in inducing

ommatidium fluorescence increased dramatically with

wavelength between 330 and 360 nm (figure 2b,c). No

fluorescence excitation was observed with any of the

wavelengths tested in the UV-B region.
(c) Modelling ultraviolet sensitivity

It is well known that in visual systems of vertebrates

(Bowmaker 1977; Neumeyer & Jager 1985; Partridge

1989; Kawamuro et al. 1997; Hart et al. 1999; Dyer

2001) and invertebrates (Ribi 1979; Arikawa et al.

1999; Marshall & Oberwinkler 1999; Cronin et al.

2001), internal filters play an important role in sharpen-

ing the spectral sensitivities of otherwise broadband

photoreceptors (for reviews referred to insects, see

Stavenga 2002; Stavenga & Arikawa 2006). In Papilio

xuthus butterflies, for example, a UV-A filter (presumably

3-hydroxyretinol) has been shown to shift the spectral

http://rspb.royalsocietypublishing.org/
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Figure 1. Spectral sensitivity of the attraction response
of captive thrips (C. phaseoli ) to point sources of radiation.
(a) Dose–response curves for each tested wavelength. Data
points were fitted with hyperbolic dose–response curves

(solid lines). Error bars indicate +1 s.e.m. For clarity, data
corresponding to wavelengths greater than 430 nm are not
included in the graph. Dark blue, 430 nm; medium blue,
410 nm; light blue, 390 nm; light orange, 370 nm; pink,

350 nm; brown, 330 nm; red, 310 nm; dark orange,
290 nm; grey, 270 nm; black, 250 nm. (b) Calculated
action spectrum for the attraction response. The spectrum
was calculated as the inverse of the irradiance required to
induce a fixed level of response (45 hits; dashed line in (a)),

normalized at 324 nm. Error bars indicate +1 s.e.m.
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Figure 2. Fluorescence patterns of C. phaseoli compound

eyes. (a) (i) Scanning electron micrograph of the C. phaseoli
head; (ii) detail of a compound eye, showing the six enlarged
ommatidia (arrowheads); (iii) same as above, but viewed in
an optical microscope under broadband UV-A radiation.
(b) Representative images of compound-eye fluorescence

patterns when the eyes were irradiated with the indicated
wavelengths. (c) Fluorescence excitation spectrum of
UV-fluorescent ommatidia. The ordinate indicates the
fluorescence intensity obtained for each of the excitation

wavelengths (x-axis), normalized at 390 nm.
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sensitivity of certain photoreceptors of the compound

eye from the UV-A to the violet region of the spectrum

(Arikawa et al. 1999). We hypothesized that a similar

mechanism might play a role in thrips, but shifting the

sensitivity spectra of UV photoreceptor cells hypsochro-

mically, from the UV-A to the UV-B region of the

spectrum. Based on this assumption, we speculated that

the ommatidia with intense UV-A-excited fluorescence

were blind to UV-A, because UV-A photons would be

absorbed by the fluorescent pigment. We estimated the

transmission spectrum of the hypothetical filter on the

basis of the fluorescence excitation spectrum (figure 2c),

multiplied this transmission spectrum by a modelled

visual pigment absorption function and calculated the

expected sensitivity of the photoreceptors present in

these ommatidia. Modelling of the visual pigment absor-

bance spectra was performed according to the template

proposed by Govardovskii et al. (2000). All of the

equation parameters were as indicated, with lmax ¼

360 nm. The resulting spectral sensitivity of photo-

receptors belonging to fluorescent ommatidia matched

the observed sensitivity of the insects towards UV-B/

short UV-A irradiations in the attraction trials, clearly
Proc. R. Soc. B (2010)
reproducing the 324 nm sensitivity maximum (figure 3).

The shoulder observed at longer wavelengths is in accord-

ance with the expected sensitivity of photoreceptors

belonging to non-fluorescent ommatidia (i.e. with the

template-modelled sensitivity in the absence of a filtering

compound).
4. DISCUSSION
The action spectrum for UV attraction in captive thrips

presented in this paper (figure 1) is, to the best of our

knowledge, the first detailed description of the spectral

dependence of UV sensitivity in animals that extends

into the UV-B region. This spectrum unequivocally

http://rspb.royalsocietypublishing.org/
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demonstrates that thrips can react to UV-B and UV-A

radiations, showing a response function that peaks at

324 nm with a ‘shoulder’ at 370 nm. The 370 nm

shoulder can be readily explained on the basis of a ‘typi-

cal’ UV-A photopigment (Stavenga & Arikawa 2006).

The maximum in the UV-B/short UV-A region, on the

other hand, requires a different explanation, perhaps

involving specific UV-B-sensitive photopigments. The

presence of an unidentified UV-B-absorbing substance

(lmax: 280 nm) has been reported in the compound

eyes of the owlfly Ascalaphus macaronius (Gribakin et al.

1995); however, direct evidence is lacking for a functional

connection between this absorbance, presumably caused

by aromatic amino acids, and visual sensitivity to UV-B.

In fact, no specific UV-B receptors have been unequivo-

cally established in any organism, in spite of the fact

that research in plants, for example, has provided strong

evidence for specific UV-B responses under controlled

environmental conditions (Boccalandro et al. 2001;

Kalbin et al. 2001; Kucera et al. 2003; Brown et al.

2005, 2009) and in the field (Mazza et al. 2000).

The most parsimonious hypothesis of an UV-A photo-

receptor functioning as an UV-B sensor requires a

filtering system to eliminate the ‘noise’ introduced by

UV-A photons, as explained above. The fluorescent com-

pound that we have detected in most of the ommatidia of

the thrips compound eye and the ocelli could play such a

filtering role. Our calculations show that the sensitivity in

the UV-B/short UV-A range could be readily accounted

for by the combined optical properties of this putative

filter and a standard UV-A-absorbing photoreceptor

template (figure 3).

The different behavioural response of thrips to direct

UV-B and UV-A radiation in the field (Mazza et al.
Proc. R. Soc. B (2010)
1999, 2002) requires that the animals are able to detect

these wavelengths as separate signals. We hypothesize

that UV-A radiation is detected by non-fluorescent

ommatidia, whereas fluorescent (UV-A-shielded) omma-

tidia are used for UV-B perception. Perception of these

two signals in separate parts of the visual system may

account for the peak and shoulder observed in the behav-

ioural action spectrum (figure 1) and allow thrips to

resolve the UV-B component of sunlight under field con-

ditions, even in the presence of relatively strong UV-A and

human-visible radiation. Of course, the match between

predicted and observed sensitivities (figure 3) only pro-

vides correlative evidence for the UV-A filtering

hypothesis and does not rule out other potential mechan-

isms for UV-B detection in thrips.

It is not known whether specific UV-B perception plays

a significant ecological role in thrips nor if it is widespread

among canopy arthropods. In the case of C. phaseoli, a

specific UV-B sensitivity may allow these insects to

locate their preferred feeding positions in the underside

of upper-canopy leaves, which combine high nutrient

content in the plant tissue with low exposure to direct

solar radiation. This is because there is a wavelength-

dependent pattern of radiation penetration in canopies:

UV-B radiation, which is subject to greater scattering

than UV-A and visible radiation, tends to be over-

represented in canopy areas of low irradiance (e.g. Flint &

Caldwell 1998). Therefore, independent detection of

UV-B and UV-A wavelengths may provide the insect

with a mechanism to obtain relevant positional infor-

mation in a complex matrix of foliage elements. In this

regard, it is interesting to note that a number of studies

in aquatic and terrestrial ecosystems suggest that some

herbivores effectively take advantage of the host leaves

to protect themselves from direct solar radiation (Wahl

2008; Ohtsuka & Osakabe 2009). In addition, UV sensi-

tivity is known to be used by some arthropods for visual

mate choice (Li et al. 2008b; Obara et al. 2008), with a

specific UV-B response demonstrated for jumping spiders

(Li et al. 2008b). The relative enhancement of short-wave

UV radiation in the shade may facilitate mate location

within the canopy, as discussed by Obara et al. (2008).

Our action spectrum constitutes the first detailed

exploration of UV-B sensitivity in animals. It provides

direct evidence that the UV-B and short UV-A regions

may dominate the spectral response, a necessary con-

dition for detection of changes of UV-B levels under

natural conditions. Although clarification of the

functional details requires additional physiological

studies, the model presented here for thrips represents a

testable platform to begin to understand the mechanisms

of UV-B sensitivity in arthropods.
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