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Abstract
In this work we present an algorithm based on the simulated annealing (SA)
method for electron beam spectrum reconstruction from central axis PDD
data. We use a simulated beam in order to assess the accuracy of the
method, and compare it with others usually employed. We found that our
modified SA algorithm produced excellent reconstructed PDDs and beam
profiles and improved reconstructed spectra. We also tested our method for the
simultaneous determination of an electron energy spectrum and the position of
a trimmer from central axis PDD data, and found this to be sufficient for the
determination of the physical parameters of this hybrid model.

1. Introduction

The Monte Carlo method is increasingly being used as an accurate and practical approach
for electron and photon beam dose calculation, and clinical use is beginning to gain ground
(Andreo 1991, Ma and Jiang 1999).

It is well known that treatment of electron transport in an inhomogeneous medium can
lead to large discrepancies in dose distributions between conventional analytical algorithms
and measurements (see for example Ma et al (1999)). This makes Monte Carlo methods
particularly appealing for calculations for clinical electron beams.

When using the Monte Carlo method for dose calculations, it is necessary to generate
huge phase-space data in order to take into account the physical properties of the primary beam
as well as the effects of the accelerator treatment head within it. From a practical point of
view, relevant experience in Monte Carlo calculations is generally required in order to perform
reliable MC calculations. This level of skill is not readily available in most radiotherapy
institutions. Even provided the required expertise is available, it is very time consuming to
generate a complete useful set of phase-space data for clinical use.
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The energy distribution of the initial electron beam depends in general on the linear
accelerator type, the method of electron injection, the tuning of the accelerator tube and the
beam handling system (Deasy et al 1996). Furthermore, in order to generate the phase-
space data, accurate and reliable knowledge of both the primary beam energy distribution as
well as for treatment head geometry and materials are necessary (Deasy et al 1994, Rogers
1991).

In order to overcome these problems, virtual source models have been developed. In
these models, the treatment head is basically replaced by a small number of virtual sources
and simple structures which, appropriately placed, will generate phantom surface phase-space
data from which Monte Carlo calculations of absorbed dose can proceed, and which ultimately
generate dose distributions close enough (within prescribed tolerances) to those yielded by the
whole treatment head (Faddegon and Blevis 2000, Deng et al 2001).

The spatial configuration and the energy spectrum are to be determined for each of the
virtual sources. One way to do that is simply to compare calculated doses from the virtual
source results with complete Monte Carlo calculations that incorporate the actual treatment
head. Another way to achieve this goal would be to experimentally determine virtual sources’
energy spectra from dosimetric measurements from a water phantom in a clinical accelerator.
Experimental determination of energy spectra are not usually performed on therapeutic electron
beams, but a few measurements with dedicated magnetic spectrometers have been reported
(Deasy et al 1994, 1996, Kok and Welleweerd 1999). In these cases the actual measurement
took place at some point after the beam had passed through the structures of the treatment
head.

Several methods have been proposed to derive the energy spectra both for photon and
electron beams from measured PDDs (Deng et al 2001, Faddegon and Blevis 2000, and
references therein).

While reproduced PDDs show a very good agreement with measurements, the match in
energy spectra against independently measured spectra or those calculated using Monte Carlo
and incorporating the actual treatment head, is not so good. Issues that must be addressed
before using a virtual source model are the optimization methods that are to be used in order
to define the physical characteristics of the sources (energy spectrum, position, shape in the
case of extended sources, etc), and the set of measurements necessary to determine the model
(Siljamki et al 2005). Several prescriptions have been published on how to do this (see for
example Jiang et al (2000)) in the framework of Monte Carlo TPSs commissioning.

A related approach (which we will call the hybrid model) is to replace the entire accelerator
head with a simpler combination of virtual sources and structures through which radiation from
the virtual sources passes. This method can be seen as a compromise between a pure virtual
source model for the head (which might be tricky to define) and the simulation of the entire
treatment head. In particular it can be used when electron applicators are incorporated into
treatment heads.

Once the method of simulation is chosen, the problem reduces to one of optimization,
where an objective function (OF) that, in general, represents the difference between measured
and calculated doses, is minimized.

One question that arises when multiple sources and structures are used to simulate the
head is whether there is more than one configuration that yields the same minimum value
(within statistical uncertainty) for the OF. This is not easy to answer since it depends on which
set of measurements is considered. For a sufficiently large set of measurements there should
be only one configuration of virtual sources that reproduces all of them. Recently proposed
virtual source models have considered central axis PDDs together with horizontal and oblique
measurements in order to define virtual source models (Siljamki et al 2005). From a practical



A modified simulated annealing algorithm for parameter determination for a hybrid virtual model 3943

point of view, it is of course desirable to keep the set of measurements necessary to determine
the source model to a minimum.

In this work we will study the use of central axis PDDs in order to determine a simple
hybrid model and to see whether the model can be uniquely determined from central axis
PDDs only. We will use a simulated annealing method (SA) which is well suited for the
optimization of systems exhibiting a complex landscape for their OF.

Our aim is to assess the accuracy of the employed SA method and therefore determine
whether it is possible to use it together with central axis PDDs in finding the physical parameters
of a simple hybrid model. However, instead of simulating an actual treatment head, we will
use as our starting point calculated dose data for the same hybrid model using PENELOPE. In
this way, we know a priori the target spectrum, so we can study the reconstruction of PDDs
and the reconstruction of target spectra. Besides, experimental errors in measuring energy
spectra are eliminated, and statistical fluctuations in the Monte Carlo simulation of an entire
treatment head are much reduced. We test the optimization method in an ideal case where it
should be able to find the parameters for the system exactly. Discrepancies can then be blamed
on the method and will show if our hypothesis—that the system can be determined from PDD
data alone—can be tested further on a more realistic system.

The paper is organized as follows. In the following section we recall the SA method and
define the system we use to test it. In section 3 we will test the SA method by reproducing
the electron energy spectrum of a simple electron source, starting from the known central axis
PDD data in a water phantom. Its intrinsic accuracy will be compared to different methods
used to find energy spectra. We then apply the SA method to establish a simple hybrid model
and determine whether such a system can be derived from PDDs measurements.

2. Methods and materials

As we have already said, we will use a simple theoretical model in order to test our optimization
method. The system consists of a point electron source with a given angular aperture θ , whose
energy spectrum is known a priori. Its SSD is set to 100 cm and an Al cylindrical trimmer of
given aperture and width is placed between the source and the water phantom. We will choose
small apertures for the trimmer. That condition defines a worse case configuration. Most
of the contribution to central axis PDD is in this case primary radiation. Our optimization
method should be able to guess the correct source spectrum together with the position of
the trimmer from central axis PDD data. However, in the limiting case of a null aperture,
i.e., primary radiation only, the central axis PDD would become independent of the trimmer
position. On the other hand, a large trimmer aperture implies a larger contribution to central
axis PDDs from scattered radiation. In general, the contribution of the scattered radiation
from the phantom volume to the central axis PDD would be (for a given aperture) a function
of the trimmer position, thus making it a lot easier for the algorithm to find out.

As is well known, as a consequence of beam interactions (absorption and bremsstrahlung)
with the materials of the accelerator head (primary and secondary collimators, filters, monitor
chambers, etc), any real clinical electron beam will be accompanied by a photon field that
contributes to the absorbed dose in the water phantom. At this stage we are interested in
benchmarking our inverse calculations methods, so we have not included a photon virtual
source. However, photons generated by bremsstrahlung in the phantom are of course present
and contribute to the PDD. Unlike other methods (see for example Deng et al (2000)) we do
not need to subtract the photon tail in order to find the electron source spectra.

Our optimization code is based upon the simulated annealing (SA) method (Press et al
1986). SA is a well-known technique suitable for optimization of large scale problems, where
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the global extreme might be hidden among many local extremes. It is specially useful in cases
where the OF to be minimized/maximized is a discrete, very large, configurational space. In
our case, we have a multiobjective problem to solve. Our goal is to find a set of best values for
the parameters that define the electron energy spectrum and the trimmer position, in order to
obtain a satisfactory reconstruction for the target PDD. In general, the information we would
have about the real system is the measured PDD (target PDD). In our case, this target PDD
is a Monte Carlo calculated PDD. Therefore, the OF should be dependent on how well the
SA-reconstructed PDD matches to the target PDD. Most non stochastic optimization methods
converge to a quick nearby solution, going downhill as fast as they can. These procedures
will lead to a local extreme, but not necessarily to the global one. SA, on the other hand, is
an algorithm suitable for finding the optimal configuration by being able to get out of a local
extreme.

The SA method is based in the thermodynamic process by which liquids crystallize or
metals cool and freeze into a crystallographic structure corresponding to the minimum energy.
At high temperature the atoms in a liquid have many allowed thermodynamic states but as the
temperature falls the thermal mobility is gradually lost. If the cooling process is carried out
slowly enough, the atoms will form a stable structure. In contrast, a rapid cooling rate will
lead to a state with many defects and irregularities in the metal structure (this situation usually
corresponds to a local energy minimum, i.e., a metastable state). Conventional minimization
algorithms may be compared to the rapid cooling or quenching, since in all these cases the
algorithms converge to the nearest local minimum.

In any SA algorithm the temperature is a defined factor that determines the randomization
degree in the variable parameters, that is, as the temperature falls off the probability of uphill
changes in the OF value decreases. Even though the goal of the algorithm is to minimize the
OF, in the simulated annealing process not all the random steps are taken in that direction,
sometimes random steps up are allowed. While the algorithm always accepts a change that
lowers the OF (downhill steps), steps in the opposite direction are only taken with a given
probability which depends on the system temperature and the magnitude of the configurational
change.

Pursuing the analogy with the physical cooling process, the probability that in the SA
process a change from the energy E1 to energy E2 of the configurational states takes place is
given by the function p = exp

(− (E2−E1)

KT

)
, where k is the analogue to Boltzmann’s constant, T

represents the system temperature and E is the OF value. If E2 > E1, (i.e., the OF increases),
the step will sometimes be taken, depending on the value of p. The routine that decides whether
to accept a reconfiguration is based on the Metropolis algorithm, which lies at the heart of
any SA algorithm. If �E > 0 Metropolis’ return is true only with probability exp

(−�E
KT

)
. If

�E < 0, the Metropolis result is always true, i.e., if E2 < E1, the OF decreases and the system
will always accept this step. In our case the minimization is preceded by a randomization
process over a set of discrete positions available to the trimmer and the weighting factors of the
set of monoenergetic electron beams that build up the electron energy spectrum. The OF will
be related to the quadratic departure of the trial central axis PDD SA calculated central axis
PDD with respect to the real (target MC calculated central axis) PDD. In figure 1 a schematic
flow chart of the algorithm structure is shown.

Input data for our algorithm are the MC calculated central axis PDD data file and a
PDD data base corresponding to n equally spaced monoenergetic electron beams covering
the relevant energy range, for each available position of the trimmer. In our case, both the
original MC calculated PDDs as well as the monoenergetic PDDs were calculated using the
PENELOPE Monte Carlo code (Salvat et al 2001). The geometrical configuration of our
system is shown in figure 2.
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Figure 1. Flow chart scheme for the simulated annealing (SA) algorithm used.

During initialization, starting trial weights for the electron beam spectrum are established
as well as the percentage by which the energy of a randomly chosen energy bin is changed. To
begin the annealing process, one of the energy bins is randomly selected. Next, its weighting
factor is increased or decreased by a small percentage. Central axis PDD is then recalculated
from the monoenergetic PDD data. In order to do that, the dose at a certain depth zi in the
water phantom is simply expressed as

D′(zi) =
n∑

j=1

Wj · Dmono
j (zi), (1)

where D′(zi) represents the calculated dose at zi,Wj is the weighting factor corresponding
to the jth energy bin and Dmono

j (zi) is the dose at zi due to the corresponding monoenergetic
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Figure 2. Geometry used to test the spectrum reconstruction.

beam. Every time a change in the spectrum is performed, the OF value is calculated and
compared with the last result obtained so far. Our OF is a measure of the departure of the trial
PDD from the target PDD, but there is not a unique choice for the OF; Deng et al (2001) have
defined a correlation coefficient (CC) for the trial PDD, D′(z), and the original PDD, D(zi):

CC =
∑n

i=1 D(zi)D
′(zi)∑n

i=1 D(zi)
∑n

i=1 D′(zi)
. (2)

In our case we have simply used the quadratic difference:

OF =
n∑

i=1

(D(zi) − D′(zi))
2. (3)

We also tested our optimization algorithm using CC as the OF and have found no noticeable
difference. We also used log(D) and log(D′) instead of D and D′ in equation (3) but we
obtained also very similar results. In order to compare the last PDD data to the previous one,
we define the parameter dOF = OFnew −OFold. If dOF is negative, then the new configuration
is better than the previous one, and the spectrum and the OF are updated. On the other hand,
if dOF is positive the result is accepted or rejected with a probability P = exp

(−|dOF|
T

)
, where

the factor T represents the system temperature. T is held constant for a given number of
steps. This allows the algorithm to explore the dominion of OF . Then T is decreased, and
a new set of steps are taken. As the temperature decreases the probability of accepting a
non-favourable change in configuration decreases too. Temperature in an SA calculation is
lowered following a given path. In our case it is reduced by a fixed amount after a maximum
number of steps have been taken at a given temperature. How steep the temperature descent
should be largely depends on the convergence rate of a given optimization problem. We found
that a key issue in our annealing algorithm is to allow for slow cooling, although this fact can
lead to longer computation times. A reasonable compromise cooling rate is, however, easily
achievable. The code exits when a maximum number of iterations have been performed or
when single step improvements in the configuration become smaller than a pre-established
value.
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Figure 3. Target and reconstructed PDDs for a point electron source. The source spectrum is
shown in figure 4.

Adding a trimmer to the system amounts to an increase in the dimensions of the OF
landscape, thus complicating the optimization method. After a short period of instability, the
OF corresponding to the correct position clearly becomes smaller than those corresponding
to other positions. At an intermediate point we freeze the position whose OF is smaller and
then further refine the source energy spectrum as usual. The drawback of this strategy is that
it does not scale well if more structures are to be added to the system, which is a logical step
if we want to simulate an actual applicator, for example. However, relative distances between
a given applicator’s structures are supposed to be fixed, so even when a simulated applicator
might not have the same shape and size as the actual one, the problem is still reduced to the
addition of one extra dimension.

3. Results and discussion

As has been said, our method is checked by using it to find a known original spectrum. We
first propose a broad energy beam distribution. Our set of monoenergetic beams used by the
algorithm is composed of n = 20 monoenergetic beams covering an electron energy range
from 0.5 to 10 MeV.

The initial trial spectrum is in our case constructed from the original PDD by calculating
its R50. Its most probable spectral energy Ep is determined from the well-known relation,

Ep = 2.5224R50 − 0.252. (4)

A unity weighting factor is assigned to the EP energy bin, while for the rest of the energy bins
the weighting factors were distributed as follows: 0.5 for the two Ep adjacent energy bins,
0.25 for the next neighbours, and 0.01 for the remaining energy bins.

In figure 3 we show PDD data from the spectrum reconstructed by using SA and the
random creep (RC) algorithm of Deng et al (2001), and we compare them with the original
beam’s PDD data. The RC method is quite similar to our algorithm except that it only accepts
downhill steps. There is no temperature parameter, or in other words it is a zero temperature
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Figure 4. Target and reconstructed spectrum for a narrow spectrum 6 MeV electron beam, using
different optimization methods (see text for details).

algorithm, and in fact we could reproduce its results by simply making T = 0 in the SA
algorithm. Both algorithms generally agree very well with the original beam’s PDD data.
However, we note a marginally better agreement using SA, particularly in the region where
the bremsstrahlung tail begins to be important. As has been said, in our system we only
have bremsstrahlung originated by the phantom, as we are considering a pure electron source.
Consequently, we have not subtracted (in any of the methods) the bremsstrahlung tail from
the original beams data in order to perform the spectrum determination.

In figure 4 we see the corresponding spectrum reconstructed using SA and RC, as well
as the original target spectrum (shown in the figure as a shadowed histogram for the sake
of clarity). We note that discrepancies with the target spectrum here can only be due to
problems with the optimization algorithms or due to the fact that we use a finite number of
monochromatic beams to simulate a continuum. In our case both algorithms use the same
number of monochromatic beams, so we note that SA seems to be more accurate than RC.
RC appears to fall within local minima that correspond to noisier spectra from which it cannot
escape because it cannot take uphill steps. We also note that the fitting is not perfect using SA
either. We believe the origin of the differences is related to the flatness of the OF minimum,
i.e., there are several configurations that yields almost the same value for the OF within the
computational tolerance, although they may represent quite different spectra. That might not
be detectable at PDD level, since the quadratic difference in PDD is the OF. Nevertheless
one might be interested in the spectra in addition to PDDs, particularly if the reconstructed
spectrum is to be used as the starting point of MC dosimetric calculations. We noticed that
some degree of noise in the reconstructed spectrum can be eliminated by slightly modifying
the OF, incorporating the idea of smoothness in the SA algorithm. A spectrum with a sharp
discontinuity should be slightly penalized (in terms of the OF value) compared to a smooth one
if both generate the same PDD within tolerances. In this way actual spectrum discontinuities
can be taken into account but those originated in the flat structure of the OF minimum should
be reduced. There are several different ways to achieve this. We simply chose to add to any
energy bin weight a bit of its nearest neighbours in each SA iteration. For comparison, we also
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Figure 5. Same as figure 4 for a narrow spectrum 15 MeV electron beam.

show in figure 4 the result of applying a standard FFT based smoothing algorithm after the
spectrum has been determined using SA. We see that our method is still capable of obtaining
the sharp peak in the spectrum maximum, which standard methods cannot.

We find that when beam energy is increased, reconstruction of the spectrum is faster
and more efficient. In figure 5 we show spectrum reconstruction for a higher (15 MeV)
beam energy. We see that both SA and RC reconstruction algorithms give reasonable results,
although smoothed SA still yields the best results.

In order to quantify the accuracy of the spectrum reconstruction let us introduce a measure
of the departure from the target spectrum as given by SA and RC, and what we call smoothed
simulated annealing (SSA). We define the following percentage relative error e:

e =
∫ |Wreconstructed (E) − Wtarget (E)| dE∫

Wtarget (E) dE
× 100. (5)

For SA we get e ∼= 27%, while for RC e ∼= 36% and SSA yields e ∼= 8%. These may look
like rather large discrepancies for SA and RC, taking into account that a perfect fitting could
be expected in this case, since the target spectrum is a simple theoretical one. However, If we
look for R50 in central axis PDDs, we find that reconstructed R50 lies within 0.01 mm from
target R50. In data reported by Deng et al (2001), relative error for the reconstructed spectrum
are around 50%, and still R50 values are within 0.1 mm from their target PDD R50.

We find that when beam energy is increased, reconstruction of the spectrum is somewhat
less efficient. In figure 5 we show spectrum reconstruction for a 15 MeV beam. We see
that both SA and random creep reconstruction algorithms give reasonable results, although
Smoothed SA still yields the best results. The relative errors obtained for SSA are e ∼= 32%,
while RC gives e ∼= 41%. We see that SSA results, even when poorer than those obtained for
6 MeV, are still better than those yielded by our RC calculations and those reported by Deng
et al (2001).

In figure 6 we show the optimization process for different positions of an Al trimmer.
We see that, after a relatively small number of iterations, the OF for the correct position of
the trimmer can clearly be distinguished as the lower one. That means that central axis PDD
data is in principle sufficient to determine the position of a trimmer, without resorting to a
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Figure 7. Same as figure 5 for a given trimmer position for different cooling rates.

more complicated multi-objective scheme. We observe that the evolution of the OF is not
monotonic but exhibits a wavy behaviour as it approaches its minimum.

Depending on the cooling rate, the OF’s evolution as the number of iterations increases
can even show a distinctive plateau before falling to its minimum value, as figure 7 shows. This
plateau could be due to a local minimum in the OF, from which it is known that SA methods can
get out but other non-stochastic methods could get trapped, so it deserve further exploration.
The bigger the cooling rate, the less stochastic the SA method becomes. We see that the plateau
vanishes as the cooling rate increases. That means that the plateau is not a local minimum but
a region with a gentler energy landscape. We further confirm this by changing the temperature
cooling rate at the moment the OF reaches the plateau (solid line in figure 7). We see that the
OF leaves the plateau immediately after the cooling rate change. Trying to identify the physical
origin of the plateau, we parameterized the spectrum using the position of the maximum, the
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Figure 8. Evolution of the OF, position of the maximum spectrum energy, and its bin weight when
the OF reaches a plateau.

value of the weight at the maximum, and the spectrum FWHM. In figure 8 we show the
evolution of these parameters together with the OF value as the SSA algorithm evolves. We
see that the existence of the plateau can be related in this case to a lack of definition in the
position of the spectral maximum in the spectrum, which oscillates when the OF reaches
the plateau. As the optimization evolves, the position of the maximum gets fixed, and the OF
slope increases as the algorithm continues tuning the rest of the parameters.

4. Conclusions

We have used a modified SA method to determine energy spectra for simple electron beams
from central axis PDD curves. We have shown that reconstructed source PDD curves show
excellent agreement with Monte Carlo calculated PDDs from the original source. Fitted
spectra have also been compared with target spectra, and we found that even when the original
source is a very simple theoretical one, usual methods are not able to accurately reconstruct the
corresponding energy spectrum. We believe this limitation is mainly due to the monochromatic
nature of the beams used to reconstruct the target continuous spectrum. However, modified
simulated annealing methods such as SSA can greatly improve the results obtained at the
expense of making a few additional assumptions about the system. PDD reconstruction on
the other hand is very good in all methods tested. This is not a surprise since the OF is related
to PDD so its reconstruction is more or less guaranteed, at least for a theoretical source. We
tested our method in a hybrid model in order to simultaneously determine the source energy
spectrum and the position of a trimmer from central axis PDD data. We showed that the
optimization method is able to correctly determine the position of the trimmer. This opens
the way for using hybrid models as an intermediate approach between virtual sources and
entire treatment head simulation. Further work includes using continuous spectrum beams to
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reconstruct energy spectra, adaptive energy bin widths and using SSA methods to determine
more realistic hybrid models.
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