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Exact solution for three particles interacting via zero-range potentials
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Exact solutions for three identical bosons interacting via zero-range s-wave potentials are derived. The
solutions are contour integrals over a product of hyperradial Bessel functions times angular functions weighted
by a coefficient. The product function is a solution of the free-particle Schrodigner equation and the weight
function is chosen to satisfy the zero-range boundary conditions. Scattering matrix elements for boson-dimer
elastic scattering, breakup of a dimer into three particles and the time-reversed recombination process are
derived. For vanishing total energy E, these quantities are given as closed-form functions of the two-body
s-wave scattering length a and a three-body renormalization constant R,. The exact results obtained by this
method are compared with those obtained using other methods. Differences in the functional dependence on R
of the order of 2% are noted. Comparison with the hidden-crossing theory finds similar agreement with the

functional dependence upon a and Ry.
DOI: 10.1103/PhysRevA.73.032704
I. INTRODUCTION

There is considerable theoretical evidence that only two-
body s-wave scattering lengths @ and a second parameter,
called a renormalization constant R,, are adequate to de-
scribe the properties of dilute Bose condensates, threshold
three-body recombination, and a class of three-body loosely
bound states predicted by Efimov [1]. The role of the renor-
malization constant is extensively discussed in Refs. [2-7].
There it is shown to enter into the description of three-body
interactions as a second scale factor independent of a. The
dependence of physical quantities on R, is deduced through
fits of exact calculations to relatively simple functional forms
involving In(Ry/a). The functional form is found to be uni-
versal, up to small corrections. Properties of real systems are
found to be insensitive to details of the interactions, leading
to the important prediction that properties of Bose conden-
sates are universal in that systems with identical values of a
and R, will exhibit similar properties independently of other
details of the two-body interactions. This property is called
universality [3,4,8] and it is prospectively an important fea-
ture of dilute Bose condensates.

Zero-range models where the scattering length is intro-
duced via boundary conditions [9,10] [see Eq. (1) below] are
basic to the theory of two-particles that interact via a con-
stant s-wave scattering length. When such interactions are
employed for three or more particles, it is found that solu-
tions exhibit a nonphysical divergence called the Thomas
effect [11] when all three particles are close together. To
avoid this divergence a cutoff distance R, is introduced.

The role of this cutoff is controversial. Following the
demonstration by Danilov [10] that the solutions for three
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particles interacting via zero-range potentials are not unique,
Ref. [6] concludes that solutions with the Thomas-effect di-
vergence are unphysical and must be excluded. The author
further asserts that there remains one physically acceptable
solution even after the divergent solutions are deleted. This
assertion, however, contradicts our previous result [12,13]
where we find an analytic solution for the special case of
zero energy and positive scattering length. That exact solu-
tion describes elastic boson-diboson scattering and exhibits
the Thomas effect. If that solution is eliminated, then there
are no solutions representing boson-diboson scattering con-
trary to the assertion of Ref. [6] that a physically acceptable
solution exists. We therefore conclude that for zero-range
potentials with constant scattering length the renormalization
constant R is needed.

This conclusion follows more generally from the hyper-
spherical close coupling expansion [14] with zero-range po-
tentials [15]. This theory uses a representation in adiabatic
eigenfunctions and potential curves and there one finds that
the effective potential for the elastic scattering channel al-
ways shows the Thomas effect, i.e., an attractive —b/R%, b
>Al-1 potential, in the limit that the hyperradius R vanishes.
Furthermore, Kartavtsev [16] shows that this channel is
coupled to all other channels, thus all solutions generally
exhibit the Thomas effect.

Of course, it is understood that the Thomas effect does not
appear when realistic two-body potentials are employed. To
model two-body interactions with zero-range interactions
more realistically, Fedorov and Jensen [7] allow the effective
range parameter M(k*)=kcot § to be energy dependent.
They then show that with a suitable choice of parameters and
the replacement of the two-body kinetic energy k*/2m by ,
where U,(R) is the hyperspherical potential energy eigen-
value for the nth channel, one obtains channel potentials free
of the unphysical R~ divergence.

The energy-dependent effective ranges do indeed regular-
ize the three-body problem realistically in the adiabatic ap-
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proximation. However, use of an energy-dependent M (k?)
can only be carried out in the hyperspherical close-coupling
formulation since it is necessary to replace k* by a local
three-body energy that is a function of R. In this case exact
solutions obtained earlier [13] for constant M (k%) cannot be
employed.

More serious, however, is the problem that the adiabatic
basis functions CD,,(R;I?) are not orthogonal if the boundary
conditions are energy dependent. For this reason it is difficult
to formulate an exact theory using an energy-dependent
M(Kk?). Since we are interested in exact solutions we use a
constant effective range and a constant cutoff R for which
exact physical solutions can be found [13].

Zero-range potentials (ZRPs) are good models of actual
three-body systems if the scattering length is much larger
than the nominal range r, of the two-body potential. This is
the case for He atoms [4,15,17,18]. With the advent of mag-
netic tuning [19-21] it is also possible to tune scattering
lengths so that a > r, for a variety of atomic species. For this
reason exact computations in the ZRP model are of physical
interest.

Because of its wide significance for the description of
threshold properties of few-body systems, it is important to
understand the constant R, as precisely as possible. To ad-
vance this end we have solved the three-body zero-range
model for positive a exactly to obtain an expression that
gives the dependence of an observable, namely, the phase
shift for boson-diboson scattering for total angular momen-
tum and energy equal to zero, on R in closed form. This
rather special result is reported in an earlier manuscript
[12,13]. There, small corrections of the order of 0.2% to the
In(Ry/a) terms were found. These small correction terms add
to the dominant In(Ry/a) term but the theory still has the
universality property.

In this manuscript we further investigate the interaction of
three Bosons of mass m in the zero-range or shape-
independent model by deriving a quadrature solution for
nonzero energies still with positive a. The functional depen-
dence of all scattering matrix elements S, i where 0 denotes
the diboson bound state with binding energy 1/(ma?®) and j is
any final state label, are deduced.

The two-body ZRPs [22] are defined by the scattering
length a through the relation

19y

o or =-1/a. (1)

r—0

Such potentials can be used to model the asymptotic interac-
tions of the atoms involved in the recombination processes,
where the nominal range of the two-body interactions are
much smaller than the mean radius of the three-body sys-
tems. A comparison between realistic effective potentials ob-
tained using the hyperspherical adiabatic method [23] and
those corresponding to ZRP derived using the Sturmian
theory [24] has been done for a system of three helium at-
oms. The comparison shows that both calculations agree
within the 17% and even 3% for some symmetries [24]. The
ZRPs have been also applied to calculations of the recombi-
nation probabilities for three helium atoms using approxi-
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mate analytical solutions to the problem [15,25]. These cal-
culations have shown that the ZRP model properly describes
some of the transitions occurring in real processes. Some
exact numerical solutions of the three-body problem interact-
ing via three ZRPs have been also reported [26]; however,
the method applied is not completely familiar to the atomic
physics community. One of the main aims of this paper is to
present a closed-form solution for the three-body problem
where the two-body interaction are given by ZRPs.

In a previous paper the solution of the three-body problem
where two of the particles were interacting via ZRP and the
third was free [27] was presented, henceforth called the
model problem. This paper gives the solution of three inter-
acting particles via ZRPs using the method developed for the
three charged particles [28]. In the present case the three-
body Schriédinger equation is just the free-particle equation,
which is separable, but the ZRPs are represented by nonsepa-
rable boundary conditions. As for the model problem, an
integral representation of the wave function is introduced to
treat the nonseparable boundary conditions.

The Schrodinger equation for a system of three free par-
ticles can be solved in many coordinate systems by separa-
tion of variables. However, the inclusion of nonseparable
boundary conditions is difficult if the appropriate coordinates
are not used. We find that hyperspherical coordinates are best
adapted to ZPRs. In the center of mass of the system these
coordinates are a hyperradius R, with dimension of length,

and five dimensionless angular coordinates R, namely, the
hyperangle «, a relative angle 6 between two Jacobi coordi-
nate vectors, and three Euler angles [14]. The momentum K,
conjugate to the hyperradius R, is given by E=K?/2 in mass
scaled coordinates [25]. The general solution of the
Schrédinger equation is a linear combination of products of

Bessel functions Z,(KR) and angular functions Sn(v,l?). For
general boundary conditions there are no restrictions on v
thus the linear combination is, in general, a contour integral
over the separation constant v. Thus we write

W(R.R) = 1% f A(v)S(v,R)Z,(KR) vdv. 2)

The expression for ¥ (R,ﬁ) is a Kontorovich-Lebedev-
like [27,29] representation where the integration contour it is
not a priori defined. The function Z,(KR) can be any of the
Bessel function J,(z), Hf}l’z)(z) or K,(z) [30], depending on
the total energy E. When the energy is less than zero then the
proper function is the K,(z) and Eq. (2) is the Kontorovich-
Lebedev representation. However, for £>0 more than one
contour integral is needed to write the solution with the cor-
rect asymptotic behavior and then the representation be-
comes a generalization of the Kontorovich-Lebedev trans-
form [27].

All of the interesting dynamics of the problem are incor-
porated in the coefficient A(v). In Sec. II we show that the
boundary conditions lead to a three-term recurrence relation
(TTRR) for the coefficient A(v). There are two linearly in-
dependent solutions of the TTRR and their exact asymptotic
expressions are easily obtained. By using the asymptotic so-
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FIG. 1. One of three sets of Jacobi coordinates for three par-
ticles. Other sets are obtained by cyclic permutations.

lutions as starting points in the TTRR, A(v) can be evaluated
in the entire complex plane of v. The details of how to con-
struct A(v) are given in Sec. III. In Sec. IV we evaluate W for
large R and in Sec. V for small R. These two limits are then
used to find physical solutions to obtain the elastic scattering
S matrix Sy, and the breakup matrix Sg in Sec. VI. Analytic
results in the limit of zero energy are given in Sec. VII, and
are applied to three-body recombination in Sec. VIII. Con-
cluding remarks are given in Sec. IX.

II. STATEMENT OF THE PROBLEM

The time-independent Schrodinger equation for three free
identical particles in mass scaled Jacobi coordinates x; and y;
(with i=1,2,3) shown in Fig. (1) is

1 1
[- V- Evgi]qr:mf. 3)

As mentioned in the Introduction, the ZRP are included via
the boundary condition where the logarithmic derivative of
the function (x; V) is fixed by

[M . l(x»lo} ~0, @)
ox a 0

1
where a is the scattering length associates with the two-body
interactions.

The hyperspherical coordinates are given by the hyperra-
dius R=x;+y7, the hyperangle e, =arctan(x,/y;), and the di-
rection vectors X; and y; [14]. In these coordinates the
Schrodinger Eq. (3) is

14 a\ A? .
—— R5—>——+K2 V(R,R)=0, 5
{R%R( dR) R? (R.B) ®)
where K>=2E and the operator A? is defined by
1 d J L,
Ar=— ﬁ—<sin2aicosza,~—> +——
sin“a;Cos”a; day; da; sin“q;
12
Vi
+—5, (6)
cos“a;

and Li_ and Lyz_ are the angular momenta associated with the

coordinates x; and y;. In these coordinates the boundary con-
dition Eq. (4) becomes
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[M+E(ai\lf)] ~o0, (7)
&a’i a a;—0

which are clearly nonseparable in hyperspherical coordi-
nates. In the last equation we replaced sin ¢; by its small
angle limit ¢; to simplify the notation. This change does not
modify the boundary conditions on W.

This work treats the case where the total angular momen-
tum of the system equals zero. The general case can also be
solved, but is not considered in the present paper. Even
though the total angular momenta L equals zero, Li and Li-
could differ from zero. l '

Equation (5) can be solved by separation of variables
where the angular and radial equations are given by

[A2- (¥ -4)]S(»,R) =0, (8)

1 &( 5&) -4
—— | RP— | -
RYIR\ " OR R?

and where v is the separation constant. The angular functions

+ KZ}ZV(KR) =0, 9)

S (V,RA) are known [25] for general L; however, this study is
for the special case when L=0 and identical bosons. Then the
functions are given by

e L)

S(v,R)=>, ———"=. (10)

=1 sin a;cos a;

Note that these functions are regular at a;=7/2 but are ir-
regular at o;=0, i=1,2,3. These irregularities are required in
order to satisfy the zero-range boundary conditions of Eq.
(7).

The radial equation Eq. (9) is solved in terms of Bessel
functions. Different choices for these functions are available,
namely, we can use the functions HS/I)(KR), HS/Z)(KR), and
J,(KR) with outgoing [30], incoming, and standing-wave
asymptotic behavior when E>0. For E<0 we use K,(KR)
[30], with K==+iK.

The general solution ¥ of Eq. (5) is then given by Eq. (2)
satisfying the following boundary condition:

f A) %szm

i

+ é[aiS(v,l?)Z,,(KR)] vdv=0, (11)

ai—0

where the coefficient A(v) and the contour ¢ are to be deter-
mined. To simplify the notation we define the function X(v)
according to

o"[a,»S(v,ﬁ)] T 8
X(v)=———,0=—vcos v—+ —=sin v—.
O”ai ! 2 \'/3 6
(12)

The identity
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2
K—;ZV(KR) =Z,.(KR) £ Z, ,(KR). (13)

where + is used for J, and H(Vl’z) and — for K,, allows us to
rewrite Eq. (11) as

fA(v)X(V)Z,,H(KR)dViJA(V)X(V)Z,,_I(KR)dV

2
+ J AW sin v—27,(KR)dv =0. (14)
¢ akK 2

At this point we introduce a restriction on the contour ¢
and the coefficient A(v). In Eq. (14) the Bessel functions are
evaluated at different values of the indices v and v+1. To
obtain three integrals evaluated at the same value of v we
close each of the contour c¢ to connect the functions Z,.,; with
Z,. This is possible because the contribution at infinity can
be neglected and because we require that the function
A(v)X(v) has no singularities inside of the contour connect-
ing v and v+ 1. With this constraint we can rewrite the last
equation as

f [A(V— DX(v=1)+xA(v+DX(v+1)

2v
aKu(v)

+A(v) sinvg Z(KR)dv=0.  (15)

If the integrand in Eq. (15) vanishes, then the integral will
also. This requirement gives the three-term recurrence rela-
tion

Av=1DX(r=1) £A(v+ DX(v+1) +A(V)§—['; sinvg 0.

(16)
Defining the quantity u(v) according to
X
ur) =22 (17)
T
cos v
2

we write the recurrence relation Eq. (16) as

u(v-1DA@r-1) Fulv+ DA(v+1)= j—;A(y). (18)

At this point the problem of solving the Schrodinger
equation and boundary conditions Egs. (5) and (7) has been
transformed into the problem of solving the TTRR Eq. (18).
The solution of these equations is described below in Sec.
I C.

The appropriate integration contours have been deter-
mined for the model problem in Ref. [27]. These same con-
tours are used in the present case and are explained more
extensively in Sec. III B below. In the remainder of this work
it is assumed that £>0.
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III. SOLUTIONS AND INTEGRATION CONTOURS
A. Solutions of the three-term recurrence relation

To find the solutions of the TTRR we first find asymptotic
solutions valid for large » then use the recurrence to step the
solutions to all regions of the v plane. It is convenient to
introduce the change of function B(v)=u(v)A(v) in Eq. (18),
which leads us to an apparently simpler TTRR,

B(v—1)-B(v+1)= B(v). (19)

aK u(v)

Two linearly independent solutions By and B; [27] are de-
fined by the asymptotic behavior for large v where u(v)/v
— 1 provided v is not an odd integer. In this limit the two
solutions are

lim B(v) = B (v) = exp[— vay].

lim B, (v) = B(L“SY)(V) =explvag|/sinmy, (20)

where sinhag=1/(Ka). Since v/u(v) is an even function of v
it follows from Eq. (19) that

1

sin v’

BL(V) = Bg(- v) (21)

Using Bﬁfs” v for large positive Re v the recurrence rela-
tion is solved by stepping downward to obtain a coefficient
Bg)(v) for all Re v but especially on the interval 0 <<Re »
<?2. Similarly the coefficient B(Lasy ) is found for all Re v but
especially on the interval 0 <Re v=<2. The restriction to
positive v is required in order that the Hankel functions have
correct properties for small values of R and in the limit that
v— *ic. The Re v interval must have length 2 and it turns
out that any interval of length 2 is acceptable provided O
<Re v<<4. This larger interval is not used in the present
work.

Both of these coefficients have a large number of poles in
the interval 0 <Re v<2 at v;—m where v; is a zero of u(v)
and m is an integer such that v;—m lies in the interval. The
actual number of poles depends upon the large starting value
of v and becomes infinite as the starting value becomes in-
finite. For any finite starting value, as used here, the number
of poles is finite.

The specific starting values employed here use v=2N
+ ov where N is a large integer, ¢/2N<6v<<1-c/2N and ¢
is some constant that is much less than unity. This excludes a
small region in the complex v plane of radius ¢/2N about
each integer. In general this leads to a discontinuity of order
c/2N at the integers. When N becomes infinite the disconti-
nuities disappear and we can suppose that the B(v), thus
obtained, is analytic at integer values of v. Actually, because
u(v) vanishes at v=4 there is a pole of Bg(v)cosv(m/2) at
v=2 even when Bg(v) is continuous at integers greater than
3. This particular pole requires special treatment as discussed
below.

Since any solution of the TTRR can be multiplied by an
arbitrary function P(v) of v with period 1, i.e., P(v)=P(v
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+1), it follows that the general solution is given by
B(v) = Bg(v)Pr(v) + BL(v)Pr(v), (22)

where Pg(v) and P;(v) are arbitrary periodic functions.
These functions and the contours must be chosen so that
A(v)X(v) has no singularities in the region 0 <Re v<2. The
contours are discussed in the next section and the periodic
functions in Sec. III C.

B. Integration contours

As discussed in Ref. [27] it is necessary to employ two
contours with different Bessel functions to obtain convergent
integrals for £>0. Following that work we write

~ vdv
W(R) =2R> f BR(V)PR(V)S(V,R)JV(KR)M

+R? J B)S( R (KR) 22 (23)
o u(v)

where c; starts at i goes to 0+ie along the imaginary v axis
and thence to +% along the positive real axis. The contour c;
starts at —i% and goes to +i% parallel to the imaginary axis. It
crosses the real axis in the interval 0 <v=2. The contours
are shown in Fig. 2. It must be emphasized that the separate
terms in Eq. (23) do not converge since J,(KR) increases
exponentially as v—i%. Only the combination converges,
since then the increasing part of the first term is cancelled by
the second term. This cancellation is apparent since
2J,,(KR)—Hi”(KR):HS/z)(KR) and since HS/Z)(KR) decreases
exponentially as v— ioe.

The recurrence method used to solve for Bg(v) gives a
function A(v)X(v) with no singularities in the upper right-
hand quadrant of the v plane. The singularities in the right-
hand quadrant appear only on the real axis and the contour is
immediately above that axis. For that reason the contour c; is
readily shifted by one unit in v provided Pg(v) has no poles
in the upper right quadrant.

Since Bg(v) and B;(v) have poles on the interval 0<w
=<2 the contour ¢; cannot be shifted two units as required by
the derivation of the TTRR unless the periodic functions
Pr(v) and P;(v) are chosen so that the function
B(v)cosmv/2=A(v)X v has no singularities on the strip 0
<Rev=<2 and

lim Pg;(v)=const < % . (24)
V—i%°
If these conditions are satisfied then the wave function of Eq.
(23) is actually a mathematically acceptable solution of the
Schrodinger equation since all integrals converge. In the next
section we show that periodic functions satisfying the requi-
site conditions can indeed be found.

C. Periodic functions Pg(v) and P;(v)
The periodic functions Pg(v) and P,(v) that satisfy the

above conditions have the form

N1 i (R)
sin (v — v;) sin w(v+ v}

Pe() = lim [] STl s mlry )
N 2o Sin (v —w;) sin m(v+w))

(25)
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FIG. 2. Three contours cy, c¢;, and ¢ in the complex v plane
used to compute wave functions and scattering matrix elements.

si -
PL(V) = lim lAm

N—o sin v
! sin (v + v;) sin m(v - yE-L)) (26)
im0 Sin m(v—w;) sin w(v+w)) ’
where w; is a zero of the Wronskian W v
Wv=BrvB;(v—1)-Bg(v-1)B; v, (27)

and constants y(.R’L) are to be chosen.

This form is surmised based upon experience with the
exact solution in the special case K=0. Basically, the ratio
sin m(v—v;)/sin m(v-z;) shifts poles from »; to a set of
points z;xm, m=0,1,.... If the residue of B(v) at these new
poles in the interval 0 <Re v<2 vanishes, then B(v) is an
acceptable coefficient.

Note that the Wronskian W(v) has twice as many poles on
the interval 0 <v<2 as do the coefficients Bg(v) or B, (v).
Also, there are a similar number of zeros. Since the Wronsk-
ian W(v) is an even function of v then the zeros come in
pairs which we label =w;, j=0,1,...,N—1. We determine
the constants 'y(.R) and 'y(.b from 2N equations so that the
residues of B(v) Eq. (22) vanish at v=+w,. The equation is

Res[B(1) .-, =0. 28)

This choice of y(.R’L), j=0,1,...,N—1 eliminates the poles at
+w,. Equation (éS) is written in greater detail in Appendix A.

The point v=2 is special, and is not included in the set v;,
yet the coefficients are singular at v=2. To eliminate the
singularity at v=2 we require that

Br(2+e)Pr(2+€)+AB,2+€)P,(2+€=0. (29)

In the above equation it is understood that € is greater than or
of the order of ¢/2N. In the limit that N— o the value of €
can be made arbitrarily small.

The 2N+1 equations Egs. (28) and (29) determine the
2N+1 constants y(R), y(,L) and A. With this construction we
remove all the poles on the strip 0 <Re v=2.
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The positions of the poles of Bg(v), namely, v;,—m, does

not depend upon the parameter Ka. In contrast, y(.R), y;.L), and
the zeros of the Wronskian +w, depend upon Ka via the
recurrence relation. As we shall see, this information allows
us to identify parts of the S matrix that depend upon Ka and
parts that do not.

It is necessary to know the values of the Pg(v) and P, (v)

in the limits that v— *i%. One easily finds

lim Pg(v) = exp[ii'ﬂz (v; - 7;”)],

Vi j=0

lim P, (v) =~ iA exp[liﬂ'E (v— ") = in]. (30)

V—i® Jj=0

In the following we take vy=ity, where it is a complex
zero of u(v) and all other v;, j=1 are real. It also proves
necessary to construct functions with vy=—it,. The two func-
tions, denoted by u and d, respectively, are constructed by
identical procedures, thus only the u choice is described in
detail. For simplicity of notation, the u label is omitted until
these two functions are combined to get physical solutions.

IV. WAVE FUNCTIONS AT LARGE R

Having found solutions of the Schrodinger equation for
three particles interacting via ZRPs, it is now necessary to
extract the scattering matrix elements. These quantities are
found by evaluating the integral in Eq. (23) for large R.
When R is large a steepest descent analysis shows that the
dominant part of the wave function comes from regions
where v is large and imaginary. The analysis is carried out as
described in Ref. [27].

The steepest descent evaluation finds three nonvanishing
contributions, namely, a contribution to the incoming wave
H(Vz)(KR) from the first term as v— +i%, and two contribu-
tions to the outgoing wave H(vl)(KR). The latter two contri-

butions come from BR(V)HEII)(KR) as v——ic and from
B, vH\"(KR) as v— +ic.

When the limits R— o, x;=const are taken under the in-
tegral and the stationary phase approximation [27] is used to
evaluate the integral we obtain

-rila —iks; iks;
ey e ™ @y we™i
\I,i—>—l es eléﬁc——es e“sgc—
T S; S;
iks;
w {nei
_Aes eléﬁc _}7 (31)
S
where
o)
R.L R,L
SR = _ 7, Re(v; - y§ D, (32)
j=0
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s® = Tty — 772 ImyﬁR),
j=0

sO=—m> Imy;-L), (33)
j=0

and where we have set r;=x; and s,:\@yi/ 2. One immedi-
ately sees that only the bound state channel appears in the
large R limit when r; is held fixed.

The limit with r; fixed is only one part of the circle at
infinity. It is also necessary to examine the limit as R—
with « held fixed. To evaluate this limit advantage can be
taken of the fact that all integrals converge when the integra-
tion over v and the limits are interchanged. Then the limiting
forms of the Bessel functions, namely,

[ 2 .
H(Vl)(KR) _ R el(KR—']T/ZV—ﬂT/“)’ (34)
(2) 2 —i(KR-m/2v—1/4)
H;”(KR) — 7TKR€ , (35)

with 2J ,,(x):HE}l)(x)+HE}2)(x) are taken underneath the inte-
grals. With these substitutions in Eq. (23), the incoming
waves corresponding to H(Vz) appear under the integral around
contour c¢;. This contour may be closed in the upper quadrant
without enclosing any poles of Bg(v) thus the coefficient of
the incoming waves vanishes, verifying that the wave func-
tion of Eq. (23) satisfies physical boundary conditions at
large R, and «;, i=1,2,3 fixed.

For future reference the coefficient of the outgoing wave
is also needed. By joining the lower part of the contour c;
with the part of ¢; along the real axis to define a new contour
c; shown in Fig. 2, we have that the coefficient Sy ¢ is given
by

Sko= }Te—iwml f PrW)B(v) R(:E)R(”)s(y,ﬁ)e—m)vydv
« f P(v)B,(v)
—

’
1

S(v,ﬁ)e‘i(”/z)”vdv]. (36)

V. WAVE FUNCTIONS AT SMALL R

If the wave function satisfies appropriate boundary condi-
tions in the limit R — 0 then the coefficient S, g would be the
fragmentation matrix element for the reaction

B+B,— B+B+B. (37)

To examine the wave function at small values R=R of R,
note that the integral representation in Eq. (23) converges,
thus the limit R—0 may be taken before integration. The
limit of the Bessel functions J,(KR) and HE}”(KR) and for
small R=R, and Re v>0 are
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1 1 v
—KR
F(v+1)<2 ) ’

H (KR, — .LF(V)(%KRO)_V. (38)

J(KR,) —

After substituting these expressions onto Eq. (23) we may
close the contour c; in the right-hand quadrant of the com-
plex v plane without enclosing any singularities of the inte-
grand. It follows that the first term vanishes as R—0. The
only contribution comes from the contour ¢; as R— 0. Again,
after substituting the limiting form of HS)(KRO) in this term
the integral can be evaluated by closing the contour around a
semicircle at infinity in the left-hand v plane. In this case
many poles of the integrand are enclosed since both Bg(v)
and B;(v) have poles in the left-hand plane. Those on the
real axis have negative real parts that are greater in magni-
tude than v»,=4. It follows that the residues at these poles
vanish as R(’;f'_z for j=1. The pole in 1/u(v) at v=0 is can-
celled by the angular wave function S(v;ﬁ) so there is no
contribution from this pole.

There is also a pole in Bg(v)/u(v) at the purely imaginary
point v=—v,. Because Rj"0 has unit magnitude, the pole at v,
gives the dominant contribution to the wave function at van-
ishingly small R,. This contribution is readily evaluated us-
ing the residue theorem for the residue at u(v)=u'(-vy)(v
+1,)=0. We have

lim ¢(R,R) = Ry*BS(~ v, R)

RO—>0
_Bri= ) Pr=w)
= u,(_ VO)R(Z) F( V0+1)
X S(- v, R)(KRy/2)", (39)

which defines the quantity 8. Since v, could be either +it, in
Eq. (39) we see that there are two solutions which are de-
noted by u when y,=it, and d when vy,=-it,. The coefficient
in the limiting value of the u solution will be denoted by B.

The limiting value of the d solution is then 8" S(ify, R). Since

S(v,R) is an odd function of v. it follows that the linear
combination

W(R) = BY)(R) + B Y (R) (40)

vanishes at R=R,,.
The function W(R) satisfies the Schrodinger equation for

all R,R in the region R > R, and vanishes at the boundary Ry,
It therefore corresponds to a physical system where a hard-
core three-body potential

Vr(R) — O, R = Ro,

VAR)=0, R>R,, 41)

has been added to the Hamiltonian.

This potential is in addition to the two-body interactions
represented by the ZRPs. In effect, this explicit three-body
potential is introduced to compensate or renormalize away
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unphysical effects of the ZRPs when the positions of all three
particles coalesce. Thus this potential will be referred as the
renormalization potential.

VI. S MATRIX

With the introduction of the renormalization potential, the
wave function is W(R) is acceptable everywhere including
on the circle at infinity. From the asymptotic expression Eq.
(31) one has for the Sy, matrix element the result

(R) _(R
Be'+ ,B*e $

(R) (R)
B+ Be

i o 5‘R>A:8€X(L) -—ABe” !
te ™ ® . w | (42)
Be? +Be

Soo = exp(2i5(f))<

where we define

= AW) — _1Ad7T*
A=A (AT,
810 = [0 = [ 811,

sBL) = [§RLW = _ [(RD]@ (43)
The total cross section for the process
B+B,—B+B+B

is calculated from the S matrix element

~ (1)
SkRo= ,351;’0

= o(d)
+p8 81?,0 (44)
by integrating the squared matrix element over R. Alterna-
tively the total cross section can be computed using Sy, and
unitarity. It is convenient to define the quantity |S,|> accord-
ing to

|501|2=f |S§,0|2dﬁ, (45)

so that the unitarity relation reads
[Sool* + 1S01* = 1, (46)

from which |Sy,|* is readily computed.

VII. CALCULATIONS IN THE LIMIT K—0

The shape-independent representation of two-body inter-
actions is generally employed for energies such that Ka<1.
When the energy is greater than 1/ma?, higher order terms in
the expansion of the two-body phase shift may be important,
thus interest attaches to cross sections and rate coefficients in
the limit that Ka—0. It is also found that in this limit w;

—0, y;R’L) —0 and

sin (v — vp)

B (v)P, v=iABg(— v)Pg(-v) (47)

sin® 7y

In this region we can use that Bg(v)=(Ka)"Q(v), where to
lowest order in (Ka)? the reduced coefficient Q(v) satisfies
the two-term recurrence relation
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0r-1)= = 0(v), (48)
u(v)

so that lim,_,(Q(g)/Q(—&) — 1 from which one easily finds

0(e+2) sin®me

— (Ka)*Ti
A= Ka) lim ) Sinh(mtg) (49)
_(ﬁ)“r u(1 = e)ule)u(-1-e)u(-2) sin®> 7e
2/ (—e)ec1-8)(=2) sinhm,
=—(Ka)4(1 -4—71> 8 (50)
33/ sinh 7ty

and we have used Eq. (17) to evaluate u(v) and u’(v). Note
that Q v differs slightly from the similar function C(v)
=Q vv/2u(v) employed in Ref. [13]. This difference is re-
flected in the two-term recurrence relation Eq. (48).
Equation (42) for Sy, in the limit K— 0 has the form

Sy = eXp(2i5m)<B e ;f o 7:0;*‘:755 =5 )>. 51)
Using Eq. (51) and defining &, according to
p=|pBle ™" (52)
and
A(Ry) = & + to In(Ry/a) (53)

gives the expression for Sy
SOO= ei25w—i2A(R0)[1 + e—211-t0+i2A(R0)
+i24e”™0e A Rogin A(Rg) /[ 1 + e 207 2AR0)]

2iAe”™0e* Rolgin A(R,)
T L 20 2Ry

- eizﬁw—izA(R0)< 1

). (54)

The term in round brackets on the right-hand side of Eq. (54)
can be written

1 +2iPe®®sin A (R,), (55)
where
A 4 4(Ka)*
P=.—=<—:—l)¥, (56)
2 sinh(7rt,) V3 sinh” 771,
and where
=27t 03
e "™osin 2A(R,) )

A.(Ry) = A(R) — arct . (57
r( 0) ( 0) arc an( 1 +e_2mOCOS 2A(R0) ( )

With these definitions the elastic scattering S matrix is
Sgo = €2 72I0R (1 1. 2iPe’ Rdsin A (Ry)),  (58)
and the squared matrix element |S,|> becomes
[So1|> = 4P(1 - P)sin® A(Ry), (59)

which is exactly the form given by the hidden-crossing ap-
proximation. Equation (59) shows that the hidden-crossing
form is exact at E=0 for the zero-range model. Furthermore
the exact “probability” P is independent of R just as in the
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hidden-crossing theory. The renormalization enters only
through the phase A,(R,), but now the phase differs from the
hidden-crossing result owing to the second term on the right-
hand side of Eq. (57).

This renormalized “Stuekelberg” phase is closely related
to the exact elastic scattering phase at the breakup threshold
given by Eq. (58) with P=0 which was previously obtained
by our group [13]. In terms of the elastic scattering phase
8(Ry)=06.—A,(Ry) we have that A.(R,) is given by

AV(RO) = 500 - 5(R0)’ (60)

where 8, is defined by Eq. (32). Clearly, if the renormalized
phase for elastic scattering is set for the zero-range model,
the “Stuekleberg” phase relevant to breakup or to three-body
recombination at threshold is easily determined simply by
finding the zeros v; of the X(v) in order to compute 8., using
Eq. (32).

The sin® factor was previously obtained in the hidden
crossing calculations of Ref. [15], in the hyperspherical close
coupling calculations of Ref. [31], and as a fitting function
for the exact zero-energy calculations of Ref. [26]. Tt is re-
markable that our exact theory shows that the same form
holds exactly at zero energy. In particular, the renormaliza-
tion constant R, enters into the cross section formulae only
through the phase of sin A,(R), just as in the fit to the exact
numerical results of Ref. [26]. The main difference between
our exact result and the exact numerical results is the addi-
tional small oscillatory factor in the definition of A(R,).
Since the amplitude of this factor is of the order of 0.002 and
since the functional form fits the numerical results with an
error of +0.7% the exact results given above are fully con-
sistent with the essentially exact results of Ref. [26].

Equation (59) and the results of Ref. [13] show that most
important physical quantities can be computed exactly for
the zero-range model using our method. To summarize the
technique one first solves Eq. (19) for Bg(v) using Eq. (20)
for the starting value at large positive v. The coefficient
B;(v) is found by a similar procedure. The zeros w,, of the
Wronskian of the two solutions on the interval 0 <Re v<1
are then found. These zeros are functions of the energy E, the
poles v; of the solutions are also found, by the simpler task
of locating the zeros of p(v). They are independent of E.
These quantities are then used to form the periodic functions
Pr(v) and P;(v) and to compute the constant A from Egq.
(49), the phase &,from Eq. (32), and the phase &, from Eq.
(54). All of these physical quantities depend upon the energy
E.

They also depend upon the renormalization constant Ry
found by fitting one of the physical quantities to its measured
value at some energy. Alternatively the physical quantity can
be computed by, e.g., the hyperspherical close-coupling
method, using realistic two-body potentials and that value
used to obtain R. In either case, the renormalization con-
stant, thus obtained, incorporates the details of the two-body
interaction that are most relevant for low energy three-body
interactions.
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VIII. APPLICATIONS

Since we are concerned with cold ensembles of atoms, it
is natural to employ the zero-range model at total energies
E=0. Calculations of elastic scattering at E=0 have been
given in Ref. [13]. In this section we report computations of
the three-body recombination rate K5 at E=0 given by [15],

Soil* 7

|
K.=202 233/2 4
3=202m) (Ka)4ma

_ syt

(Ka)*
Using P from Eq. (56) gives
sin? A (Ro) %

h
— —a* = C; sin?> A,—a*.
sinh” 7ty m m

h
sin? A,(Ry)—a*. (61)
m

Ky=2"m(4m—-3\3)

(62)
In this way the coefficient
C3 =277 (4m — 343)/sinh? 71, (63)

of (fi/m)sin®> A(R,) is found in closed form. Numerically, it
is equal to C3=67.1177..., in excellent agreement with the fit
C3=67.1£0.7% to the exact numerical computations of K;
reported in Ref. [26]. This value is also in good agreement
with the hidden-crossing approximation [15], namely, Cyc
=68.4. The hidden-crossing result is derived in detail in Ap-
pendix B. After completing this work [12] we learned that
exactly the same coefficient was obtained independently by
Petrov [32].

The phase of the “Stuekelbeg” oscillations A,(R;) is a
sum of constant term &, and terms that depend upon R,. The
dependence upon Ry is given in closed form by Eq. (57). An
expression for &, of Eq. (53) was obtained in Ref. [13]. It is
given in terms of a rather complicated combination of
gamma functions and Pg(—v;), but can also be considered a
closed from result. In any event, the value §,=1.588 was
obtained.

For comparison the phase and amplitude are also evalu-
ated in the hidden-crossing approximation in Appendix B.
There we find that

h
K5(HC) = 68.4 sin’[1, In(Ry/a) + 1.5742]—a*.  (64)
m

Clearly, when K=0 the hidden-crossing amplitude and phase
agree with the exact result to order 2%. Since the hidden-
crossing amplitude is rather easy to compute it can be used to
get a good estimate of the essential features of three-body
interactions in the limit of large scattering length.

To check the good agreement between the hidden-
crossing and exact amplitudes we compute corrections to
B(v) to higher order in (Ka)? in Appendix C. It should be
noted that the expansion about Ka=0 is not valid for regions
of v where the correction terms are larger than unity. This
excludes regions around integer values of v. For that reason
we only use the expansion at v= ¢, and for values of (Ka)
such that the correction to B(—if,) is much less than unity.
This means that we cannot use the power series expansion to
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compute the energy-dependent zeros of the Wronskian nor
the phases 8,,(Ka) and &y(Ka). We can use the expansion at
v==t, and for all values of (Ka) such that the correction to
B(~it,) is much less than unity. Then the power series expan-
sion gives

8y = 1.588 + 0.944(Ka)* + 5p(Ka) — 6,(0), (65)

where Sp(Ka) is the phase of the periodic function Pg(Ka) at
v=—it, for a given Ka.

To evaluate dp(Ka) we note that 5p and &, differ by fac-
tors of the order of e2™. Since ¢™>™ is less than 0.5% we
will assume exact equality recognizing that this may intro-
duce negligibly small errors. Then Eq. (65) gives us the ap-
proximate result

8, — 6, =0.148 — 0.94(Ka)?, (66)
while the hidden-crossing theory gives
8.(HC) — 8,(HC) =0.1623 — 0.52(Ka)>. (67)

Although these results differ by only 0.014 rad at E=0, they
rapidly diverge for larger values of E. To some extent this
rapid divergence may be due to the failure of the hidden-
crossing or JWKB approximation at the boundary of the
hard-core renormalization potential so that the divergence
between exact and hidden-crossing phases may not be so
strong for two-body interactions that are realistic when R
<R,. In any case, agreement is very good at threshold but
the region where the hidden-crossing approximation is accu-
rate appears to be limited to a small energy range near E
=0.

Our result shows that the coefficient C3 is a universal
constant, i.e., it does not depend upon R, or a. Other univer-
sal constants are 8,(E=0) and 8y(E=0). They also do not
depend upon R, or a. Of course, at nonzero energies these
quantities depend upon a. That dependence, however, can be
scaled out so that these observable depend only upon the
product Ka. In that sense they are also universal functions
applicable whenever the zero-range representation is valid
for two-body interactions.

Other physical quantities that depend upon the phase
A,(R,) are not as universal as those that depend only a, since
they depend upon details of two-body interactions not in-
cluded in the scattering length. Even so, once this quantity is
fixed all of the physical quantities are readily computed if the
R, independent functions &.(Ka), A(Ka), and &y(Ka) are
known. It is not necessary to recompute these quantities
when R, changes. In this way two-and three-body boson in-
teractions characterized by a scattering length and the param-
eter R are truly universal as discussed in Ref. [3].

The Schrodinger equation has been solve by the essen-
tially standard method of separating variables and writing the
solution as a contour integral over the single separation con-
stant v. The contours that we use, however, are not standard
and were extracted earlier by solving a model problem [27].
They generalize the known Kantarovich-Lebedev representa-
tion [29]. The ZRP boundary conditions then gave a three-
term recurrence relation for the expansion coefficients A(v).
Three-term recurrence relations also occur in power series
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expansions of special functions [30]. In both cases, multipli-
cation of the coefficients by a periodic function gives a new
coefficient, but for power series this periodic function plays
no role since it may be factored out and subsumed in a nor-
malization constant. In contrast, the periodic functions can-
not be factored out of the integral representation; indeed,
they play a crucial role in finding coefficients with correct
analytic properties determined by boundary conditions.
There is no standard means to find such periodic functions,
but a general method to move poles around has been devised
in this work. We use this method to move poles to the zeros
of the coefficients for two- and three-term recurrence rela-
tions. Using the general technique, it is possible to com-
pletely determine the three-particle wave function.

The solution obtained here is exact, and can be made
without reference to more standard techniques such as the
hyperspherical adiabatic representation, the Sturmian repre-
sentation, and the hyperspherical close-coupling method. To
connect to these known techniques we indicate how the
quantities employed here relate to the hyperspherical adia-
batic potentials U,(R) and the hyperspherical adiabatic wave
functions.

The quantity X(v) was introduced in this work purely for
notational convenience, but if we set

X(v)
pv)=—a——, (68)
sin(v)E
2
then we recognize p(v) as the single pseudo-Sturmian eigen-
value for this problem defined by the equation

[&aiS(V,E)
da;

i

+p(aS(,R) | =0. (69)

The Sturmian eigenvalue p(v) does not equal the physical
radius R, but if we set p(v)=R and solve for v as a function
of R we obtain an infinite set of roots v,(R). These roots
define the adiabatic energy eigenvalues according to

v,(R)? = 1/4

Un(R) = R2

) (70)

.

while the adiabatic wave functions ®,(R;R) are given by

®,(R;R) = N,(R)S(v,(R),R), (71)

where N,(R) is a normalization constant. The adiabatic ei-
genvalue thus obtained is used in Appendix A to compute the
hidden-crossing approximation for the recombination coeffi-
cient K;.

IX. CONCLUDING REMARKS

The Schrodinger equation for a system of three particles
interacting via ZRP has been solved in quadrature form. The
solution for total angular momentum equal to zero has been
written as a contour integral over the product of Bessel and
pseudo-Sturmian functions weighted by a function obtained
from a three-term recurrence relation. The integration is per-
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formed over the indices of the Bessel functions around con-
tours fixed by asymptotic conditions. The indices of the
Bessel functions are separation constants in the Schrodinger
equation and can be understood as generalized angular mo-
menta.

A renormalization constant R, is needed to obtain wave
functions that are defined in the limit as R— 0. This constant
represents the radius of an explicit three-body potential that
becomes infinite when the hyperradius R is less that R,. With
this constant fixed we show how the scattering matrix can be
obtained from the asymptotic form of our wave function. The
fundamental formulae of the theory are illustrated by a com-
putation of the three-body recombination rate in the limit of
zero energy. In this case a completely analytic expression is
obtained for the rate. The expression is compared with pre-
vious exact and approximate results. Agreement with the ex-
act numerical results of Ref. [26] is excellent. Agreement
with the hidden crossing approximation is also good showing
that the quasi-classical theory is reliable for three-body re-
combination at the threshold for this process.
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APPENDIX A: EQUATIONS FOR ‘y;R’L)

Equation (28) for ¥ is written in a compact form in the
main text. By evaluating the residues explicitly we have

N .
sin m(w,, + 'yE-R)) _sin w(w, — vp)

j=0 sin W(Wn - 'Y;L)) Sinz ™,

N
BEQN (- w,) yp sin m(w, + v;)

B%N)(wn) i=o sin m(w, — vj)’

(A1)
and
N cos 277'y§R) —cos2mw, €08 27y — COS 27w,
=0 COS 27775-” —cos2mw, (1 -cos 2mw,)?
(A2)

These are highly nonlinear equations. They can be solved
iteratively by starting with some known value of y(.R’L) and
linearizing the equations to obtain a correction 5y(. L) The

processes is repeated until convergence is obtained.

APPENDIX B: HIDDEN CROSSING THEORY
FOR ZERO-RANGE POTENTIALS

The hidden-crossing theory was originally developed by
Solev’ev [33] as an asymptotic expansion in powers of 1/v
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for transition matrix elements in the semiclassical theory of
atomic collisions where the internuclear distance is repre-
sented by a classical trajectory R,(¢,v). Extension of this
theory to a wave representation of relative motion leads to
the hyperspherical adiabatic representation [34] of Ref. [14].
The hyperspherical hidden-crossing theory employs this rep-
resentation and is derived in Ref. [28]. In the wave represen-
tation the hidden-crossing approximation for the squared
transition matrix element |Sy;|? is given by

|301|2 = 4PHC(1 - PHC)SinzAHC’ (B1)
where
p=e2Mm1 (B2)
AHC =Re I, (B3)
with
R 1/4
I= f K*-2U(R) + —dR. (B4)
Ry R

The function U(R) is the adiabatic eigenvalue [14], K is the
wave vector for hyperradial motion, R, is the classical turn-
ing point in the initial channel, 0, and R, is the classical
turning point in the final channel. In order to connect the
initial and final channels the integration contour must go into
the complex plane to encircle branch points where the initial
branch Uy(R) of U(R) connects with the final branch U;(R).

This approximation has been extensively employed to
treat ion-atom collisions and has seen some limited use in the
hyperspherical representation. Its use for zero-range poten-
tials presents special problems owing the Thomas-effect di-
vergences of U(R) near R=0. With the renormalization pro-
cedure where R, is some finite constant quantity chosen to fit
a three-body observable, one can apply the theory for a sys-
tem of three bosons interacting via zero-range potentials.

To compute I it only necessary to find the function U(R).
This is easily done for zero-range potentials by solving the
equation

p(v)=R (BS)
for »(R) and forming
Z_1/4
Uy)= % (B6)

Even though p(v) is a relatively simple known function in-
tegration in the complex plane must be carried out numeri-
cally. The integral, however, diverges at the lower limit as
Ry—0 and at the upper limit as E—0 so the expression
given by Eq. (B4) is not convenient for zero-range potentials.

A more tractable expression is obtained by adding and
subtracting terms that given explicit closed-form expressions
for the divergent parts. If we suppose that there is only one
dominant branch point R, connecting initial and final chan-
nels, then we may form
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Ry,
I= f (VK? = 2IR? = VK2 = (ito)*/R%)dR

Ry

Ry
+ f (VK* = /IR2 = K2 = 2%/R?)dR
Ry

Ry L S
+ f VK — (ito)*/R*dR + f VK? = 2%R%dR.
Ry Ry,

(B7)

The first two terms are now finite in the limits that Ry— 0
and E— 0 so that these limits may be taken before integra-
tion. These terms give a constant that is computed by nu-
merical integration. The third and fourth terms are evaluated
analytically so that the divergent factors are exhibited explic-
itly. The fourth term gives the E2a* threshold law for
breakup, while the third term is just 7, In(R,/R). Using the
value of R, from Ref. [15] in Eq. (B7) to evaluate Z then
substituting the result into Eq. (B1) with Eq. (61) we find the
hidden-crossing approximation for K3, namely

#i
K5(HC) = 68.4 sin(to In(a/R,) + 1.5742 + 0.17K*)—a*,
m
(B8)

where we have added 7/4 to Re I to allow for the hard core
at R,. This is the result quoted in the text at Ka=0.

APPENDIX C: SOLUTION OF INHOMOGENEOUS
RECURRENCE RELATIONS

Near Ka=0 it is tempting to expand the three-term recur-
rence relation is in powers of Ka. Such expansions are
asymptotic since one cannot obtain the exact solution,
namely exp[-a,]={=(Ka)/[1+1+(Ka)*] in the limit that
v— o with a finite number of terms. A more realistic expan-
sion about the point E=0 is obtained by expanding in powers
of £. This is done by setting B(v)="Q(v)B(v) where Q(v) is
the exact solution for E=0. The form of this solution is not
needed here, rather only the defining property

14

o(v-1)= v+b(v)Q(V) (cn
is employed.
The TTR becomes
52[— (1 + M)(l + M)1§(v+ 1) +E(v)}
v v+ 1
=B(v)-B(v-1). (C2)
Expanding B(v) in a power series in {2
B(v)= 2 BY(n ™, (C3)
k=0
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where B(O)(V)=1 gives an inhomeneous recurrence relation

for BV, namely,

B b(v) . b(v+1) . b(v)b(v+1)

v v+ 1 v(v+1)

= D(v) =BV () -BD(v-1), (C4)

where the driving term D(v) is defined by Eq. (C4). One
readily verifies that the expression

N

BY(v)==lim D, D(v+n+1)
Nﬂwn=0

(C5)

is a solution of the inhomogenous recurrence relation Eq.
(C4). Other solutions are obtained by adding a periodic func-
tion to the principal solution of Eq. (C5); however, such
solutions do not vanish in the limit v— oo, thus they play no
role in the present application.

The sum over the driving terms can be carried out in
essentially closed form using the summation properties of
hypergeometric functions. To carry out these sums we may
use the definition
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s—1

> explipjmls) =0
=0

(C8)

in Eq. (15.3.10) of Ref. [30] to evaluate the sum over hyper-
geometric functions of unit argument. One obtains

s—1
14
F=- }2 exp(ipjmls)i(a;), (€9)
j=0

where ¢(a;) is the digamma function.
Alternatively, when exp(ipm)=—1 use of Eq. (15.1.23) of
Ref. [30] gives

s—1

=S explipjmls) 12+ a/D) - taf2)],  (C10)
=0

where q; is defined above. Actually, this expression may be
derived from Eq. (C9) by replacing p and s by 2p and 2s. In
any case, the relatively simple closed-form expression given
by Eq. (C9) is readily evaluated.

We first write the driving term in the form

alv) Br+1)

, =, explinpls -D(v)=—"+ , (C11)
2F(V,1,V+],elpﬂ'/s)=1/2 M’ (C6) v v+ 1
=0 v+n
where
where s and p are integers. Of course, the sum already de-
fines a hypergeometric function; however, such functions are a(v)=b(r)(1 +b(v+1)), (C12)
not convenient for numerical evaluation since exp(i7/s) has
unit magnitude. , Bv+1)=b(v+ 1)(1 - b(v)). (C13)
To take advantage of integer values of p and s we set n
=sk+j where k and j are integers. Then the sum is written Then the sum becomes
s—1 o0
4 . exp(ikpm) - - alv+n+ 1)+ By+n+1)
= =2 explipjmls) > — - S Dw+n+1)=
8 j=1 im0 k+ (v+j)ls EO (et nE:O v+n+l
s—1
1 v+1
= EE exp(ipjmls)—,F(a;,1;a;+ 1;exp(ipm)), (C7) - M (C14)
Sj:l a; ’ ’ v+1
where a;=(v+j)/s. When p is even we may use that Now
|
8 \?sin w(v+1)/6 | sin[7(v+ 1)/6 + w/6] + sin[m(v + 1)/6 — /6
b(v+ D[b(v+2) - b(v)] = - <_ —r) v+ 1) [ Ly + 106 + w/6] + sinl m(v+ 1)/6 — 6]
V3/) cos m(v+1)/2 sin m(v+1)/2
8 \? sin’[m(v+ 1)/6]cos(w/6 = 8 \*1-cos[m(v+1)/3
=—(——r (Sl + Dieleos(nl6) _ _ 2 __F> os{m(v-+ 1)/3] C15)
V3 sinm(v+1) V3 sinfm(v+1)]
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EXACT SOLUTION FOR THREE PARTICLES...

We also need the term with 2b(v+1) for which

8 \si +1)/6

2b(v+ 1) - 2(_ _/_)M
V3

8 \sin m(v+1)/6 sin w(v+1)/2

[3 ) cos w(v+1)/2 sin w(v+ 1)/2
—

3

cos m(v+1)/2

2

/

\

2( i)cos m(v+1)/3 = cos 2m(v+1)/3

/

\ sinm(v+1)
(C16)

From this we see that we need three sums, namely,

o0

1 ei7TVl
sinm(v+ 1) v+n+1

1
sinm(v+1)v+1

1 l[ (l v+1) <y+1>]
sinw(v+1)2‘/’2+ > )TN

(C17)

filv+1)=

Flv+1,1;v+2;-1)

£ 1) i cos m(v+1+n)/3
2V = -

wmo sinam(v+ 1+n)(v+1+n)

. o .
em'(v+1)/3 ez41m/3
=Re

_Sin7T(V+1) Lov+n+l

emT(V+l)/3

=Re

———————F(v+ 1, 1;v+2;"™
| sinm(v+ 1) v+1 (v g ™)

im(v1)13 2 .
-R L(_ 1)2 ei4jw/3w(Ll+]>j| _

| sin m(v+ 1)\ 3/55 3

(¢

2

1
- cosm(v+1
3sinm(v+1)i5

v+1+j)

+4j)/3¢<

- cos 2m(v+1+n)/3
+1)=
filv+1) E(')sinw(v+l+n)(v+l+n)

R2a(v+)3 F i5n/3
e e
=Re| — >
sinm(v+1), 5y v+n+1
ei27‘r(V+1)/3

=Re| ———
sinm(v+1)v+1

Fv+1,1;v+ 2;ei5”/3)}
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, 2
e127r(v+1)/3 1 ) 1 v+1+7
=Red — 2SS eyl -+ J
sinm(v+1)\6/75 2 6

e}

2

> cos 2(v+ 1) +j5]/3
j=0

I v+l+j v+1+4j
X[‘p(f 6 >_¢( 6 )] (C18)

Our final answer is

1
~ 6sinm(v+1)

2
BW(v) = 2(— %)[fz(v+ 1) -fi(v+1)]- \’E(— %)
V’

A}

(v+1)

XLf(v+ 1) = folv+ D] - 2 (C19)

v+l
where
8 \sinm(v+1)/6 8 \ sin /6
Blve1)= (- | SIS ST
V3 /) cos m(v+1)/2 V3 / cos /2

_2( i)sinw(v+1)/6
- V3) sinm(v+1)

8
X [cos T2 — <— ’—§>sin 771//6] .
!

For the special case of w=—if, we get B(-itg)=1
+i0.6924. This value is used in the text to compute an
energy-dependent phase §,. Taking into account that

(C20)

25)-“0 ity
=] =14+—(Ka)%, C21
( Xa + 4( a) (Cc21)
we obtain
it
arg[ B/Pp(—ity)] = 1.588 + <0.6924 + %") (Ka)?
=1.588 +i0.944(Ka)>, (C22)

where B is defined by Eq. (39).
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