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Abstract

The static stability of thin-walled composite beams, considering shear deformation and geometrical non-linear coupling, subjected to transverse
external force has been investigated in this paper. The theory is formulated in the context of large displacements and rotations, through the adoption
of a shear deformable displacement field (accounting for bending and warping shear) considering moderate bending rotations and large twist.
This non-linear formulation is used for analyzing the prebuckling and postbuckling behavior of simply supported, cantilever and fixed-end beams
subjected to different load condition. Ritz’s method is applied in order to discretize the non-linear differential system and the resultant algebraic
equations are solved by means of an incremental Newton–Rapshon method. The numerical results show that the beam loses its stability through a
stable symmetric bifurcation point and the postbuckling strength is in relation with the buckling load value. Classical predictions of lateral buckling
are conservative when the prebuckling displacements are not negligible and the non-linear buckling analysis is required for reliable solutions. The
analysis is supplemented by investigating the effects of the variation of load height parameter. In addition, the critical load values and postbuckling
response obtained with the present beam model are compared with the results obtained with a shell finite element model (Abaqus).
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin-walled beams of open and closed cross-section are widely used as structural elements within the fields of civil, aerospace
and mechanical engineering, offering a high performance in terms of minimum weight for a given strength. These kinds of members
are often designed to work under postbuckling conditions. It is well known that the spatial buckling behavior of thin-walled beam
structures is very complex due to the coupling effect of extensional, bending and torsional deformation. Besides, such flexible
structures can undergo large displacements and rotations without exceeding their elastic limits. Therefore, a non-linear theory is
required for the accurate behavior prediction of such structures. For example, the limitation of the linear buckling analysis of beam
problems [1] is the omission of any consideration of the effect of prebuckling deflections of the beam. This omission may be
sufficiently accurate when the prebuckling deflection of the beam is negligible. In other cases, however, the effect of the prebuckling
deflections must be taken into account to obtain accurate predictions of buckling loads. In particular, lateral buckling is a relevant
phenomenon that involves mechanical complications, since structures may experience large or moderately large deflections and
rotations before buckling occurs. Moreover, the linear buckling gives no information about the shape of the secondary path of
equilibrium (postbuckling). Sometimes the behavior of a structure can be understood only if the shape of the secondary path is
known. Thus, the additional load-carrying capacity after buckling can be determined. For this reason, knowledge of the postbuckling
response and the ultimate load of such structures are essential for designers. In particular, this knowledge will allow beams to be
designed efficiently and economically to fully exploiting their postbuckling strength.
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To understand the behaviors of such flexible structures and to evaluate their elastic limits many different formulations and
numerical procedures for the buckling and postbuckling analysis of beams have been proposed. Euler in 1744 [2] was one of the
first in investigating the elastic flexural postbuckling behavior of columns, by using the exact expression for curvature instead of
the small deflection approximation. This resulted in a postbuckling curve that rises so slowly that there is not significant increase in
the load-carrying capacity until the deformations increase considerably. The buckling and postbuckling analysis of thin-walled beams
has been the subject of considerable research. Among the first works carried out for thin-walled beams, Barsoum and Gallagher
[3] studied the torsional and flexural–torsional stability of a bi-symmetric I-beam subjected to conservative loads. Woolcock and
Trahair [4] carried out theoretical and experimental studies on the postcritical behavior of thin-walled I-beams for different boundary
conditions.

Since, in general, exact solutions cannot be obtained or are tedious and time consuming, the only recourse is to resort to approximate
postbuckling analyses. There are several studies based on the finite element method, Bazant and Nimeiri [5] developed a general
stiffness analysis of spatial large deflections and postbuckling behavior of thin-walled members of asymmetric open cross-section.
Bathe and Bolourchi [6], Yang and McGuire [7], Hasegawa et al. [8], Kitipornchai et al. [9] and Chen and Blandford [10] carried
out studies of large deflections in beams using an updated Lagrangian procedure. A consistent co-rotational total Lagrangian
formulation was presented by Hsiao and Lin [11–13] in the geometrically non-linear analysis of mono- and bi-symmetric beams. In
their formulation they considered third-order terms of the nodal forces, corresponding to the torsional twist. Through the different
models used, they showed the influence of the third-order terms on the buckling and postbuckling behavior of 3-D beams.

Grimaldi and Pignataro [14] studied the initial postbuckling behavior of beams subjected to an axial load, using a perturbation
technique based on Koiter’s method. Semi-analytic studies were presented by Kounadis and Ioannidis [15,16] for the analysis of
mono-symmetric beams subjected to uniform bending and axial loads. Based on Galerkin’s method, Mohri et al. [17] studied the
flexural–torsional and lateral postbuckling behavior of mono- and bi-symmetric simply supported beams, considering different load
conditions. Pi and Bradford [18] used an accurate rotation matrix in the formulation of a finite element model for the buckling and
postbuckling analysis of thin-walled straight beams. Then, Pi et al. [19–21] extended their model to analyze the flexural–torsional
stability response of arches with open thin-walled section under different radial loads. They study the effects of elastic continuous
restraints in [19] and the effects of the prebuckling in-plane deformations on the elastic flexural–torsional buckling in [20]. They
investigated in [21] the flexural–torsional buckling and postbuckling behavior of shallow arches.

The development of beam theories usually involves some reduction of the 3-D constitutive relationship. Often this is accomplished
by neglecting the stresses and strains in the transverse directions. None of the papers previously cited have considered the effect
of shear flexibility. M.-Y. Kim et al. [22,23] and S.-B. Kim et al. [24] analyzed the postbuckling behavior of thin-walled frames
and the buckling behavior of thin-walled tapered beams, taking into account shear deformation effects due to shear forces and
warping-torsion. However, the shear deformable displacement field is introduced based on the semitangential rotations, including
second-order terms of finite rotations. Machado and Cortínez [25,26] considered the effect of shear deformation to investigate the
stability of composite beam. The postbuckling response of simply supported beams is analyzed in [26], where the displacements are
approximated by means of trigonometric functions. In these last two references the authors showed the influence of shear deformation
for different stacking sequences.

A significant amount of research has been conduced in recent years toward the development of non-linear theories of 3-D
beams. However, many of this theories differ in the order of non-linearity considered in their formulation. For example, second-
order displacement field has been used in a formulation of finite element models for 3-D non-linear analysis of beam structures
[9,22–24,27]. This approximation has several advantages because it simplifies the coupling between the displacement and rotations,
and so the tangent stiffness matrix (use for the non-linear incremental-iterative analysis) can be simplified. Therefore, this tangent
matrix can be decomposed into linear and second-order (non-linear) stiffness matrices. In spite of these advantages, approximations
or simplifications that are made in the earlier stages of the derivation may produce the loss of some significant terms in the non-linear
strains and in the tangent stiffness matrix. Thus some inaccurate approximations in the coupling between displacement, rotations
and their derivates are obtained. The loss of these terms may lead to “self-straining” caused by superimposed rigid-body motions
[18,28].

The main objectives of this paper are to show the accuracy and efficiency of the proposed formulation and to investigate the
effect of non-linear approximations on the buckling and postbuckling behavior of isotropic thin-walled beams subjected to different
boundary conditions. Therefore, the important points presented in this work are summarized as follows:

1. The general theory of shear deformable thin-walled composite beam developed by Machado et al. [26] is used for the buckling,
prebuckling and postbuckling analyses of bi-symmetric open cross-sections.

2. Ritz variational method is used for reducing the governing equation in terms of generalized coordinates to analyze the behavior
of simply supported, cantilever and fixed-end beams under different load conditions. The displacements are approximated by
means of a set of beam characteristic orthogonal polynomials, which satisfy the geometrical boundary conditions.

3. Buckling loads are determined from the singularity condition of the tangential stiffness matrix determinant of the structure. An
incremental-iterative method based on the Newton–Raphson method combined with constant arc length is employed for the
solution of non-linear equilibrium equation.
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4. In addition, a practical formula is obtained to determine the critical loads of axial and lateral buckling of bi-symmetric cross-
section, including prebuckling effects in the case of lateral buckling.

5. The postbuckling curves obtained with the present beam model are compared with those obtained by a shell finite element model
(ABAQUS).

6. Finally, the effect of non-linear approximations is analyzed comparing the present higher-order non-linear theory with a second-
order model, considering in both cases shear deformation.

2. Kinematics

A straight thin-walled beam with an arbitrary cross-section is considered (Fig. 1). The points of the structural member are referred
to a Cartesian coordinate system (x, ȳ, z̄), where the x-axis is parallel to the longitudinal axis of the beam while ȳ and z̄ are the
principal axes of the cross-section. The axes y and z are parallel to the principal ones but having their origin at the shear center
(SC), defined according to Vlasov’s theory of isotropic beams. Midway through the thickness of each cross-sectional element is
the middle surface. A plane perpendicular to the x-axis intersects the middle surface at a curve called the contour. The coordinates
corresponding to points lying on the middle line are denoted as Y and Z (or Ȳ and Z̄). A contour (n, s, x) coordinate system is defined
with s following the contour, and n perpendicular to s. This coordinate is introduced on the middle contour of the cross-section
system as illustrated in Fig. 2.

ȳ(s, n) = Ȳ (s) − n
dZ

ds
, z̄(s, n) = Z̄(s) + n

dY

ds
, (1)

y(s, n) = Y (s) − n
dZ

ds
, z(s, n) = Z(s) + n

dY

ds
. (2)

On the other hand, y0 and z0 are the centroidal coordinates measured with respect to the SC.

ȳ(s, n) = y(s, n) − y0,

z̄(s, n) = z(s, n) − z0. (3)

The present structural model is based on the following assumptions:

(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by the Saint–Venant function for isotropic beams.
(3) Flexural rotations (about the ȳ- and z̄-axes) are assumed to be moderate, while the twist � of the cross-section can be arbitrarily

large.

Fig. 1. General thin-walled section beam and notation for displacement measures.
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Fig. 2. Coordinate system of the cross-section.

(4) Shell force and moment resultant corresponding to the circumferential stress �ss and the force resultant corresponding to �ns

are neglected.
(5) The radius of curvature at any point of the shell is neglected.
(6) Twisting linear curvature of the shell is expressed according to the classical plate theory.

2.1. Development of the displacement field

According to the hypotheses of the present structural model, the proposed displacement field Eq. (4) is based on the principle
of semitangential rotation defined by Argyris [29] to avoid the difficulty due to the non-commutative nature of rotations. In this
displacement field, the torsional twist terms � are expressed as trigonometric functions according to hypotheses (3). The displacement
field is represented by means of seven degree of freedom corresponding to three displacements (u, v and w), three measures of
the rotations (�, �y and �z) about the SC axis, ȳ- and z̄-axes, respectively, and a warping variable (�) of the cross-section. The
displacement field is expressed as the following form:

ux = uo − ȳ(�z cos � + �y sin �) − z̄(�y cos � − �z sin �) + �[� − 1
2 (�′

y�z − �y�
′
z)] + (�zz0 − �yy0) sin �,

uy = v − z sin � − y(1 − cos �) − 1
2 (�2

z ȳ + �z�y z̄), uz = w + y sin � − z(1 − cos �) − 1
2 (�2

y z̄ + �z�y ȳ),

(4)

where the prime indicates differentiation with respect to x.
This expression is a generalization of others previously proposed in the literature. On the other hand, neglecting the shear flexibility

(�z = v′, �y =w′ and �=�′), approximating cos � and sin � by (1 −�2/2) and �, respectively, and conserving non-linear terms up
to second order, the present displacement field coincides with that developed by Fraternali and Feo [27], who formulated a moderate
rotation theory of thin-walled composite beams generalizing the infinitesimal theory of sectorial areas by Vlasov [1]. Moreover, the
displacement field of the classical Vlasov’s [1] theory is obtained when second-order effects are ignored. As a final comparison,
taking cos � = 1 and sin � = � and disregarding the non-linear terms, the displacement field (4) coincides with the one formulated
by Cortínez and Piovan [30] for linear dynamics of shear deformable thin-walled beams.

2.2. Warping displacements

In general, the contour of the cross-section will warp out of its plane as twisting occurs. The warping function � of the thin-walled
cross-section may be defined as

�(s, n) = �p(s) + �s(s, n), (5)

where, �p and �s are the contour warping function and the thickness warping function, respectively. They are defined in the
form [30]:

�p(s) = 1

m

[∫ m

0

(∫ s

s0

[r(s) − �(s)] ds

)
ds

]
−
∫ s

s0

[r(s) − �(s)] ds,

�s(s, n) = −n l(s), (6)



S.P. Machado / International Journal of Non-Linear Mechanics 43 (2008) 345–365 349

where m is the length of the cross-sectional thin wall and � is the shear strain at the middle line, obtained by means of the Saint–Venant
theory of pure torsion for isotropic beams, and normalized with respect to d�/dx [31]. Besides, r(s) represents the perpendicular
distance from the SC to the tangent at any point of the mid-surface contour, and l(s) represents the perpendicular distance from the
SC to the normal at any point of the mid-surface contour, as shown in Fig. 2.

r(s) = −Z(s)
dY

ds
+ Y (s)

dZ

ds
, (7)

l(s) = Y (s)
dY

ds
+ Z(s)

dZ

ds
. (8)

3. The strain field

The displacements with respect to the curvilinear system (x, s, n) are obtained by means of the following expressions:

Ū = ux(x, s, n), (9)

V̄ = uy(x, s, n)
dY

ds
+ uz(x, s, n)

dZ

ds
, (10)

W̄ = −uy(x, s, n)
dZ

ds
+ uz(x, s, n)

dY

ds
. (11)

The three non-zero components 	xx , 	xs , 	xn of the Green’s strain tensor are given by

	xx = �Ū

�x
+ 1

2

[(
�Ū

�x

)2

+
(

�V̄

�x

)2

+
(

�W̄

�x

)2]
, (12)

	xs = 1

2

[
�Ū

�s
+ �V̄

�x
+ �Ū

�x

�Ū

�s
+ �V̄

�x

�V̄

�s
+ �W̄

�x

�W̄

�s

]
, (13)

	xn = 1

2

[
�Ū

�n
+ �W̄

�x
+ �Ū

�x

�Ū

�n
+ �V̄

�x

�V̄

�n
+ �W̄

�x

�W̄

�n

]
. (14)

Substituting expressions (4) into (9)–(11) and then into (12)–(14), employing the relations (1)–(3) and (5)–(8), after simplifying
some higher-order terms, the components of the strain tensor are expressed in the following form:

	xx = 	(0)
xx + n
(1)

xx ,

�xs = 2	xs = �(0)
xs + n
(1)

xs ,

�xn = 2	xn = �(0)
xn , (15)

where

	(0)
xx = u′

o + 1
2 (u′

o
2 + v′2 + w′2) + �p[�′ − 1

2 (�z�
′′
y − �y�

′′
z )] + Z̄[(−�′

y − u′
o�

′
y) cos � + (�′

z + u′
o�

′
z) sen �]

+ Ȳ [(−�′
z − u′

o�
′
z) cos � − (�′

y + u′
o�

′
y) sen �] + 1

2 �′2(Y 2 + Z2) + 1
2�′

y
2
Z̄2 + 1

2�′
z

2
Ȳ 2 + �′

z�
′
yZ̄Ȳ

+ (z0�
′
z − y0�

′
y) sen �, (16)


(1)
xx = − dZ

ds
[−(�′

z + u′
0�

′
z) cos � − (�′

y + u′
0�

′
y) sen �] + dY

ds
[(−�′

y − u′
0�

′
y) cos � + (�′

z + u′
0�

′
z) sen �]

− l

[
�′ − 1

2
(�z�

′′
y − �y�

′′
z )

]
− r�′2 − Ȳ

dZ

ds
�′
z

2 + Z̄
dY

ds
�′
y

2 +
(

Ȳ
dY

ds
− Z̄

dZ

ds

)
�′
y�

′
z, (17)

�(0)
xs = dY

ds

[
(v′ − �z − u′

0�z) cos � − z0
1

2
(�z�

′
y − �y�

′
z) + (w′ − �y − u′

0�y) sin �

]
+ (r − �)(�′ − �)

+ dZ

ds

[
(w′ − �y − u′

0�y) cos � + y0
1

2
(�z�

′
y − �y�

′
z) − (v′ − �z − u′

0�z) sin �

]
+ �

[
�′ − 1

2
(�z�

′
y − �y�

′
z)

]
, (18)


(1)
xs = −2

[
�′ − 1

2 (�z�
′
y − �y�

′
z)
]

, (19)



350 S.P. Machado / International Journal of Non-Linear Mechanics 43 (2008) 345–365

�(0)
xn = dY

ds

[
(w′ − �y − u′

0�y) cos � + y0
1

2
(�z�

′
y − �y�

′
z) − (v′ − �z − u′

0�z) sin �

]

− dZ

ds

[
(v′ − �z − u′

0�z) cos � − z0
1

2
(�z�

′
y − �y�

′
z) + (w′ − �y − u′

0�y) sin �

]
+ l(�′ − �). (20)

4. Equilibrium equations

Taking into account the adopted assumptions, the principle of virtual work for an isotropic shell may be expressed in the
form [32]:∫ ∫

(Nxx�	(0)
xx + Mxx�
(1)

xx + Nxs��(0)
xs + Mxs�
(1)

xs + Nxn��(0)
ns ) ds dx

−
∫ ∫

(q̄x�ūx + q̄y�ūy + q̄z�ūz) ds dx −
∫ ∫

(p̄x�ux + p̄y�uy + p̄z�uz)|x=0 ds dn

−
∫ ∫

(p̄x�ux + p̄y�uy + p̄z�uz)|x=L ds dn −
∫ ∫ ∫

(f̄x�ux + f̄y�uy + f̄z�uz) ds dn dx = 0, (21)

where Nxx , Nxs , Mxx , Mxs and Nxn are the shell stress resultants defined according to the following expressions:

Nxx =
∫ e/2

−e/2
�xx dn, Mxx =

∫ e/2

−e/2
(�xxn) dn,

Nxs =
∫ e/2

−e/2
�xs dn, Mxs =

∫ e/2

−e/2
(�xsn) dn, Nxn =

∫ e/2

−e/2
�xn dn. (22)

The beam is subjected to wall surface tractions q̄x , q̄y and q̄z specified per unit area of the undeformed middle surface and acting along
the x-, y- and z-directions, respectively. Similarly, p̄x , p̄y and p̄z are the end tractions per unit area of the undeformed cross-section
specified at x =0 and L, where L is the undeformed length of the beam. Besides f̄x , f̄y and f̄z are the body forces per unit of volume.
Finally, denoting ūx , ūy and ūz as displacements at the middle line.

Substituting Exps. (16)–(20) into (21) and integrating with respect to s, one obtains the 1-D expression for the virtual work
equation given by

LK + LP = 0, (23)

where LK and LP represent the virtual work contributions due to the internal and external forces, respectively.

LK =
∫ L

0

{
�u′

0[N + u′
0N − Mz(�

′
z cos � + �′

y sen �) − My(�
′
y cos � + �′

z sen �) − Qy(�z cos � + �y sen �)

− Qz(�y cos � + �z sen �)] + �v′(Qy cos � − Qz sen � + v′N) + �w′(Qz cos � + Qy sen � + w′N)

+ ��z

[
−Qy(1 + u′

0) cos � + Qz(1 + u′
0) sen � + 1

2
(Qzy0 − Qyz0)�

′
y − 1

2
Tsv�

′
y − 1

2
B�′′

y

]

+ ��′
z

[
−Mz(1 + u′

0) cos � + My(1 + u′
0) sen � + Nz0 sen � + 1

2
(Qyz0 − Qzy0)�y + 1

2
Tsv�y + �′

zPzz + �′
yPyz

]

+ ��y

[
−Qz(1 + u′

0) cos � − Qy(1 + u′
0) sen � + 1

2
(Qyz0 − Qzy0)�

′
z + 1

2
Tsv�

′
z + 1

2
B�′′

z

]

+ ��′
y

[
−My(1 + u′

0) cos � − Mz(1 + u′
0) sen � − Ny0 sen � + 1

2
(Qzy0 − Qyz0)�z − 1

2
Tsv�z + �′

zPyz + �′
yPyy

]

+ ��
[
My((�

′
y + �′

yu
′
0) sen � + (�′

z + �′
zu

′
0) cos �) + Mz((�

′
z + �′

zu
′
0) sen � − (�′

y + �′
yu

′
0) cos �)

+ Qy((�y − w′ + �zu
′
0) sen � − (�y − w′ + �yu

′
0) cos �) + N(z0�

′
z − y0�

′
y) cos �

+Qz((�y − w′ + �yu
′
0) sen � + (�z − v′ + �zu

′
0) cos �)

]
+ ��′′

z

1

2
B�y − ��′′

y

1

2
B�z

+��′[Tw + Tsv + B1�
′] + ��′B − ��Tw

}
dx, (24)



S.P. Machado / International Journal of Non-Linear Mechanics 43 (2008) 345–365 351

LP =
∫ L

0

{
−qx�u0 − qy�v − qz�w − b�� − ��′

z

1

2
b�y + ��′

y

1

2
b�z

+ ��z

[
mz cos � − (my + z0qx) sin � + 1

2
b�′

y + 1

2
�mx�y + �y�z

]

+ ��y

[
my cos � + (mz + y0qx) sin � − 1

2
b�′

z + 1

2
�mx�z + �z�y

]

+ ��[−mx cos � − (mz�z + my�y) sin � − (my + z0qx)�z cos �

+(mz + y0qx)�y cos � + sin �(�y + �z + z0qz + y0qy)]
}

dx

+
∣∣∣∣−N̄�u0 − Q̄y�v − Q̄z�w − B̄�� − ��′

z

1

2
�yB̄ + ��′

y

1

2
�zB̄

+ ��z

[
M̄z cos � − (M̄y + N̄z0) sin � + 1

2
�′
yB̄ + �z�̄y + 1

2
�y �̄mx

]

+ ��y

[
M̄y cos � + (M̄z + N̄y0) sin � − 1

2
�′
zB̄ + �y �̄z + 1

2
�z�̄mx

]

+��
[−M̄x cos � − sin �(M̄z�z + M̄y�y) − cos �(M̄y�z − M̄z�y + N̄z0�z − N̄y0�y) + B̄1 sin �

] ∣∣∣∣
x=L

x=0
, (25)

whereqx, qy, qz, mx, my, mz, b,�y ,�z and�mx are resultants of the applied wall surface tractions and N̄, Q̄y, Q̄z, M̄z, M̄y, B̄, M̄x, �̄y,

�̄z, �̄mx and B̄1 represent the resultants of the applied end tractions.

5. Beam forces and constitutive equations

In the above expressions, the following 1-D beam forces, in terms of the shell stress resultants, have been defined as

N =
∫

Nxx ds, MY =
∫ (

NxxZ̄ + Mxx

dY

ds

)
ds, MZ =

∫ (
NxxȲ − Mxx

dZ

ds

)
ds,

QZ =
∫ (

Nxs

dZ

ds
+ Nxn

dY

ds

)
ds, QY =

∫ (
Nxs

dY

ds
− Nxn

dZ

ds

)
ds, Tw =

∫
(Nxs(r − �) + Nxnl) ds,

B =
∫

(Nxx�p − Mxxl) ds, Tsv =
∫

(Nxs� − 2Mxs) ds, (26)

where N corresponds to the axial force, Qy and Qz to shear forces, My and Mz to bending moments about ȳ- and z̄-axis, respectively,
B to the bimoment, Tw to the flexural–torsional moment and Tsv to the Saint–Venant torsional moment (see Fig. 3). In addition, four
high-order stress resultants have been defined:

B1 =
∫

[Nxx(Y
2 + Z2) − 2Mxxr] ds, Pyy =

∫ [
NxxZ̄

2 + 2MxxZ̄
dY

ds

]
ds,

Pzz =
∫ [

NxxȲ
2 − 2MxxȲ

dZ

ds

]
ds, Pyz =

∫ [
NxxȲ Z̄ + Mxx

(
Ȳ

dY

ds
− Z̄

dZ

ds

)]
ds. (27)

In Exps. (26) and (27) the integration is carried out over the entire length of the mid-line contour.
Assuming the linear elastic material, the force–displacement relations are obtained applying Hook’s law. This constitutive law

can be expressed in terms of a beam stiffness matrix [K] as defined in Appendix. Re-arranging the virtual work (23) in terms of the
beam forces and moments, the generalized strains can be identified as:

corresponding to N : ED1 = u′
o + 1

2
(u′

o
2 + v′2 + w′2) + (z0�

′
z − y0�

′
y) sen �,

corresponding to My : ED2 = (−�′
y − u′

o�
′
y) cos � + (�′

z + u′
o�

′
z) sen �,

corresponding to Mz : ED3 = (−�′
z − u′

o�
′
z) cos � − (�′

y + u′
o�

′
y) sen �,
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Fig. 3. Stress resultants of a thin-walled cross-section and member end forces.

corresponding to B : ED4 = �′ − 1

2
(�z�

′′
y − �y�

′′
z ),

corresponding to Qy : ED5 = (v′ − �z − u′
0�z) cos � − z0

1

2
(�z�

′
y − �y�

′
z) + (w′ − �y − u′

0�y) sen �,

corresponding to Qz : ED6 = (w′ − �y − u′
0�y) cos � + y0

1

2
(�z�

′
y − �y�

′
z) − (v′ − �z − u′

0�z) sen �,

corresponding to Tw : ED7 = �′ − �,

corresponding to Tsv : ED8 = �′ − 1

2
(�z�

′
y − �y�

′
z),

corresponding to B1 : ED9 = �′2

2
,

corresponding to Pyy : ED10 = �′
y

2

2
,

corresponding to Pzz : ED11 = �′
z

2

2
,

corresponding to Pyz : ED12 = �′
y�

′
z. (28)

These generalized strains correspond to the axial strain (ED1), the two bending curvatures (ED2 and ED3), the torsional curvature
(ED4), the two transverse shear strain (ED5 and ED6), the transverse shear strain due to warping (ED7), the rate of twist and a
non-linear term (ED8 and ED9), the higher order axial terms (ED10, ED11 and ED12).

6. The discrete equilibrium problem

In order to perform the non-linear analysis, the Ritz variational method is used for reducing the governing equation in terms
of generalized coordinates. From the reduced system, the buckling loads are first determined from the singularity condition of the
tangential stiffness matrix determinant. Then, an incremental-iterative method based on the Newton–Raphson method combined
with constant arc length is employed for the solution of non-linear equilibrium equation. The motion equations (23) are discretized
to analyze the behavior of simply supported, cantilever and fixed-end beams under different load conditions.
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In the case of simply supported beams, the displacement modes are approximated by means of the following functions, which are
compatible with the boundary conditions of the beam:

u = u0
x

L
,

v = v0 sen
( 

L
x
)

, �z = �z0 cos
( 

L
x
)

,

w = w0 sen
( 

L
x
)

, �y = �y0 cos
( 

L
x
)

,

� = �0 sen
( 

L
x
)

, � = �0 cos
( 

L
x
)

, (29)

where u0, v0, w0, �z0 , �y0 , �0 and �0 are the associated displacement amplitudes. Besides, these functions represent the exact solution
to solve the linear equilibrium equations.

For the cantilever and fixed-end beams, the variational equation (23) is discretized by using beam characteristic orthogonal
polynomials which satisfy the geometrical boundary conditions and are generated by using the Gram–Schmidt process.

U =
n∑

i=1

ci�i (x), (30)

where U represent each of the displacements and ci are the undetermined arbitrary coefficients. The polynomials �i (x) are generated
as follows [33]:

�2(x) = (x − B2)�1(x), . . . , �k(x) = (x − Bk)�k−1(x) − Ck�k−2(x),

where

Bk =
∫ L

0 x�2
k−1(x) dx∫ L

0 �2
k−1(x) dx

, Ck =
∫ L

0 x�k−1(x)�k−2(x) dx∫ L

0 �2
k−2 dx

. (31)

The first member of the orthogonal polynomial �1(x) is chosen as the simplest polynomial (of the least order) that satisfies the
boundary conditions. In order to obtain sufficient accurate results, four terms (n= 4) are taken for each one of the flexural–torsional
displacements. After integration along the beam length according to the adopted functions for the displacements, a coupled and
strongly non-linear algebraic system is obtained. This resulting system has an extremely complicated form, for this reason, it is not
presented here.

7. Analytical solutions for axial and lateral buckling

In this section, as a special case, the analytical solutions are derived for the flexural–torsional and lateral buckling of bi-symmetric
cross-section.

7.1. Lateral buckling

When the beam is loaded in its plane of symmetry it initially deflects (Fig. 4a). However, at a certain level of the applied
load, the beam may buckle laterally, while the cross-sections of the beam rotate simultaneously about the beam’s axis (Fig. 4b).
This phenomenon is called lateral buckling, and the load value at which buckling occurs is the critical load. The initial deflection
corresponds to the prebuckling state, also called “the fundamental state”. When the buckling load is reached, the behavior of the
beam is initially flexural–torsional and corresponds to the secondary or equilibrium path.

The stability analysis of bi-symmetric thin-walled beams is analyzed by taking into account the initial deflection in the pre-
buckling state (fundamental state). The displacement components in the fundamental state are in the form {u, v, �z, w, �y, �, �}t =
{0, 0, 0, w, �y, 0, 0}t , i.e. the beam deforms in the loading plane. It is reasonable to assume that the fundamental state may be
obtained with sufficient approximation by means of the linearized theory [30]. Therefore, neglecting all the non-linear terms in (23)
and applying the variational calculus, the differential equations of equilibrium are obtained. These last are easily solved in a closed
form in order to determine the prebuckling displacements in the loading plane.

For the case of simply supported beams subjected to uniform bending, the prebuckling displacements are given by the following
expressions:

w = Mo

2EIy
(Lx − x2), �y = Mo

2EIy
(L − 2x). (32)
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Fig. 4. Deformed shape corresponding to: (a) prebuckling state (fundamental state) and (b) postbuckling state (secondary state).

To determine the lateral buckling considering prebuckling deformation, Exp. (32) are substituted into (23), the resultant variational
equation is discretized by means of the trigonometric functions defined in (29) and then the tangential stiffness matrix is obtained
[34]. This procedure leads to the following expression for the tangential matrix evaluated in the fundamental state:

Kt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GSy2

L2
−GSy

L
0 0

−GSy

L
GSy + EIz

2

L2
−Mo

(
1 − EIz

EIy
− GJ

4EIy

)


L

ECw2Mo

4EIyL2

0 −Mo

(
1 − EIz

EIy
− GJ

4EIy

)


L
−Mo2

EIy

(
1 − EIz

EIy

)
+ (GJ + GSw)

2

L2
−GSw

L

0
ECw2Mo

4EIyL2
−GSw

L
GSw + ECw

2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

where EIy is the flexural stiffness, GSz and GSy are the shear stiffnesses. The definitions of these stiffnesses are given in Appendix.
The buckling state is given by the condition of singularity of this matrix [34]:

det(Kt) = 0. (34)

Hence, a quadratic equation is obtained for the external load, the solution of this equation allows obtaining the critical values.
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Table 1
Parameters in Eqs. (36)–(37)

Simply supported beam C1 C2 � �

(a) End moments 1 0 0.5 0
(b) Uniformly distributed load (Mcr = qzL

2/8) 1.141 0.459 0.033 0.214
(c) Concentrated force (Mcr = PL/4) 1.423 0.554 0.076 0.083

Following the same procedure and only changing Exp. (32) for different loads conditions (distributed load and concentrated load),
it is possible to obtain a unified simple formula for the equivalent moment defined as

Mcr =

⎧⎪⎨
⎪⎩

My0 for uniform bending,

qzL
2/8 for a uniformly distributed load per unit length qz,

PL/4 for a concentrated force P at the middle of the span.

(35)

The explained technique leads to the following unified expression of the critical moment for the three loading cases analyzed:

Mcr = C1�EIz
2

L2

⎡
⎢⎢⎢⎣−C2ez� +

√√√√√√√
GSwGJ + ECw(GSw + GJ)

2

L2

EIz
2

L2

(
GSw + ECw

2

L2

) + (C2ez�)2

⎤
⎥⎥⎥⎦ , (36)

� = 1√(
1 − EIz

EIy

)(
1 − �

GJ

EIy
− �

ECwGSw2

EIy(GSwL2 + ECw2)

)
− �

EIz
GSy

2

L2

[
1 − GSy

GSz

(
0.71 − GSy

GSz

0.29

)] , (37)

where C1, C2, � and � are approximate constants presented in Table 1.
Exp. (36) also gives the corresponding equivalent moments according to the linearized theory, which does not account for the

prebuckling deflection, if one takes �= 1. These constants are exact, from the point of view of the linear theory, for uniform bending
and approximate for the other loading cases.

Therefore, the presence of the � coefficient reveals the dependence of the prebuckling effect with respect to the relation between
the bending stiffnesses EIz and EIy in the case of uniform bending. For the other two load conditions, � also depends on the bending
and shear stiffnesses (� �= 0).

As a particular case, neglecting shear deformation, the Exp. (36) takes the following form for uniform bending:

Mcr =


L

√
EIz

(
GJ + ECw

2

L2

)
√(

1 − EIz
EIy

)(
1 − GJ

2EIy
− ECw

2EIy

2

L2

) . (38)

This last expression coincides with the closed-form solution obtained by Pi and Trahair [35] for elastic lateral buckling, considering
prebuckling deflections.

7.2. Flexural–torsional buckling

A general analytical model applicable to the flexural and torsional buckling of a simply supported thin-walled beam sub-
jected to axial load is developed. In the case of bi-symmetrical beam, there are three buckling modes corresponding either
to bending or torsion (see Fig. 5). Applying the same procedure as explained above, the expression for the tangential matrix
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Fig. 5. Simply supported beam subjected to axial load and buckling shape modes.

yields

Kt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(GSy + P)2

L2
−GSy

L
0 0 0 0

GSy + EIz2

L2
0 0 0 0

(GSz + P)2

L2
−GSz

L
0 0

GSz + EIy2

L2
0 0

Sym
2(GJ + I0P + GSw)

L2
−GSw

L

GSw + ECw2

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

Therefore, the condition of singularity of this matrix leads to the following three expressions of critical load:

Pz = EIzGSy2

GSyL2 + EIz2
, (40)

Py = EIyGSz2

GSzL2 + EIy2
, (41)

P� = L2GSwGJ + ECw2(GJ + GSw)

I0(GSwL2 + ECw2)
, (42)

where I0 is the inertia polar moment about the SC. In these expressions, Py, Pz and P� are the buckling loads of a simply supported
beam, corresponding to bending and torsion mode.

8. Applications and numerical results

The purpose of this section is to apply the present method in order to illustrate the accuracy and practical usefulness of this
formulation; numerical solutions for flexural, lateral–torsional buckling and postbuckling of thin-walled beams are presented and
discussed.

8.1. Simply supported beam subjected to distributed load

In this example a simply supported I-beam under distributed load is considered, for three load positions, as shown in Fig. 6. The
geometrical and material properties are L = 6 m, h = 0.6 m, b = 0.6 m, e = 0.03 m, E = 200 GPa and � = 0.3.

The present theory is applied considering both linear and geometrically non-linear buckling behavior. Besides, in the load critical
tables the following notation is used:

LB: denotes buckling values determined by the linear or classical theory, disregarding non-linear effects and without considering
prebuckling deformations.

NLB: denotes values obtained by means of the present complete non-linear model, accounting for prebuckling deflections.
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Fig. 6. Simply supported beam subjected to distributed load applied in different heights.

Table 2
Buckling load of simply supported I-beam (qz × 106 Nm)

Load height Analysis Beam model (numeric) Analytical Exp. (36)

Top NLB 3.81 3.85
LB 3.45 3.45

Shear center NLB 6.13 6.20
LB 5.17 5.17

Bottom NLB 9.88 10.00
LB 7.76 7.76
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Fig. 7. Postbuckling paths of a simply supported beam, load on top flange.

In particular, the former theory (LB) was modeled by discarding effects due to large rotations up to the critical equilibrium state.
The buckling loads for three different load heights are shown in Table 2, comparing the analytical (Exp. 36) and numerical results
obtained from the non-linear analysis.

It is important to mention that the numerical buckling loads correspond to the bifurcation points observed in the postbuckling
response, see Figs. 7–9, for the load applied on the top flange, SC and bottom flange, respectively. It can be seen that the predictions
by the non-linear algorithm are in good agreement with those obtained with the closed-form solution, Exp. (36).

The buckling loads computed from the linear stability (LB) analysis show a very conservative behavior compared with those
computed from the non-linear stability (NLB). The effect of accounting for in-plane prebuckling deformations in the determination
of critical loads is quite significant when the load is applied at the bottom flange. In this last case, the beam behavior is stiffer in the
prebuckling state and the vertical displacement increases considerably. This value can reach about w = 0.25 m in comparison with
the value of about w = 0.1 m when the load is applied on the top flange. This can explain the great difference (about 20%) between
the buckling loads computed with the classical theory with the results obtained with the non-linear model. So the geometrically
non-linear effects increase when the vertical displacement, corresponding to the prebuckling state, increases too.

In the same way as the lateral buckling strength depends on the load height parameter, the margins of postbuckling strength are
smaller when the load is applied on the top flange.
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Fig. 8. Postbuckling paths of a simply supported beam, load on shear center.
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Fig. 9. Postbuckling paths of a simply supported beam, load on bottom flange.
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Fig. 10. Flexural–torsional postbuckling paths of a simply supported beam, L = 4 m.

8.2. Bi-symmetric open section subjected to an axial force

The example considered is a simply supported bi-symmetric-I section whose geometrical and material properties are the same as
the previous example. In this example (y0 = z0 = 0), the equilibrium equations are non-linear but uncoupled. Therefore, there are
three buckling modes corresponding either to bending or torsion. The flexural mode corresponding to displacement v (y-direction)
has the smallest buckling load, as is illustrated in Fig. 10, where the postbuckling paths are presented for the three buckling modes.
Moreover, two models are compared: the present theory (considering shear deformation) and results obtained by neglecting shear
flexibility. The figure shows that the postbuckling equilibrium paths are stable and symmetric. Shear effect reduces the values of
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Table 3
Buckling load of simply supported I-beam (Pcr × 106 N)

h/L Shear deformation Buckling mode (Exp. (40)–(42))

Bending-v Torsional-� Bending-w

0.10 With 58.05 71.89 180.38
Without 59.29 73.13 207.41

0.15 With 127.27 141.12 340.70
Without 133.41 147.25 447.66

0.20 With 218.45 232.30 518.78
Without 237.16 251.01 829.64
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Fig. 11. Postbuckling paths of a cantilever beam, load on top flange.

Fig. 12. Deformed shape corresponding to the postbuckling state for a cantilever beam.

the equilibrium path with respect to the non-shearable theory and this effect is considerably more important for the vertical bending
mode.

In Table 3, the buckling loads are given for both models (with and without shear deformation) and considering three different
beam lengths. It is observed that the influence of shear deformation is more significant on the buckling behavior as the beam length
decreases. This difference can reach about 60% for the vertical buckling mode and for a beam of L = 3 m.
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Table 4
Buckling load of cantilever I-beam (Pcr × 105 N)

Load height Analysis Beam model (present) Shell model (Abaqus)

Top NLB 4.37 4.32
LB 4.27 4.19

Shear center NLB 9.45 9.50
LB 8.84 8.52

Bottom NLB 14.30 14.29
LB 12.02 11.83
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Fig. 13. Postbuckling paths of a simply supported beam loaded on top flange.

8.3. Cantilever beam subjected to end force

The example considered is a cantilever beam subjected to end force applied in three different positions of the free end. The
geometrical and material properties are the same as the previous example. The accuracy of the proposed formulation is checked
by comparing results (i.e. buckling loads and postbuckling response) with those solutions obtained by Abaqus’s shell element. The
beam is idealized by 240 four-node shell elements (S4). First, an eigenvalue buckling analysis is performed on the “perfect” structure
using LANCZOS solver to establish probable collapse modes and to verify that the mesh discretizes those modes accurately. In the
second analysis an imperfection is introduced in the geometry by addition of the buckling modes to the “perfect” geometry using
the IMPERFECTION option. A geometrically non-linear load–displacement analysis of the structure containing the imperfections
is performed using the Riks method. In this way, the Riks method can be used to perform postbuckling analyses. The magnitudes
of the perturbations are typically a small percent of a relative structural dimension and in this case the associated scale factor used
is 0.005.

The lateral postbuckling curves are shown in Fig. 11, for a beam length L=12 m and for load applied on the top flange. The beam
behavior is represented by the vertical displacement w (corresponding to the load in-plane movement), torsional twist � and lateral
displacement v. The postbuckling equilibrium paths are stable and symmetric. The load-deflection curve (v) has a stiffer behavior
in the postbuckling state in comparison with the other displacements. The initial postbuckling paths obtained with the present beam
are in good agreement with those obtained with shell finite element model. The deformed state of the thin-walled beam obtained
with Abaqus is shown in Fig. 12, the step correspond to the twisting amplitude of 0.8 rad. On the other hand, the bifurcation values
agree with the buckling load presented in Table 4.

The buckling loads of the present study are compared with the results obtained from the linear analysis, for three load height
cases. The influence of the geometrically non-linear effects (prebuckling) on the buckling loads is notable, and it becomes greater
when the load is applied to the bottom flange, as in the first example (8.1). For this load condition the discrepancy can reach
about 16%.

8.4. Simply supported I-beam subjected to a concentrated force

A fixed-end beam loaded by a transverse force at the middle of the span is considered. The geometrical and material properties
are the same as the previous example. The load–displacement curves are shown in Fig. 13, for a load applied on the top flange.
The postbuckling equilibrium paths are similar to the previous case, but for this boundary condition the beam response shows a
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Table 5
Buckling load of fixed-end beam (Pcr × 106 N)

Load height Analysis Beam model (numeric) Analytical Exp. (36) Shell model (Abaqus)

Top NLB 2.00 2.08 2.00
LB 1.86 1.86 1.86
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Fig. 14. Comparison of non-linear models in the postbuckling behavior, load on top flange.

stiffer behavior, as much in the critical condition as in the prebuckling state. Besides, comparing the postbuckling twisting curves
the load-carrying capacity is larger in the case of simply supported beam.

On the other hand, the bifurcation values agree with the buckling load presented in Table 5. In this case, the effect of the
geometrically non-linear effects is about 7% and is a little greater than in the previous example (about 3%).

8.5. Comparison of the present model against a moderate rotation theory

The purpose of this example is to show the effect of the degree of non-linearity adopted in the displacement field (4) on the lateral
postbuckling behavior. As it was pointed out in the introduction of this work a significant amount of research has been conduced
in recent years toward the development of non-linear theories of 3-D beams. However, many of these theories differ in the order of
non-linearity considered in their formulation. For example, second-order displacement field has been used in a formulation of finite
element models for 3-D non-linear analysis of beam structures [9,10,22–24,27]. This approximation present several advantages
because it simplifies the coupling between the displacement and rotations and so the tangent stiffness matrix (use for the non-linear
incremental-iterative analysis) can be simplified. Therefore, this tangent matrix can be decomposed into linear and second-order
(non-linear) stiffness matrices. In spite of these advantages, second-order formulation may produce the loss of some significant
terms in the non-linear strains and in the tangent stiffness matrix, thus some inaccurate approximations in the coupling between
displacement, rotations and their derivates. The loss of these terms may lead to “self-straining” caused by superimposed rigid-body
motions [18,28].

In particular the second-order model was modeled approximating cos � and sin � by (1 − �2/2) and �, respectively, in Exp. (4)
and conserving non-linear terms up to second-order. Therefore the displacement field yields

ux = uo − �zȳ − �y z̄ + ��zz − ��yy + �[� − 1
2 (�′

y�z − �y�
′
z)],

uy = v − �z + 1
2 (−�2y − �2

z ȳ − �z�y z̄),

uz = w + �y + 1
2 (−�2z − �2

y z̄ − �z�y ȳ). (43)

Then a second-order formulation, Exp. (43), produces the loss of the terms underline in Exp. (24). These terms correspond to the
flexural–torsional coupling in the non-linear strains.

In this example a fixed-end beam subjected to a transverse force P at the middle of the span is considered. The geometrical and
material properties are the same as the previous example.

A comparison of the load-twisting curves is shown in Fig. 14, when the load is applied on the top flange, and considering three
models: present beam model, second-order beam model and Abaqus’s shell model.
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The second-order rotation model predicts a stiffer postbuckling behavior, while the present beam model agrees with the behavior
predicted by the Abaqus shell element. Besides, the buckling load obtained by means of a second-order approximation is greater
(Pcr = 7.71 MN) than the value obtained with the present non-linear higher-order model (Pcr = 6.8 MN). On the other hand, the
buckling load predicted by the classical theory (linear model) is about 4% smaller (Pcr = 6.56 MN) than the bifurcation value.

Comparing the beam response for the three last conditions considered, the fixed-end beam has the higher buckling load and
the larger postbuckling strength. Opposite behavior is observed for the case of cantilever condition where the postbuckling path is
hardly flat.

9. Conclusions

This paper uses a geometrically non-linear beam theory of thin-walled beam to investigate buckling and postbuckling behavior
of simply supported, cantilever and fixed-end beams subjected to distributed or concentrated loads. The theory is formulated in
the context of large displacements and rotations, through the adoption of a shear deformable displacement field (accounting for
bending and warping shear) considering moderate bending rotations and large torsional twist. The beam model is valid for arbitrary
cross-sections, either open or closed. Based on the Ritz’s method, an algebraic system is obtained and then solved by an incremental
Newton–Raphson algorithm. Trigonometric functions and a set of beam characteristic orthogonal polynomials are used to discretize
the variational equation.

In the case of simply supported ends a practical general formula was obtained for determining the critical loads of lateral buckling
for bi-symmetrical thin-walled beams. This formula takes into account the effects of prebuckling and shear deformation for beams
subjected to concentrated end moments, concentrated forces, or uniformly distributed loads.

From the numerical examples studied, it is concluded the beam formulation proposed in this paper predict correctly the 3-D
non-linear elastic response of thin-walled beams. The postbuckling behavior obtained with the present model is, in general, in good
agreement with those obtained with a shell finite element model using Abaqus. The actual load-carrying capacity of elastic beams
can be established only by using a non-linear buckling analysis. Based on the numerical results, the following conclusions are
made:

• In the case of lateral load, the buckling loads obtained from the classical linear theory are very conservative. So, the influence of
the in-plane prebuckling deformations in the determination of critical loads is quite significant in some cases. This effect depends
mainly on the relation between the bending stiffnesses, EIz and EIy .

• The postbuckling curves of the beam showed a stable and symmetric behavior in all the cases analyzed.
• The bifurcation values, observed in the postbuckling figures, agree with the buckling load computed from the tangential stiffness

matrix and with the closed-form solution presented by the authors, for a simply supported beam.
• The prebuckling, buckling and postbuckling behavior is highly dependent of the load height parameter. A stiffer behavior is found

when the load is applied on the lowest position (bottom flange). The margins of postbuckling strength are larger for this last load
condition.

• The shear deformation effect has been investigated, showing a significant influence for short beams. The shear deformation may
significantly reduce the buckling loads and the values of the equilibrium path (postbuckling).

• Finally, the second-order model based on moderate rotations overestimates both the values of critical load and the postbuckling
strength, compared with those computed from the present model.
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Appendix

The constitutive law for a bi-symmetric beam is defined in the following form:

{fg} = [K]{�}, (A.1)

{fg} = [N My Mz B Qy Qz Tw Tsv B1 Pyy Pzz Pyz]T, (A.2)

{�} = [ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8 ED9 ED10 ED11 ED12]T, (A.3)

where {fg} is the vector of generalized forces, {�} is the vector of the generalized strains and [K] is a symmetric matrix
(12 × 12) where the stiffnesses corresponding to the higher-order terms B1, Pyy , Pzz and Pyz are given by the following contour
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integrals:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA 0 0 0 0 0 0 0 Ek1,9 Ek1,10 Ek1,11 Ek1,12

EIy 0 0 0 0 0 0 Ek2,9 Ek2,10 Ek2,11 Ek2,12

EIz 0 0 0 0 0 Ek3,9 Ek3,10 Ek3,11 Ek3,12

ECw 0 0 0 0 Ek4,9 Ek4,10 Ek4,11 Ek4,12

GSy GSyz GSyw 0 0 0 0 0

GSz GSzw 0 0 0 0 0

GSw 0 0 0 0 0

GJ 0 0 0 0

Sym EIR Ek9,10 Ek9,11 0

Ek10,10 Ek10,11 0

Ek11,11 0

Ek12,12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.4)

where

A =
∫

dA,

Iy =
∫

Z2 dA,

Iz =
∫

Y 2 dA,

Cw =
∫

�2
p dA,

Sy =
∫

Y ′2 dA,

Sz =
∫

Z′2 dA,

Sw =
∫

(r − �)2 dA,

Syz =
∫

Y ′Z′ dA,

Syw =
∫

Y ′(r − �) dA,

Szw =
∫

Z′(r − �) dA,

J = 4
∫

dA,

IR =
∫

(Y 2 + Z2)2 dA,

k1,9 =
∫

(Y 2 + Z2) dA,

k1,10 =
∫

Z̄2 dA,

k1,11 =
∫

Ȳ 2 dA,
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k1,12 =
∫

Ȳ Z̄ dA,

k2,9 =
∫

Z̄(Y 2 + Z2) dA,

k2,10 =
∫

Z̄3 dA,

k2,11 =
∫

Ȳ 2Z̄ dA,

k2,12 =
∫

Ȳ Z̄2 dA,

k3,9 =
∫

Ȳ (Y 2 + Z2) dA,

k3,10 =
∫

Ȳ Z̄ dA,

k3,11 =
∫

Ȳ 3 dA,

k3,12 =
∫

Ȳ 2Z̄ dA,

k4,9 =
∫

�p(Y 2 + Z2) dA,

k4,10 =
∫

�pZ̄2 dA,

k4,11 =
∫

�pȲ dA,

k4,12 =
∫

Ȳ�pZ̄ dA,

IR =
∫

(Y 2 + Z2)2 dA,

k9,10 =
∫

(Y 2 + Z2)Z̄2 dA,

k9,11 =
∫

(Y 2 + Z2)Ȳ 2 dA,

k9,12 =
∫

(Y 2 + Z2)Ȳ Z̄ dA,

k10,10 =
∫

Z̄4 dA,

k10,11 =
∫

Z̄2Ȳ 2 dA,

k10,12 =
∫

Z̄3Ȳ dA,

k11,11 =
∫

Ȳ 4 dA,

k11,12 =
∫

Ȳ 3Z̄ dA,

k12,12 =
∫

Z̄2Ȳ 2 dA. (A.5)
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