
ARTICLE IN PRESS
0263-8231/$ - se

doi:10.1016/j.tw

�Correspond
E-mail addr
Thin-Walled Structures 46 (2008) 112–121

www.elsevier.com/locate/tws
Vibrations of axially moving flexible beams made
of functionally graded materials

M.T. Piovana,�, R. Sampaiob

aMechanical Systems Analysis Group, Universidad Tecnológica Nacional - Facultad Regional Bahı́a Blanca, 11 de Abril 461,

B8000LMI Bahı́a Blanca, BA, Argentina
bDepartment of Mechanical Engineering, Pontifı́cia Universidade Católica - Rio de Janeiro. Rua Marquês de São Vicente 225,
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Abstract

Problems related to the vibrations of axially moving flexible beams made of functionally graded materials are addressed. The problem

of an axially moving beam may be interpreted as a telescopic system in which the mass is not constant, the mechanism of elastic

deformation is transverse bending. A thin-walled beam with annular cross-section is analyzed, in which a continuously graded variation

in the composition of ceramic and metal phases across the wall thickness with a simple power law is considered. In this paper a finite

element scheme is employed to obtain numerical approximations to the variational equation of the problem. Normally, finite element

approaches use fixed-size elements, however, for this kind of problems the increase of the number of elements, step by step as the mass

enters, is a cumbersome task. For this reason an approach based on a beam-element of variable domain is adopted. The length of the

element is a prescribed function of time. Results highlighting the effects of the beam flexibility, tip mass and material constituents on the

dynamics of the axially moving beams are presented and the corresponding conclusions are given.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Axially moving beams appear in a broad range of
problems such as telescopic robotic manipulators, deploy-
ment of flexible antennas or appendages of spacecrafts,
band-saw blades, as well as the rolling process of plates,
wire rods, recorder tapes and belts, among others. In this
kind of problems the conservation of mass is not
automatically satisfied because mass may change depend-
ing on the type of boundary conditions. That is, if the
axially moving beam is considered to be inextensible or
axially rigid and it is supported between two fixed points
(the case of belts or band-saw blades), the mass of the
system in the domain can be conserved if the motion
amplitude is small. However, in the case of telescopic
cantilevered beam (the case of robot arms), the mass of the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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system is not conserved as mass enters or leaves the
domain. In this class of problems, the rate of entering mass
is a prescribed value. The study of flexible beams in a
translational axial movement have been gaining attention
in the last years [1–7] due to new applications in the areas
of robotics and spacecrafts, specifically modeling telescopic
flexible actuators traveling through prismatic joints. These
last applications may operate under severe environmental
conditions, such as high temperatures, requiring an
extended operational life. Under these circumstances, the
use of functionally graded materials can offer some
constructive answers in order to avoid possible structural
limitations.
The functionally graded materials are a kind of composite

whose properties vary continuously and smoothly from a
ceramic surface to a metallic surface in a specified direction
of the structure. The ceramic face protects the metallic
surface from corrosion as well as thermal failure, whereas
the metallic part offers strength and stiffness to the
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structure. The material properties are normally modeled
varying according to a power law along the thickness of a
shell [8] that constitutes the structure. The research in
structural problems, focusing attention in the employment
of functionally graded materials, has been mainly devoted
to eigenvalue analysis of beams [9], plates and shells [8].
However, to the best of the authors’s knowledge, in spite of
its importance, no research work related to the vibrations of
axially moving flexible beams made of functionally graded
materials has been yet presented.

In the present work, a study on the vibrations of flexible
sliding beams made of functionally graded materials,
deployed or retrieved through a prismatic joint, is
performed. The beam is modeled employing Euler–Ber-
noulli assumptions for small displacements and deforma-
tions [1,4]. A finite element scheme is employed to obtain
numerical approximations to the variational equation of the
problem. Normally, finite element approaches use fixed-size
elements, however, for this kind of problems the increase of
the number of elements, step by step as the mass enters, is a
cumbersome task that needs a very large number of small
elements in order to reach reasonable smoothness and
accuracy in the results. Al-Bedoor and Khulief [6,7]
developed a finite element scheme where a transition
element is employed in the link as the mass enters. Although
the use of transition element is an interesting idea, it
presents some inconveniences in the programming stage
because one has to consider that the element is partially
housed in the hub, then without flexural deformation. For
this reason an approach based on a beam-element of
variable domain [1] is adopted in this work, where the
length of the element is a prescribed function of the time.
The finite element methodology is revisited in order to make
clear its use in the context of a beam constructed with
functionally graded materials. A study of dynamic re-
sponses for different cases of axial deploying patterns and
material configurations is performed.
2. Structural model

2.1. Basic assumptions

Fig. 1 shows a horizontal flexible beam of variable length
LðtÞ moving along its longitudinal x-axis at a prescribed
Fig. 1. Beam co
velocity, V ¼ qtLðtÞ. The beam has a total length LT , and
an annular cross-section, where the material properties are
functionally graded in the thickness. The following
hypotheses are considered in order to develop the model:
(a) Bernoulli–Euler assumptions are invoked to model the
structure, i.e., the cross-section is preserved from distor-
tions in its plane, rotary inertia effects and the extensional
deformation are neglected, i.e. only transverse bending is
considered; (b) the gravitational potential energy due to the
elastic deformations is not taken into account in compar-
ison to the overall reference motion; (c) a tip mass is
considered to be concentrated at the free end of the beam;
(d) The beam is composed by ceramic and metallic phases,
where a simple power-law-type definition is employed for
the volume fraction of metal (ceramic) in the thickness.
The functionally graded shells are considered to be

composed by many isotropic homogeneous layers [10]. The
stress–strain relations for a generally isotropic material
including thermal effects are expressed as [11]
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The matrix elements Qij are defined in terms of effective
elastic properties:

Q11 ¼
Eeff

1� n2eff

; Q12 ¼
Eeff neff

1� n2eff

; Q44 ¼ Q55

¼ Q66 ¼
Eeff

2ð1þ neff Þ
; â ¼

aeff

1� neff

. ð2Þ

As the Euler–Bernoulli hypotheses are invoked, only the
first two components of stress and strain of Eq. (1) would
be employed.
nfiguration
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The material properties are given by

Eeff ðnÞ ¼ ðEo � EiÞ
2nþ e

2e

� �K

þ Ei, (3)

neff ðnÞ ¼ ðno � niÞ
2nþ e

2e

� �K

þ ni, (4)

aeff ðnÞ ¼ ðao � aiÞ
2nþ e

2e

� �K

þ ai, (5)

reff ðnÞ ¼ ðro � riÞ
2nþ e

2e

� �K

þ ri, (6)

keff ðnÞ ¼ ko � kið Þ
2nþ e

2e

� �K

þ ki (7)

in which Eeff , neff , aeff and reff are the effective modulus of
elasticity, effective Poisson’s coefficient, effective thermal
expansion coefficient and effective mass density, respec-
tively. These properties are defined for n 2 �e=2; e=2

� �
,

where e is the thickness. The subindexes ‘‘o’’ and ‘‘i’’ stand
for outer and inner surfaces, respectively. K ð0pKp1Þ is
the power law exponent. It becomes evident that if K ¼ 0
the beam is entirely made of the outer material, normally
ceramic. In addition to the exponential laws of variation in
the radial direction, the properties may be subjected to
variation with the temperature that can be represented by
the following expression [8,9]:

mp ¼ mp0ðc0T
�1 þ 1þ c1T þ c2T2 þ c3T3Þ (8)

in which mp is a material property in general (i.e., modulus
of elasticity, or Poisson’s coefficient, etc.), T is the absolute
temperature [K] and the coefficients ci and mp0 are unique
for a particular material and obtained by means of a curve
fitting procedure [12]. Thus the material properties can be
represented as a function of the thickness and the
temperature. It is assumed, only for simulation and
qualitative analysis purposes, that the beam is subjected
to a uniform temperature in the whole domain.

2.2. Variational formulation of the structural member

The displacement field taking into account the hypoth-
eses of the previous paragraph is

uxðx; s; n; tÞ ¼ � Y ðsÞ � n
dZ

ds

� �
qvðx; tÞ

qx
,

uyðx; s; n; tÞ ¼ vðx; tÞ. (9)

The displacement field (9) is a particular case of dis-
placement fields of thin-walled beam formulations (see
Refs. [9,13]), in which the points {Y ðsÞ;ZðsÞ} describe the
middle line of the wall thickness as shown in Fig. 1. Under
the hypotheses proposed above, only the axial strain is
considered, which can be expressed as

exx ¼ ēxx þ nk̄xx (10)
in which ēxx and k̄xx are given by

�̄xx ¼ �Y ðsÞ
q2v
qx2

; k̄xx ¼
dZ

ds

q2v
qx2

. (11)

Then, the strain energy of this structural member can be
described as

Ed ¼
1
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The kinetic energy of the system may be expressed as
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In expressions (12) and (13), LðtÞ is the instantaneous
length of the protruded part of the sliding beam. In
expression (13), the first term, the underlined term and the
double underlined term correspond to the transverse
complementary kinetic energy, the kinetic energy due to
axial acceleration (also called co-kinetic energy in
Refs. [2,3]) and the complementary longitudinal kinetic
energy (or kinetic energy due to the axial motion of the rigid
body), respectively. This last term is a prescribed quantity
since the sliding velocity V ðtÞ is prescribed. The triple
underlined terms corresponds to the kinetic energy of the tip
mass MT . It has to be noted that expressions (12) and (13)
are similar to those developed, for the case of isotropic
materials, by Stylianou and Tabarrok [1]. Note also that in
Eq. (13), qxðtÞ=qt ¼ qLðtÞ=qt ¼ V , due to the condition of
inextensibility. The constants J11

11 and J
r
11 are the flexural

stiffness and sectional inertia for a functionally graded
material, that are given by the following expressions:

J11
11 ¼

Z 2pRm

0

Ā11Y 2ðsÞ � 2B̄11Y ðsÞ
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ds
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" #
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J
r
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Z 2pRm

0

Z e=2

�e=2
reff dnds. (15)

In the above expressions reff is obtained from (6); Ā11, B̄11

and D̄11 are modified shell-stiffnesses for functionally
graded materials which are obtained eliminating Nss and
Mss which are considered negligible as a common
procedure for composites materials [13], and reducing �̄ss

and k̄ss from the following expression:
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where Nxx and Nss are shell forces, Mxx and Mss are shell
moments, and Aij, Bij and Dij are given by

fAij ;Bji;Dijg ¼

Z e=2

�e=2
Qijf1; n; n

2gdn. (17)

Since this problem has mass entering (or leaving) the
system, normally it is described by means of an Eulerian
formulation. However, it was shown [2,3] that the
Lagrangian formulation can still be used even for the case
of a system with changing mass [14]. In these circum-
stances, the equation of motion can be obtained by the
following Lagrangian expression:

dL ¼ dEk � dEd ¼ 0. (18)

2.3. Finite element discretization

As it was mentioned previously a finite element scheme
will be employed to solve the motion equation. The
approximation scheme for this sliding beam model for
functionally graded materials is based on the concept of
variable domain element introduced, for the case of
isotropic materials, by Stylianou and Tabarrok [1]. In this
context, the length of the element is not considered fixed,
but varying accordingly to the prescribed sliding velocity
V. In order to develop the finite element equation for the
variable domain element, the free part of the sliding beam
is divided into a number of equal length elements. Under
this circumstances, the Lagrangian (18) for a ith element is
given by
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d
2
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where the overbar in the variables corresponds to the
homonym variables but in the element domain. The
location of the spatial variable x̄ðtÞ in the element domain,
is given by the following expression:

x̄ðtÞ ¼ xðtÞ � LiðtÞ. (20)

Then, since qxðtÞ=qt ¼ qLðtÞ=qt ¼ V , the velocity of posi-
tion change in the element domain is given by

qx̄ðtÞ

qt
¼

qxðtÞ

qt
�

qLiðtÞ

qt
¼

qLðtÞ

qt
�
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qt
¼
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, (21)

where, being Ne the number of elements, the complemen-
tary length LCiðtÞ is given by

LCiðtÞ ¼ LðtÞ � LiðtÞ ¼ LðtÞ 1�
i � 1

Ne

� �
. (22)

The flexural displacement can be represented by the
following vector expression:

v ¼ FTqe (23)
in which the shape functions and nodal variables are given by

F ¼ 1�
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It has to be mentioned that le is time dependent
consequently the finite element expressions for the deriva-
tives of variable v are

qv

qx̄
¼

qF
qx̄

T

qe;
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. (25)

Now, substituting (25) into expression (19), performing
variational calculus, integrating in the time variables and
arranging in terms of the vector of nodal variables, nodal
velocities and nodal accelerations, one can arrive to the
following element equation:

me

q2qe

qt2
þ ceq

qqe

qt
þ keqqe ¼ 0, (26)

where me, ceq and keq are the elementary matrices of mass,
equivalent damping and equivalent stiffness, respectively.
The elementary mass matrix is given by

me ¼

Z leðtÞ

0

J
r
11F

TFdx̄, (27)

whereas the elementary equivalent damping and equivalent
stiffness matrices are given by

ceq ¼ ce1 � ce2 þ
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qt
,
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qt
(28)

in which

ke0 ¼

Z leðtÞ

0

J11
11

q2F
qx̄2

T
q2F
qx̄2

dx̄,

ce1 ¼

Z leðtÞ

0

J
r
11 FT qF

qt
þ

qLCi

qt
FT qF

qx̄

� �
dx̄,

ce2 ¼

Z leðtÞ

0

J
r
11

qF
qt

T

Fþ
qLCi

qt

qF
qx̄

T

F

� �
dx̄,

me1 ¼

Z leðtÞ

0

J
r
11

qF
qt

T qF
qt
þ

qLCi

qt

qF
qt

T qF
qx̄
þ

qF
qx̄

T qF
qt

� �"

þ
qLCi

qt

� �2qF
qx̄

T qF
qx̄

#
dx̄,

me2 ¼

Z leðtÞ

0

J
r
11 LCi � x̄ð Þ

qV

qt

qF
qx̄

T qF
qx̄

dx̄. (29)

It is clear that ke0 is the common structural stiffness matrix,
but the other three matrices of keq are mass-dependent



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

8
x 10−3

Time [sec]

T
ip

 D
is

p
la

c
e
m

e
n
t 
[m

]

two elements
four elements
six elements
eight elements

Fig. 2. Response for different discretization cases.

Table 1

Data for the aluminium beam analyzed by Al-Bedoor and Khulief [7]

Properties Values

Total length LT (m) 3.6

Flexural stiffness J11
11 ðN=m

2Þ 756.65

Mass per unit length J
r
11 (kg=m) 4.015
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components of the equivalent stiffness of the sliding beam.
The damping matrix is in general non-symmetric. If the
motion is such that the mass enters into the system (i.e.,
extrusion), then matrix ceq is positive definite, but if the
mass is leaving the system (i.e., retraction), the matrix ceq is
negative definite. After the assembling process, one can get
the following expression:

M
q2Q
qt2
þ Ceq

qQ
qt
þ KeqQ ¼ 0, (30)

where M, Ceq and Keq are the global matrices of mass,
equivalent damping and equivalent stiffness, whereas Q is
the global vector of nodal variables.

The damping matrix Ceq can be modified in order to
account for structural damping as

Ceq ¼ C1 � C2 þ
qM
qt
þ CRD. (31)

The matrix CRD corresponds to the system proportional
Rayleigh damping given by

CRD ¼ aMþ bK (32)

in which M and K are the global mass and structural
stiffness matrices, respectively; whereas parameters a and b
are computed from two experimental modal damping
functions [15,16].

The Matlab solvers are employed to simulate numeri-
cally the finite element model, for this reason Eq. (30) is
represented in the following ODE form:

A
dW

dt
þ BW ¼ 0 (33)

in which

A ¼
Ceq M

M 0

� �
; B ¼

Keq 0

0 �M

� �
; W ¼ Q;

dQ

dt

� 	T

.

(34)
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Fig. 3. Computation time for different discretization cases.
3. Numerical studies

3.1. Convergence and comparisons with other approaches

In the following paragraphs convergence check and
comparison among different approaches are performed. In
these calculations the structural damping is neglected.

Fig. 2 shows the tip displacements for four different
discretization (with two, four, six and eight elements) of a
isotropic beam tested by Al-Bedoor and Khulief [7] whose
properties are shown in Table 1. The deployment of the
beam follows a profile for LðtÞ given by

LðtÞ ¼ L0 þ Vt, (35)

where L0 ¼ 1:8m is the initial length of the beam outside
the hub, V ¼ 0:3m=s is the deployment velocity. For the
simulation process, a tip displacement of �0:005m and null
velocities are imposed in the initial state vector.
Fig. 3 shows the time consumed in the calculation (in a
Pentium IV computer with 3.8GHz, 512RAM) of the four
models. As it can be seen from Figs. 2 and 3, models with
few elements can reach acceptable results in a reasonable
short time.
Fig. 4 shows the tip displacement of the previous

isotropic beam, comparing the present approach with the
results of Al-Bedoor and Khulief [7]. Both approaches
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employed beam models with four finite element, however,
the last authors used a transition element formulation.

The tip displacements of the retracting beam are
compared with those given by Al-Bedoor and Khulief [7]
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Fig. 5. Tip displacement of a deploying beam at V ¼ �0:3m=s.

Table 2

Properties of stainless steel (SUS304) and silicon nitride (Si3N4)

Properties Material mp0 c0

E ðN=m2Þ SUS304 2:0104� 1011 0

Si3N4 3:4843� 1011 0

n SUS304 0:3262 0

Si3N4 0:2400 0

r ðkg=m3Þ SUS304 8166 0

Si3N4 2370 0
in Fig. 5. In this case the retracting pattern with the same
form of expression (35), but with L0 ¼ 3:0m, V ¼

�0:3m=s and an initial tip displacement of �10mm. For
this last calculation, a model with four elements was
employed. An excellent agreement between the two
approaches is observed.

3.2. Simulation of the dynamics of beams made of

functionally graded materials

In this paragraph an analysis of the dynamics of sliding
beams with different configurations of functionally graded
properties is performed. The beam for the studies
performed in this paragraph is constructed by a material
whose properties vary functionally from a stainless steel
surface of SUS304 to a ceramic surface of Silicon Nitride.
The basic properties of these components [8,9] are given in
Table 2. For all simulations the beam has a total length
LT ¼ 3:6m and the cross-section has a mean radius Rm ¼

0:025m and a wall thickness e ¼ 0:004m.
As a first simulation, the two deployment profiles of

expressions (36) and (37) are selected. In (36) and (37) L0 is
the initial free length of the beam, V is the sliding velocity,
a is the acceleration, t and Z are constants. The deployment
pattern (36) produces the deployment of the beam with a
constant acceleration and contains (35) as a particular case.
The pattern (37) performs the deployment of the beam with
time varying velocity and acceleration. Thus, under this
pattern, the beam domain evolves with pulsatile velocity
(between zero and Z=t) and sinusoidal acceleration.

LðtÞ ¼ L0 þ Vtþ
at2

2
, (36)

LðtÞ ¼ L0 þ
Z
t

t�
t
2p

Sin
2p
t

t

� �� �
. (37)

Figs. 6and 7 show the tip displacement of a beam under the
extrusion corresponding to deployment laws (36) and (37),
respectively. For both simulation models with four
elements and imposing an initial tip displacement of
�5mm were employed and a functionally graded material
with a ceramic outer surface and a metallic inner surface
was adopted. No structural damping and temperature
effects were considered. The properties for the deployment
c1 c2 c3

3.0790� 10�4 �6.534� 10�7 0

�3.0700� 10�4 2.160� 10�7 �8.946� 10�11

�2.0020� 10�4 3.797� 10�7 0

0 0 0

0 0 0

0 0 0
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law (36) were L0 ¼ 1m, V ¼ 2m=s and a ¼ 3m=s2;
whereas for deployment law (37), L0 ¼ 1m, Z ¼ 0:7 and
t ¼ 0:2. In both figures it is possible to see the high
frequency oscillating deployment when the exponent K ¼ 0
because the beam is totally made of ceramic which has a
high stiffness.

It is easy to modify the finite element formulation in
order to account for a lumped tip mass MT (see Ref. [1]).
Just a lumped mass term has to be added in the tip node
and the factor J

r
11ðLCi � x̄Þ in the matrix me2 has to be

changed by ðJ
r
11ðLCi � x̄Þ þMT Þ.

Fig. 8 shows the time history of the tip displacement of a
beam with an exponent of K ¼ 200 deploying with the law
(37), where L0 ¼ 1m, Z ¼ 0:8 and t ¼ 0:2. In this study, the
structural damping and the thermal effects are not
considered. In one case a tip mass of MT ¼ 1 kg (which
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Fig. 8. Effect of the tip mass on the tip displacement for a sinusoidal acceleration pattern, K ¼ 200.
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is approximately the 20% of the initial mass of the
protruded bar, i.e., at t ¼ 0) is considered. As it was
expected, the addition of a tip mass has the effect of
lowering the frequency of oscillations during the extrusion.

A final analysis evaluates the effect of structural
damping with the inclusion of tip mass. The coefficients a
and b are calculated [15] assuming for simulation purposes
the damping coefficients x1 and x2 for the first and second
frequencies, respectively. Two cases are simulated. In ‘‘case
1’’, the damping coefficients are x1 ¼ 1� 10�6 and
x2 ¼ 5� 10�6, and in ‘‘case 2’’ the damping coefficients
are x1 ¼ 2� 10�5 and x2 ¼ 1� 10�4. Fig. 9 compares the
time histories of the tip displacement for a beam with K ¼

200 and a tip mass of MT ¼ 1 kg, taking into account and
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neglecting the structural damping. The deployment char-
acteristics are the same to those of the cases of Fig. 8. As it
can be seen, in ‘‘case 1’’ the motion is lightly damped, on
the contrary ‘‘case 2’’ shows a more pronounced damping
in the tip displacement of the system since the damping
coefficients employed in the calculation of Rayleigh
damping are twenty times greater than the ones employed
in ‘‘case 1’’. Fig. 10 compares the variation of
the displacement ratio DR (38) of the tip displacement
(i.e., relative to the initial condition) with respect to the
temperature for different configurations of FGM.

DR ¼ max 1�
vðL; t40:5Þ

vðL; 0Þ

� �
100










. (38)

The data plotted in Fig. 10 correspond to a beam deploying
according to (37) with L0 ¼ 1m, Z ¼ 0:8 and t ¼ 0:2,
MT ¼ 1 kg and the damping coefficients of ‘‘case 2’’, that is
x1 ¼ 2� 10�5 and x2 ¼ 1� 10�4. Note that as the beam is
mainly composed by ceramics (K ! 0) the effect of
proportional structural damping is not very significant
and practically it is not affected by the increase of
temperature. Conversely, if the beam has an sensible
proportion of the metallic component (K !1) the
damping effects are quite significant and affected by the
increase of temperature.

4. Conclusions

In this article a formulation for axially moving beams
made of functionally graded materials was developed. The
structural model is based on the Bernoulli–Euler hypoth-
eses including the constitutive equations for a ceramic-
metallic functionally graded material. The variation of
properties along the wall thickness of the annular cross-
section follows a simple exponential law.

A finite element formulation was employed to simulate
the dynamics of extruding and retracting beams. This
formulation considers the use of a beam element of
variable length which showed a very good performance.
The finite element results obtained with this formulation

for the tip displacement of a sliding beam, agrees well with
the results published by other authors employing the
assumed modes methods.
Two different patterns, or laws of deployment, were

tested in the protrusion of functionally graded beams. The
variation of the properties, by means of the exponent K,
was analyzed. The simulation results showed that a beam
in which the ceramic is the main component has a high
oscillatory deployment but when the beam has a metallic
main component the frequency of oscillation is lower.
Moreover, as the beam is mainly composed by a metallic
part, the damping is quite sensible and it is strongly
affected by the temperature. However, if the beam is
mainly composed by ceramic substrates, the structural
damping has scarce influence
As a final conclusion, this kind of model is quite useful

for the analysis of deploying beam-like structures with
specified deploying patterns, for both functionally graded
and isotropic materials. Although the model presents a
relative complexity in its formulation (due to the concept of
element with variable length), it has a good computational
performance.
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