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We discuss the generalization of the connection between the determinant of an operator
entering a quadratic form and the associated Gaussian path-integral valid for Grassmann
variables to the para-Grassmann case [θp+1 = 0 with p = 1 (p > 1) for Grassmann
(para-Grassmann) variables]. We show that the q-deformed commutation relations of the
para-Grassmann variables lead naturally to consider q-deformed quadratic forms related
to multiparametric deformations of GL(n) and their corresponding q-determinants. We
suggest a possible application to the study of disordered systems.
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Using anticommuting functions as integration variables, Matthews and Salam

showed that the path-integral for a system of relativistic fermions in an external

field gives the determinant of the Dirac operator.1 That is, the fermionic partition

function does not yield a negative power of the determinant, as in the bosonic

case, but a positive power, p = +1. Ten years later, Berezin completed his analysis

of noncommutative algebras and fermion systems, making clear that the natural

framework to define fermionic path-integrals was that of Grassmann algebras.2
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The main ingredient behind the result

∫ n
∏

i=1

dθi dθ̄i exp(θ̄iAijθj) = det A , (1)

when one integrates over two sets of n Grassmann variables θi and θ̄i are the

anticommutation rules

[θi, θj ]+ = 0 , [θ̄i, θ̄j ]+ = 0 , (2)

for all pairs i, j, that imply θ2
i = θ̄2

i = 0 for all i. In Eq. (1) we neglected an irrelevant

factor related to the definition of the integration measure. The summation rule over

repeated indices is used henceforth. Notice that the condition [θ̄i, θj ]+ = 0, which

is usually imposed, is not necessary for the validity of Eq. (1). In fact, a relation of

the form θ̄iθj = αθj θ̄i, with α some c-number, yields the same result (modulo an

irrelevant normalization).

In order to construct a path-integral representation of the pth power of a deter-

minant it seems natural to use p-para-Grassmann variables such that

θp+1
i = θ̄p+1

i = 0 , for all i . (3)

Consistent integration rules for θi and θ̄i take the form (see for instance Refs. 3–5)
∫

dθi θr
i = N δr,p ,

∫

dθ̄i θ̄r
i = N̄ δr,p , (4)

where N and N̄ are two complex numbers that, without loss of generality, we set

to 1. Indeed, one can easily see that the Gaussian integral of a diagonal form,

θ̄iAijθj = θ̄iλiθi, that is quadratic in the pair of p-para-Grassmann variables θi and

θ̄i, leads to the pth power of the product of the diagonal elements,

∫ n
∏

i=1

dθi dθ̄i exp(θ̄iAijθj) =

(

n
∏

i=1

λi

)p

= (det A)p . (5)

Here and in what follows we use the ordinary definition of the exponential, ex ≡
∑

∞

m=0 xm/m!.

However, contrary to what seems to be accepted in the literature, it is not

straightforward to obtain an analogous result whenever the quadratic form is not

diagonal. The reason is that the change of variables needed to bring A to a diagonal

form, spoils the commutation rules of the para-Grassmann variables, unless p = 1.

Thus, in order to define a consistent path-integral for para-Grassmann variables,

one has to take into account para-Grassmann changes of variables (a fact that, to

our knowledge, has not been discussed in the literature).4–11

It is the purpose of this work to fill this gap by developing a consistent frame-

work to integrate para-Grassmann variables that allows one to deal with Gaussian

integrals of nondiagonal quadratic forms. We shall see that the quantum group

GLq,q′ (n) (with qq′ a primitive root of unity) enters naturally into play.
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Let us start by fixing the commutation rules for the θi variables among them-

selves. For simplicity we consider just two variables θ1 and θ2 and impose the

following q-commutation rule

θ1 · θ2 = qθ2 · θ1 , (6)

with q a c-number. Usually, see for instance Ref. 10, this number is taken to be a

primitive root of unity, qp+1 = 1, qm 6= 1 for all m < p + 1, but this condition is

not necessary to define a consistent integral and we shall not impose it.

We now consider a linear change to new variables

ω1 = aθ1 + bθ2 , ω2 = cθ1 + dθ2 , (7)

with a, b, c, d certain in principle noncommuting parameters that commute with

θ1 and θ2 and that we encode in a 2 × 2 matrix

A =

(

a b

c d

)

. (8)

Suppose that

a · b = q′b · a , c · d = q′d · c ,

with q′ a second complex parameter. We want the ω’s to have the same commutation

properties as the θ’s. It is easy to show that, defining

z = qq′ , (9)

we obtain

(aθ1 + bθ2)
m =

m
∑

l=0

(

m

l

)

z

bm−l · alθm−l
2 · θl

1 (10)

with
(

m

l

)

z

≡
(m)z !

(l)z !(m − l)z!
, (m)z ≡

1 − zm

1 − z
,

(m)z ! = (m)z(m − 1)z! , 1z = 1 .

Then, the conditions

ωp+1
1 = ωp+1

2 = 0 (11)

require z to be a primitive root of unity,

zp+1 = 1 , zm 6= 1 for all m < p + 1 . (12)

Note that q and q′ are not fixed separately to be roots of unity.

If we further enforce the analogous to condition (6),

ω1 · ω2 = qω2 · ω1 ,
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the following commutation rules between the coefficients in the change of variables

(7) should hold:

(i) a · c = qc · a ,

(ii) b · d = qd · b ,

(iii) a · d − d · a − q′c · b + 1/qb · c = 0 .

(13)

Already at this point we see that a, b, c, d cannot be ordinary c-numbers. Indeed,

this would imply q = q′ = 1 but condition (12) requires (qq′)m 6= 1 for any m < p+1.

Conditions (13) do not exhaust the commutation rules among the coefficients

a, b, c, d. If we impose

b · c = q/q′c · b , (14)

relation (iii) becomes

(iii) a · d − d · a = (q′ − 1/q)b · c = (q − 1/q′)c · b . (15)

The resulting commutation rules imply that A belongs to the quantum group

GLq,q′ (2) (some of its properties are discussed in App. A).

At this point we can compute the Jacobian J associated with the transforma-

tions (7) via

dω1 · dω2 = Jdθ1 · dθ2 . (16)

Since ω1 and ω2 are p para-Grassmann variables their integration yields
∫

dω1 · dω2 · ω
r
1 · ωs

2 = δrpδsp , (17)

where we have omitted the overall normalization constant. Consider now the inte-

gral

1 =

∫

dω1 · dω2 · ω
p
1 · ωp

2 = J

∫

dθ1 · dθ2 · (aθ1 + bθ2)
p · (cθ1 + dθ2)

p . (18)

The inverse of the Jacobian is then given by

J−1 =

∫

dθ1 · dθ2 · (aθ1 + bθ2)
p · (cθ1 + dθ2)

p ≡ I . (19)

Using the expression (10) and the integration rules (4) it is easy to show that the

only contribution to the integral I comes from terms having p powers of θ1 and p

powers of θ2,

I =

p
∑

l=0

(

p

l

)2

z

bp−l · al · dl · cp−l

∫

dθ2 · dθ1 · θ
p−l
2 · θl

1 · θ
l
2 · θ

p−l
1

=

p
∑

l=0

Γp
l a

l · dl · bp−l · cp−l (20)
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with

Γp
l ≡

1

zl(p−l)

(

p

l

)2

z

q−(p−l)2 . (21)

Here we have used the commutation rules given above for a, b, c, d and normalized

the integral of the θ and θ̄ variables as in Eq. (17). After some algebra, Eq. (20)

can be accommodated as

I = (a · d − q′b · c)p ≡ ∆p . (22)

Indeed, writing

(a · d − q′b · c)p =

p
∑

l=0

Λp
l a

l · dl · bp−l · cp−l , (23)

we can show that the coefficients Λp
l coincide with the coefficients Γp

l in Eqs. (20)

and (21). To this end, using ∆ ≡ a · d − q′ b · c and Eq. (A.2) we have

∆p+1 = ∆p · (a · d − q′b · c) = a · ∆p · d − q′∆p · b · c , (24)

and replacing ∆p with the expression in Eq. (23) we obtain

∆p+1 =

p+1
∑

l=0

al · dl · bp+1−l · cp+1−lzp+1−l
(

Λp
l−1 − q2l−2p−1Λp

l

)

, (25)

where we defined Λp
−1 = Λp

p+1 = 0. Equation (25) determines the following recur-

rence relation for Λ:

Λp+1
l = zp+1−l

(

Λp
l−1 − q2l−2p−1Λp

l

)

, (26)

with the initial conditions Λ1
0 = −q′, Λ1

1 = 1 that is solved by

Λp
l = (−1)p−lq−(p−l)2z(p−l)(p−l+1)/2

(

p

l

)

z

. (27)

When z is a primitive root of unity we have
(

p

l

)

z

= (−1)lz−l(l+1)/2 , (28)

and Eq. (27) becomes

Λp
l =

1

zl(p−l)

(

p

l

)2

z

q−(p−l)2 = Γp
l (29)

completing the proof of the identity in Eq. (22).

Thus, the Jacobian of the linear change of variables (7) that is associated to an

element A ∈ GLq,q′ (2), is given by the inverse pth power of the “q-determinant” of

A:

J = (det A)−p (30)
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with the generalized determinant defined as

det A ≡ a · d − q′b · c . (31)

We shall now discuss the calculation of the Gaussian integral for a nondiagonal

quadratic form. In order to do it, we need to fix the complete para-Grassmann

algebra by defining the commutation rules between the θ̄’s and the θ’s and those

among different θ̄’s.

The simplest possibility is to demand that independent GLq,q′ (2) transforma-

tions for the θ’s and θ̄’s preserve the commutation relations, leading to the θ̄’s and

θ’s commuting with each other independently of their indices (up to a factor which

for simplicity we take to be 1). That is

θ̄i · θj = θj · θ̄i , ∀i, j (32)

(notice that these conditions are not those imposed in Ref. 10).

Regarding the commutation relations for the θ̄i’s, we have two possible choices,

C1 : θ̄1 · θ̄2 = q−1θ̄2 · θ̄1 , (33)

C2 : θ̄1 · θ̄2 = qθ̄2 · θ̄1 . (34)

Let us start by analyzing C1. Consider the integral

I =

∫

dθ̄1 · dθ̄2 · dθ1 · dθ2 · e
θ̄iAijθj , (35)

where A is a matrix belonging to GLq,q′ (2). Changing the integration variables as

θi → ωi = Aijθj , θ̄i → θ̄i , (36)

the result (30) for the Jacobian and the fact that ωi and θ̄j commute lead to

I = (det A)p

∫

dθ̄1 · dθ̄2 · dω1 · dω2 · e
θ̄i·ωi = (det A)p , (37)

whenever qq′ = 1 is a primitive root of unity.

Since for the rules C1 the parameters q and q−1 play a dual role regarding the

θ’s and θ̄’s, it is natural to consider, apart from the case discussed above, the one

corresponding to quadratic forms A ∈ GLq′−1 ,q−1(2) (notice that q′−1q−1 is also a

primitive root of unity; the reason why the order of the deformation parameters is

transposed will become clear immediately). The appropriate change of variables is

in this case

θi → θi , θ̄i → ω̄i = θ̄jAji . (38)

This is a consistent change of variables only for AT ∈ GLq−1,q′−1(2) or A ∈

GLq′−1,q−1(2) with q′q a primitive root of unity. An argument similar to the one

leading to Eq. (37) also yields in this case
∫

dθ̄1 · dθ̄2 · dθ1 · dθ2 · e
θ̄i·Aij ·θj = (det A)p . (39)
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Now, let us consider the case C2 in which the commutation relations for the θ̄’s

are identical to those among the θ’s. The integral of the diagonal form
∫

dθ̄1 · dθ̄2 · dθ1 · dθ2e
θ̄1·θ1+θ̄2·θ2 (40)

vanishes. Moreover, with an argument similar to the one used in the case C1 one

proves that any integral of the form (35) with A ∈ GLq,q′ (with qq′ a primitive root

of the unity) also vanishes. We can however find a nontrivial result by noticing that

C2 differs from C1 only by the exchange

θ̄1 → θ̄2 , θ̄2 → θ̄1 . (41)

If we construct a quadratic form θ̄i · Kijθj with a 2 × 2 matrix K with entries

satisfying

a · b = q′−1 b · a ,

a · c = q c · a ,

b · d = q d · b ,

c · d = q′−1 d · c ,

a · d = q/q′ d · a ,

b · c − c · b = (q′ − 1/q) a · d ,

(42)

we have
∫

dθ̄1 · dθ̄2 · dθ1 · dθ2 · e
θ̄i·Kijθj = (det K)p , (43)

where

det K ≡ a · d − qc · b . (44)

The elements of the matrices K satisfy commutation relations preserved under

simultaneous left GLqq′ (2) and right GLq−1q′−1(2) rotations:

Kij → K ′

ij = MilM̄sjKls , M ∈ GLqq′ (2) , M̄ ∈ GLq−1q′−1 (2) , (45)

where [Mij , M̄lm] = [Mij , Klm] = [M̄ij , Klm] = 0.14 Notice nevertheless that, unlike

the A matrices in GLq,q′ (2), the K matrices cannot be diagonal. This is consistent

with our previous statement that commutation rules C2 are incompatible with

integration of diagonal quadratic forms.

So far we have considered an algebra with two para-Grassmann variables. As

already mentioned in Ref. 12 the analysis of these algebras becomes rather involved

as n increases and, to our knowledge, a complete classification is still missing.

Nevertheless, we believe that the generalization of our result to n > 2 will lead us

to consider q-commutation of the form:

θi · θj = R
(1)
ij,klθk · θl , (46)

θ̄i · θ̄j = R
(2)
ij,klθ̄k · θ̄l , (47)
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where R(1) and R(2) are matrices related to multiparametric deformations of GL(n).

We expect to report on this issue in the future.

In conclusion, in this paper we showed how to introduce consistent Gaussian

integrals over para-Grassmann variables. Surprisingly, one is obliged to introduce

elements of quantum groups in the quadratic forms to allow for linear changes of

variables in the integration.

Even if rather abstract at face value this result is a first step in our program

to extend the supersymmetric approach to disordered systems in a way that its

relation with the replica method becomes more general and transparent. In brief,

many interesting problems are represented with “disordered” field theories in which

some parameters are taken from a probability distribution (these can be random

exchanges, masses, fields, etc.) In general, one is interested in knowing their aver-

aged properties, i.e. the behavior of observables averaged over disorder

[O] ≡

[

−
1

Z

∂Z

∂h

∣

∣

∣

∣

h=0

]

, (48)

with Z ≡
∫

d fields exp(−S[fields, disorder] − hO) and the square brackets repre-

senting the average over the distribution of random parameters. A typical example

is given by the calculation of the averaged spectral properties of random matrices.

The replica and supersymmetric methods allow one to represent the normalization

1/Z in exponential form. In the former one replicates the system by making p − 1

identical copies of it and writes15

1

Z
= lim

p→0
Zp−1 = lim

p→0
(det A)−(p−1)/2 , (49)

with the latter identity holding for a Gaussian model. In the latter, for a Gaussian

problem, one writes16

1

Z
= (det A)1/2 =

det A

(det A)1/2
=

∫

∏

i

dφi dθ̄i dθi eθ̄iAijθj+φiAijφj (50)

with θ̄i and θi Grassmann and φi real bosonic variables. In both cases one takes

advantage of the thermodynamic large n limit to analyze the effective replicated

real bosonic and supersymmetric field theories. The connection between the two

methods has not been fully clarified yet. However, “mappings” between the replica

expressions when p → 0 and the supersymmetric ones are easy to construct.17 A

trivial example is limp→0

∑p
k=1 1 = 0 =

∫

dθdθ̄. (Indeed, one can trace the relation

to the properties of the zero-dimensional replica space and superspace.) A clue to

the connection between the two approaches might come from the development of

an extended supersymmetric treatment that relates to the replica one for finite p.

This may also make possible the computation of some interesting properties that

need manipulations of the finite p replica expressions (sample-to-sample fluctuations

being one such example). A natural way of representing the (p − 1)th power of a

determinant is to introduce copies of the fermionic variables. Another, as we showed

here, is to use variables with extended statistics. We expect to report on progress in
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the development of an extended supersymmetric approach to the study of problems

with quenched disorder in a forthcoming publication.
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Appendix A. Quantum Group GLq,q′(2)

Let us recall some properties of the quantum group GLq,q′ (2):

(1) Closure under co-multiplication. If

g =

(

a b

c d

)

, g′ =

(

a′ b′

c′ d′

)

are elements of GLq,q′(2) such that the entries a, b, c, d commute with the

entries a′, b′, c′, d′, then the product

g · g′ =

(

a · a′ + b · c′ a · b′ + b · d′

c · a′ + d · c′ c · b′ + d · d′

)

also belongs to GLq,q′(2).

(2) Existence of the inverse (antipode). The element

g−1 =

(

d −bq′−1

−cq′ a

)

· ∆−1 ,

where

∆ ≡ a · d − q′b · c (A.1)

is the inverse of g and is an element of GLq−1,q′−1 (2).

(3) Determinant. The object ∆ = a · d − q′b · c = a · d − qc · b = d · a − q−1b · c =

d · a − q′−1c · b is defined as the determinant of g. It satisfies

∆ ·

(

a b

c d

)

=

(

a q/q′b

c q′/qd

)

· ∆ . (A.2)

(4) The element gm belongs to GLqm,q′m(2).
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