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It is shown that 3He impurities in sufficiently large 4He systems adsorbed
onto substrates with curved geometries form surface bound states, analogous
to the Andreev state on a planar liquid–vapor interface. We report the anal-
ysis performed for superfluid 4He adsorbed on the external surface of the
nano-fullerene C60 and on cylindrical nano-wires of Au. It is found that a
single 3He impurity diluted into such adsorbed structures behaves as on films
on planar substrates and as on pure 4He clusters.
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1. INTRODUCTION

During the last two decades, a large amount of work has been
devoted to investigate the adsorption of quantum fluids in restricted geom-
etries.1 In particular, experimental and theoretical studies of the behav-
ior of a single 3He impurity adsorbed into the 4He fluid have been issues
of great interest. Since 3He and 4He atoms interact through the same
potential, the properties of their mixed systems are determined by quan-
tum effects.2 In this case, the zero point motion becomes very impor-
tant. Let us mention that impurities heavier than helium atoms (e.g., alkali
metals or the SF6 molecule), for which one expects a small zero point
motion, can be treated as classical objects in a quantum fluid.3–5 One 3He
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atom, being lighter than 4He, tends to move in regions of low 4He den-
sity. This feature leads to the so-called Andreev state of 3He on a 4He
liquid–vapor interface at low temperature.6 Several theoretical descriptions
of finite helium systems such as films and clusters have shown the same
kind of localization. Microscopic calculations of 3He impurities on helium
films adsorbed on a planar graphite surface, performed within the var-
iational hypernetted-chain equations (HNC) theory by Krotscheck and
coworkers,7–9 showed the structure and energetics of states localized at the
outer film surface for various 4He coverages. Pavloff and Treiner10 found
similar structures applying finite range density functional theory (FRDF)
to 3He atoms in films of liquid 4He adsorbed on planar Nuclepore. Den-
sity functional (DF) theory applied to 4He clusters also demonstrated this
localization; Dalfovo11 employed a zero-range DF to describe both the
4He drops and the 3He–4He interaction and later, within a similar FRDF
approach, Barranco et al.14 computed the energetics of these impurities in
pure and doped 4He clusters. Moreover, variational Monte Carlo (VMC)
calculations for 3He adatoms on 4HeN droplets have been carried out by
Belić et al. 13 In all calculations, one finds indications that as the finite
4He system grows towards the thermodynamic limit, the energy of the
impurity also approaches a limiting value. Within some dispersion attrib-
utable to the different methods employed, these asymptotic values seem to
appear in the vicinity of −5 K, the experimental value originally reported
by Edwards and Saam.2

Quite recently, FRDF’s have been applied to study adsorption of 4He
on curved substrates, in particular, on strongly attractive spherical car-
bon fullerenes15,16 and on cylindrical metallic nano-wires.17 In such a
theory the ground-state (gs) energy of an interacting N -body system of
4He atoms, confined by an adsorbate-substrate potential Usub(r), may be
written as

Egs = −
–h2

2m

∫
dr
√

ρ4(r)∇2
√

ρ4(r)+
∫

drρ4(r)ecor(r)+
∫

drρ4(r)Usub(r),

(1.1)

where ρ4(r) is the one-body density and ecor(r) the correlation energy per
particle. The density profile ρ4(r) is determined from the Euler–Lagrange
(EL) equation derived from the condition

δ�

δρ4(r)
= δ

{
Egs[ρ4,∇ρ4]−µN

}
δρ4(r)

=0 (1.2)

in the respective geometry.
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In the spirit of these previous works we now focus on the effects of
the finite substrate curvature on the 3He impurities in the adsorbed 4He
shells. Accordingly, in the present work we report a study of the adsorp-
tion of a single 3He atom on 4HeN + C60 clusters by employing for 4He
the FRDF proposed by the Orsay–Trento (OT) collaboration,18 and on
4He shells that coat cylindrical Au nano-wires as described in Ref. 17. For
this sake, in Sec. 2 we shortly review the DF formalism and some particu-
lar geometrical details, and in Sec. 3 we discuss our main results. We also
show that the overall picture is the same in spherical and cylindrical geom-
etries, and discuss the energy systematics for 3He in both cases. The sum-
mary and outlook are presented in Sec 4.

2. DENSITY FUNCTIONAL FORMALISM FOR 4HE FILMS WITH
ONE 3HE IMPURITY IN CURVED GEOMETRIES

Within DF theory, the density profiles ρ4(r) of 4He in any specific
geometry are obtained solving a Hartree equation

−
–h2

2m4
∇2
√

ρ4(r) (2.1)

+ [VH (r)+Usub(r)]
√

ρ4(r)=µ4
√

ρ4(r), (2.2)

which also determines the chemical potential of helium atoms µ4. Here
VH (r) is a Hartree mean-field potential given by the first functional deriv-
ative of the total correlation energy Esc[ρ].

VH (r)= δEsc[ρ]
δρ4(r)

= δ

δρ4(r)

∫
dr′ρ4(r′)ecor(r′). (2.3)

When one considers a 3He impurity in the 4He fluid, the single parti-
cle (sp) wave functions φα are optimally calculated by solving the equation

[
−∇

–h2

2m∗
3
∇ +V3(r)+Usub(r)

]
φα = εαφα, (2.4)

where m∗
3 is the effective mass of the 3He atoms in 4He

–h2

2m∗
3

=
–h2

2m3

(
1− ρ̄4(r)

ρ4c

)2

(2.5)

with ρ4c = 0.062 Å−3. Here ρ̄4(r) is the usual coarse-grained density18

obtained by averaging the actual density ρ4(r) within a sphere of radius
h with constant weighting function w4(|r − r′|). The quantity V3(r) is an
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effective potential univocally determined by the 4He gs density through the
DF as

V3(r) =
∫

dr′ρ4(r′){V34(|r − r′|)
+w3(|r − r′|)ρ̄4(r′)[c′

4 + c′′
4 ρ̄4(r′)]

+c34ρ4(r)ρ̄4(r)γ34}, (2.6)

where w3 is the coarse graining weighting function for the 3He atom den-
sity and the remaining quantities are the same as in Ref. 14. In other
words, the mean field V3(r) is that given by the DF description of mix-
tures of helium isotopes14,19,20 after setting the particle and kinetic energy
densities of the 3He fluid equal to zero.21

2.1. Spherical Geometry

In Refs. 15 and 16, Eq. (2.2) was solved for a wide range of fixed
numbers of helium atoms N in 4HeN + C60 clusters, such that

N =4π

∫ ∞

0
r2 dr ρ4(r). (2.7)

This enables us to compute the mean field (2.6) and investigate the bind-
ing of a single 3He atom to those systems. In the spherical geometry one
can expand φα in spherical harmonics. The generic impurity state will be
characterized by a principal quantum number n and the angular momen-
tum l

φα = Rnl(r)

r
Ylm(r̂). (2.8)

Schrödinger equation for the generic radial wave function Rnl is

−
–h2

2m∗
3

d2

dr2
Rnl −

(
d

dr

–h2

2m∗
3

)
d

dr
Rnl

+
[
V3(r)+ 1

r

(
d

dr

–h2

2m∗
3

)
+

–h2

2m∗
3

l(l +1)

r2
+Usub(r)

]
Rnl = εnlRnl. (2.9)

and the probability density |Rnl(r)|2 is normalized according to
∫ ∞

0
dr|Rnl(r)|2 =1. (2.10)
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2.2. Cylindrical Geometry

In Ref. 17, density profiles and energy systematics of fluid 4He
adsorbed on Au nano-wires have been presented. In this case, the 4He
density is normalized so as to define an areal coverage n4 on a tube of
radius R and length L

n4 = N

2πRL
= 1

R

∫ ∞

0
r dr ρ4(r) (2.11)

and the single atom wave function for 3He is

φα = Rnlk(r)√
r

ei(kz+lϕ)

2πL
, (2.12)

where ∫ ∞

0
dr|Rnlk(r)|2 =1. (2.13)

For band heads nl with axial momentum k =0, the Schrödinger equation
is the same as Eq. (2.9), with a centrifugal potential of intensity l2 −1/4.

3. NUMERICAL RESULTS AND ANALYSIS

As a first step, we have solved the Schrödinger equation (2.9) for
a single 3He atom in the mean field V3(r) + Usub(r), with Usub(r) being
the outer spherical potential created by a C60 fullerene.15,16 The densities
ρ4(r) for the different numbers N of 4He atoms are those in Ref. 16, com-
puted with the complete OT density functional. Due to the fact that the
centrifugal potential in Eq. (2.9) is scarcely effective at the distances where
the sp wave functions localize, the states of the impurity group into rota-
tional bands with spectrum

εnl = εn0 +
–h2

2m∗
n0r

2
n0

l2 (3.1)

and wave functions Rnl ≡Rn0. As in previous works where this effect was
reported15,22,23 the spectral parameters m∗

n0 and rn0 obtained by a fit to
the computed spectrum are well reproduced by an averaged effective mass

1
m∗

n0
=
∫

dr |Rn0(r)|2 1
m∗(r)

(3.2)

and by the mean radius of the 4He system, respectively.
Figure 1 shows the energy per particle Egs/N and the chemical poten-

tial µ4 in 4HeN + C60 clusters together with the sp energies of states 1s, 2s,
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Fig. 1. From bottom to top (for N >40) the curves, respectively, represent, in K, the energy
per particle Egs/N , the chemical potential µ4, and the sp energies of states 1s, 2s, and 3s of
one 3He atom, as functions of N in doped 4HeN +C60 clusters. These results were obtained
with the complete Orsay–Trento functional.

and 3s of the 3He impurity, all these as functions of N . In this figure
we can observe a strong level repulsion near N = 50, immediately below
promotion to a second layer in the 4He shell. To analyze this effect, in
Fig. 2 we plot the radial wave functions R10(r) and R20(r) versus the
radial distance r for N = 49 (lower panel) and 50 (upper panel). In each
plot, we also show the density ρ4(r) of the 4He shell and the total one
body field V3(r)+Usub(r) experienced by the 3He impurity. The horizon-
tal full and dashed lines respectively indicate the energies ε10 and ε20 of
the corresponding sp state. We clearly appreciate the very strong effect
of the level repulsion identified in Fig. 1, that exchanges the localiza-
tion of the gs and first excited sp wave functions, while the 4He density
stays in the submonolayer regime; for all particle numbers N above 50,
the gs of the impurity remains localized at the outer surface of the 4He
spherical film. This is illustrated in Fig. 3, where the same curves are dis-
played for a thick shell with N = 1000, which displays a broad bulk-like
region at practically constant saturation density ρ0 = 0.022 Å−3. In this
case, the wide potential well at the outer surface localizes both the gs and
the excited wave function of the 3He atom. Note, however, that although
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(a)

(b)

Fig. 2. Radial wave functions Rn0 of one 3He impurity and particle density of the adsorbed
4He fluid, together with the respective mean fields (in K) experienced by the atoms for N =
49 and 50. The functions ρ4(r) and Rn0(r) are displayed in arbitrary scales to fit in the plot.
The horizontal lines respectively indicate the energy of the state. Note that the origin of the
horizontal axis has been shifted to the radius of the C60 fullerene, 3.55 Å.

the gs state does not penetrate the film, the first excited state exhibits a
finite probability density in the interior of the cluster. In fact, as the 4He
system approaches the thermodynamic limit, the whole set of excited states
should evolve asymptotically into the state of the impurity dissolved in
bulk 4He,10,14, with energy around −2.79 K according to experimental
determinations.24

In Fig. 4 we plot (in triangles, see caption for details) the energies of
the spherical Andreev states obtained in this work, together with previ-
ous DF results for spherical helium clusters, as functions of N1/3. Note
that for a fluid shell on a sphere of radius R, one can define a hydro-
dynamic radius a by the relation N = 4πρ0(a

3 − R3)/3, with ρ0 the bulk
density of the liquid.25 This means that for the largest N values where
a �R, the variable in abscissae is essentially the curvature at the surface
of the cluster, while for small particle numbers, N−1/3 is very sensitive to
the substrate curvature 1/R. From this figure, we realize that a comparison
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Fig. 3. Same as Fig. 2 for N = 1000.

between Andreev-like states in pure 4He drops and in 4He shells is mean-
ingless for N−1/3 above 0.14, i.e., for particle numbers below 360 atoms. In
other words, for these small to moderate particle numbers, the 4He shell
does not screen the substrate, which strongly influences the impurity state.
Instead, the results for the largest systems practically lie on a straight line,
as is the case for the 4HeN clusters where no extended substrate is present.
The displayed dashed line corresponds to a least square fit to the data for
N > 500 and crosses the vertical axis at −4.9 K, very close to the early
reference value −5 K for the Andreev state in semiinfinite helium, indi-
cated by the star. The coincidence between the trends of the open and the
closed triangles indicates that the nonlocal kinetic energy effects of the OT
functional18 are not significant for the structure and energetics of the sin-
gle 3He impurity.

A characteristic of the present and previous DF calculations, visi-
ble in Fig. 4, is the fact that for any finite curvature the gs energy of
the impurity lies above that of the Andreev state at the free surface of
semi-infinite 4He. This is mostly a manifestation of the substrate curva-
ture, rather than an effect of the film structure, as supported by the fol-
lowing argument. The adsorbing potential exerted by a spherical surface
of radius R, whose uniformly distributed atoms (at areal density θ ) inter-
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Fig. 4. Binding energy of the lowest impurity state as a function of N−1/3. The star is the
reference energy of the Andreev state according to Ref. 2. The solid line corresponds to
the results of Ref. 14, the open triangles and dashed line (see text) to the results calculated
by using OT-NLDF with αs = 0 and the full triangles to data evaluated with the complete
OT-NLDF.

act pairwise with the adsorbate via a Lennard–Jones (LJ) potential of well
depth εLJ and hard core σL,J , can be written as15

Usub(r)=4πθR2εLJ

1
Rr

{
σ 12

LJ

5

[
1

(r −R)10
− 1

(r +R)10

]

− σ 6
LJ

2

[
1

(r −R)4
− 1

(r +R)4

]}
. (3.3)

For very large radius R, we find the planar limit

Usub(z)=4πθεLJ

(
σ 12

LJ

5z10
− σ 6

LJ

2z4

)
(3.4)

with positive z= r −R �R. As a consequence, we may write, in the small
curvature regime

Usub(r) = Usub(z)

(
1− z

R
+ z2

R2
+· · ·

)
+O

(
R−4

)

= Usub(z)+ δU(z,R). (3.5)

To lowest order in the perturbation δU , discarding modifications in
the density profile of the 4He atoms introduced by a small finite curvature
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Fig. 5. Chemical potential and energy per particle of fluid 4He adsorbed on an Au
nano-wire of radius 12 Å, computed as in Ref. 17, gs energy and energy of the first excited
state of a single 3He atom, as functions of the areal coverage of 4He atoms. All energies are
given in K.

1/R, the change in the energy δε0 =ε0(R)−ε0 of the gs Andreev-like state
is then

δε0 =〈�0|− z

R
Usub(z)|�0〉 (3.6)

with �0(z) the gs wave function in the planar limit. For a thin planar film,
the Andreev state localizes in its bulk near the minimum of the potential
well, that is essentially provided by the substrate. For a thick planar film
with a well developed bulk region and free surface, �0(z) is localized at a
position zf at the surface and is bound by the potential well created by
the interaction with the 4He atoms. In this situation, the full mean field
Usub +V3 should enter (3.6); in either case, the correction δε0 is a positive
linear function of curvature, as viewed in Fig. 4.

As a second step, we have tested the general features of this system-
atics in the cylindrical geometry. In Fig. 5 we display the chemical poten-
tial and energy per particle of fluid 4He adsorbed on an Au nano-wire of
12 Å radius as computed in Ref. 17, together with the gs and first excited
sp energies of a single 3He atom, as functions of the areal coverage n4.
We mention here that the depth of the effective physisorption potential of
gold is about one half that of graphite,17 and that the abilities of FRDF’s
to describe wetting properties of helium on weak and moderate adsorb-
ers have been favorably checked against Path Integral Monte Carlo calcu-
lations in a recent article.26 The current energy pattern is very similar to
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Fig. 6. Chemical potential of the 4He fluid and gs energy of the 3He impurity on semi-infi-
nite solid Au (thick lines) and on a 12 Å radius Au tube (thin lines).

that in Fig. 1, including the level repulsion effect, that we have corrobo-
rated by inspection of the density profiles such as those in Fig. 2. More-
over, as in the spherical case, there is a clear asymptotic behavior of the 1s
energies towards a value near ε0 ≈−5 K, the energy of the Andreev state.
The present calculations yield ε0 �−4.88 K when data of 4HeN +C60 clus-
ters with N > 800 (i.e., N−1/3 < 0.108) are extrapolated and ε0 � −5.2 K
for the helium shell on an Au nano-wire with coverage n4 =1.5 Å−2. Cor-
respondingly, our curves for ε20, respectively, extrapolate into −2.90 and
−2.76 K, quite compatible with the solvation energy of −2.79 K for 3He
impurities into liquid 4He.24

The effects of curvature can be visualized in Fig. 6, where we plot the
chemical potential µ4 and the ε10 energy for the above Au tube in Fig. 5
(thin lines) together with the corresponding energies computed for helium
on planar semi-infinite gold (thick lines). Several features appear. First, the
behavior of the chemical potential of the 4He atoms reflects, at low cov-
erages, the weakened binding provided by a convex substrate; in fact, in
Ref. 17 it has been shown that the minimum of the adsorbing field of an
Au solid tube with 12 Å radius is about 70 K higher than for semi-infi-
nite planar gold. Apart from some crossing and moderate oscillations at
the intermediate coverages, both chemical potentials merge slightly above
n4 = 0.4 Å−2 and approach the asymptotic bulk limit. The trend for the
smallest coverages is, however, reversed for the binding of the impurity,
which shows a substantial gain in the presence of curvature. This is con-
sistent with the drop in the DF results for small N in Fig. 4 and reflects
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Fig. 7. Total mean field V3 + Usub experienced by the single 3He atom in 4He films on Au.
Lower panel: planar solid. Upper panel: cylinder.

the influence of the mean field created by the 4He density; to illustrate
this point, in Fig. 7 we plot the total mean field plus substrate potential
V3 + Usub for a gold planar (lower panel) and cylindrical (upper panel)
substrate, for various coverages. We observe a pronounced enhancement of
the first well minimum for the smallest coverage, n4 =0.1 Å−2, that justifies
the high energy gain in the curved substrate field. We also appreciate that
if the curvature is nonvanishing, the attractive mean field becomes concen-
trated in a narrower region, a feature that that is in correspondence with
the thinning experienced by the ρ4 density profiles. To illustrate this point
further, in Fig. 8 we plot 4He densities for several cylinder radii and for
the planar limit, corresponding to a coverage n4 = 0.3 Å−2, as functions
of the distance to the curved wall. It is visible in this figure that as the
curvature increases, the free surface of the film moves closer to the sub-
strate and some of the outer layers disappear. Corresponding to this sit-
uation, all energies of interest, i.e., µ4,Egs/N and ε10 approach smoothly
their respectively planar limit as the curvature decreases. The latter results
are in agreement with the findings of Ref. 27, where it has been reported
that for spherical and cylindrical 4He systems, the surface thickness and
tension tend towards their asymptotic planar values when the curvature
decreases.
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Fig. 8. Density profiles of cylindrical 4He shells on Au cylinders of different radii together
with the planar case for a coverage n4 = 0.3 Å−2, as functions of the distance to the curved
wall.

4. SUMMARY AND CONCLUSIONS

In this work, we take one step forward in our current investigations
of adsorption of helium isotopes on curved substrates within FRDF the-
ory, and present the first results concerning structure and energetics of
a single 3He atom in 4He shells. We start with spherical films surround-
ing a C60 fullerene, previously described in Refs. 15 and 16, and find that
the same overall picture and analysis hold for cylindrical shells in the
field of metallic nano-wires, like those recently discussed in Ref. 17. From
the qualitative viewpoint, the energetics of 3He binding to the adsorbed
4He film looks identical to that previously encountered for 3He–4HeN

systems.14 In particular, in all cases, we find bulk limits for the gs and
first excited sp energies εn0, n = 1 and 2, respectively, consistent with the
energy of the Andreev state, around −5 K, and with the solvation energy
−2.79 K of a single 3He atom into liquid 4He. Whichever the substrate,
its presence and the characteristics of the confining field, including the
geometry, are irrelevant for sufficiently large amounts of 4He, as one could
expect. The main effect of very large radii is to weaken the binding of the
3He atom, with a correction linear in the small curvature.

By contrast, the details of the adsorbing potential and type of cur-
vature are significant for the smallest spherical helium systems and for
the lowest coverages in the case of cylindrical shells. This has been veri-
fied for gold nano-wires, where we have compared the structure and ener-
getics with those predicted for the semi-infinite solid. For cylindrical 4He
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shells on Au tubes, we observe a strong compression of the density profiles
which, in turn, give rise to compression and deepening of the mean poten-
tial experienced by the impurity. This justifies the large binding of the sin-
gle 3He atom in small clusters and thin shells.

To our belief, the present work contributes to the understanding of
various features of helium adsorption on curved surfaces. It should be
kept in mind that calculation based on DF for 3He and mixed helium
systems should be regarded as indicative, rather than conclusive; in fact,
these DF’s are parametrized so as to reproduce thermodynamic proper-
ties of pure liquid 3He and of the homogeneous solutions, so that the
simple parabolic form of the effective mass of the 3He atoms does not
take into account several dynamical effects which may become manifest in
finite systems. However, the FRDF theory and machinery permits a sys-
tematic, semiquantitative investigation of the effects here discussed, with
emphasis in the competition between curvature and substrate strength. In
particular, concave geometries enhance the depth of the adsorption poten-
tial, permitting a decrease of the wetting temperature that may even give
rise to zero-temperature wetting. Research along this line and on adsorp-
tion of 3He-4He mixtures is in progress and will be reported somewhere.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Culture and
Education of Argentina through Grants PICT-2000-03-08450 from Agen-
cia Nacional para la Promoción de la Ciencia y la Tecnología, X298 from
University of Buenos Aires and PIP’s 2391/00 and 2618/00 from Consejo
National de Investigaciones Científicas y Técnicas.

REFERENCES

1. Microscopic Approaches to Quantum Liquids in Confined Geometries, E. Krotscheck and
J. Navarro, eds., World Scientific, Singapore (2002).

2. D. O. Edwards and W. F. Saam, Progress in Low Temperature Physics, D. F. Brewer, ed.,
North Holland, Amsterdam, Vol. VII A, p. 283, (1978).

3. M. Hartmann, R. B. Miller, J. P. Toennies, and A. Vilesov, Phys. Rev. Lett. 75, 1566
(1995).

4. M. A. McMahon, R. N. Barnett, and K. B. Whaley, J. Chem. Phys. 104, 5080 (1996).
5. S. M. Gatica, E. S. Hernández, and M. Barranco, J. Chem. Phys. 107, 927 (1997).
6. A. F. Andreev, Zh. Eksp. Teor. Fiz. 50, 1415 (1966); Sov. Phys. JETP 23, 939 (1966).
7. E. Krotscheck, Phys. Rev. B 32, 5713 (1985).
8. E. Krotscheck, M. Saarela, and J. L. Epstein, Phys. Rev. B 38, 111 (1988).
9. B. E. Clements, E. Krotscheck, and M. Saarela, Phys. Rev. B 55, 5959 (1997).

10. N. Pavloff and J. Treiner, J. Low. Temp. Phys. 83, 331 (1991).
11. F. Dalfovo, Z. Phys. D 14, 263 (1989).
12. E. S. Hernández and J. Navarro, in Ref. 1, pp. 261.
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