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The behavior of the dc component of the current along a quantum loop of tight-binding electrons threaded
by a magnetic flux that varies linearly in timeFMstd=Ft is investigated. We analyze the electron transport in
different kinds of one-dimensional structures bended into a ring geometry: a clean one-dimensional metal, a
chain with a two-band structure, and a disordered chain. Inelastic scattering events are introduced through the
coupling to a particle reservoir. We use a theoretical treatment based in Baym-Kadanoff-Keldysh nonequilib-
rium Green’s function, which allows us to solve the problem exactly.
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I. INTRODUCTION

The impressive development of nanoscience places the
detailed understanding of quantum transport in mesoscopic
systems among the main challenges of condensed matter
physics. A rich variety of devices and structures, including
simple metallic wires, as well as complex molecules, where
electrons are driven by some external force, are the subject
of experimental and theoretical investigation. The driving
field can be established by attached leads at different chemi-
cal potentials, a magnetic flux when the system is bended
into a ring or time-dependent fields. Transport properties,
like the conductance of the system, depend strongly on its
microscopic details but they may also depend on the under-
lying driving mechanism.

A simple quasi-one-dimensional annular system threaded
by a magnetic flux is one of the paradigmatic devices to
discuss the fundamentals of quantum effects dominating the
electron transport. Several outstanding experiments1–3 and
theoretical works4,5 have been devoted to the investigation of
phenomena related to the Aharanov-Bohm effect in rings en-
closing a static magnetic field. There is, however, relatively
less literature related to the case where the field changes in
time. Among the latter category of problems, a very interest-
ing example corresponds to that of a magnetic flux with a
linear dependence on time:FMstd=Ft, which induces a con-
stant electric field along the ring.

This problem was discussed by Büttiker, Imry, and Land-
auer in the early times of the theory of quantum transport.6

Their motivation was to search alternative schemes to calcu-
late the conductance of a system to that proposed by
Landauer,7 where the sample is placed between two reser-
voirs at different chemical potentials. As first discussed in
that seminal work, such device isolated from the external
world, is not appropriate to observe a dc current since the
electrons inside move coherently displaying Bloch oscilla-
tions and producing a pure ac response. In a subsequent work
Büttiker and Landauer8 showed that when a dissipative
mechanism is added to that system a dc current is estab-
lished. Büttiker also showed that a concrete element to intro-
duce inelastic scattering events and dissipation is a lead con-
necting the loop to a particle reservoir.9 Soon later, Lenstra

and van Haeringen suggested that a dc current can be gener-
ated in that device by elastic scattering introduced by weak
disorder.10 The possibility of “resistive” behavior originated
in pure elastic scattering processes generated a series of in-
teresting discussions and criticisms.11–17Most of the ideas of
these works are based on adiabatic descriptions where the
energy levels of the ring define minibands in a parametric
representation as periodic functions of the flux. Within that
adiabatic framework, scattering processes form small gaps
between the so-defined minibands while the time dependence
of the field gives rise to Zener tunneling across them. In
Refs. 13 and 14 interesting arguments emphasizing the con-
cept of localization in the energy space as a consequence of
disorder have been proposed against the possibility of dc
response without dissipation.

The discussion of the role of dissipative effects in the
driven ring was introduced on the basis of a phenomenologi-
cal equation of motion that describes the relaxation via in-
elastic scattering processes(ISP) of the time-dependent oc-
cupation of a miniband.8 The main argument was that the dc
response should vanish in the limit of vanishing and strong
relaxation, while it should peak at some intermediate regime.
For small electric fields, the behavior of the current is also
found to follow a linear, i.e., ohmiclike, dependence as a
function of the induced electromotive force(emf). These no-
table predictions have not been examined in more detail dur-
ing many years. Quite recently, the effect of inelastic scatter-
ing in the dc behavior of that system has been studied.18 In
that work a pure “clean” system is considered,(i.e., without
any kind of elastic scattering). Nonohmic behavior has been
found in the dc current versus emf characteristic curve within
the limit of small ISP, while the dc current is found to de-
crease continuously as the strength of the ISP increases. The
fact that no tendency toward a vanishing component of the
dc current is observed as the dissipation tends to be sup-
pressed is rather surprising, since the limit of pure Bloch
oscillations in the isolated system seems not to be recovered.

In this work we consider a ring threaded by a flux with a
linear time dependence and we analyze in detail the role of
dissipation in that system. We study the clean one-band sys-
tem as well as the effect of two different kinds of elastic
scattering processes: a periodic potential with a two-
sublattice profile and a random potential. The effect of in-
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elastic scattering is modeled by means of the coupling to a
particle reservoir through an external lead. We use a recently
proposed theoretical treatment based on Baym-Kadanoff-
Keldysh Green’s function19 which enables a full out-of-
equilibrium description of the time-dependent problem, with-
out introducing any kind of adiabatic assumptions or
approximations. As far as no many-body interactions are
considered, that treatment leads to the exact solution of this
problem. Thus, one of the aims of this work is to analyze the
case of the disordered driven ring in the limit of weak ISP,
which has focused several efforts but has never been tackled
with an exact method. The formalism based on Green’s func-
tion is particularly appealing to deal with the coupling to
external leads and reservoirs. These elements can be intro-
duced by means of physical models and they can be con-
cisely represented by self energies, avoiding further assump-
tions about the boundary conditions. We consider two
different electronic models for the lead: One is described by
a constant density of states and a very wide band, while the
other is represented by a semi-infinite tight-binding chain.
We show that the dc response does not depend qualitatively
on the latter details. In all the cases, our results indicate that
the dc current tends to a vanishing value as the coupling to
the reservoir goes to zero, displays a maximum, and then
decreases as that coupling becomes stronger. For clean sys-
tems, the position of the maximum shifts towards very low
ISP strengths as the emf decreases and as the length of the
ring increases.

The system considered here, actually lies in the category
of the so-calledratchetproblems, since the induced electric
field by itself is not able to produce a dc response, needing
the aid of some additional rectification mechanism. This mo-
tivates the analysis of the transport properties of this system
in the framework of recent symmetry arguments proposed to
examine rectification processes in ratchet systems in the
presence of time-periodic fields.20–22Such arguments provide
further support to the idea that dissipation is an essential
ingredient for this system to have a dc current irrespectively
the particular nature of the elastic scattering along its circum-
ference.

The paper is organized as follows. In Sec. II we present
the model and the theoretical approach to analyze the behav-
ior of the current. In Sec. III we present the results. Section
IV is devoted to summary and conclusions.

II. THEORETICAL TREATMENT

A. Model

We consider the device sketched in Fig. 1. It consists in a
ring threaded by a magnetic flux with a dependence on time
of the formFMstd=Ft, in contact to a particle reservoir with
a chemical potentialma through an external lead. The full
system is described by the following Hamiltonian:

H = Hringstd + Ha + H1a, s1d

where the first term, representing the ring, depends explicitly
on time due to the presence of the time-dependent flux. We
consider noninteracting spinless electrons described by a

tight binding model withN sites and lattice constanta
=L /N. We also consider the possibility of elastic scattering
in the system, described by a local energy with a profileel
with l =1, . . . ,N. The Hamiltonian is

Hring = − Tho
l=1

N

se−iftcl
†cl+1 + eiftcl+1

† cld + o
l=1

N

elcl
†cl , s2d

with the periodic conditionN+1;1. The time-dependent
phaseft attached to each link, withf=F / sF0Nd, being
F0=hc/e, accounts for the presence of the external magnetic
flux.

The term Ha describes the reservoir. We consider two
models of noninteracting electrons with a bandwidthW and a
chemical potentialma for this system:(i) a wide-band model,
defined by a constant density of states and a very largeW,
and(ii ) a semi-infinite tight binding chain with hopping am-
plitude W/2, which corresponds to a semicircular density of
statesrasvd=4Qsuvu−WdÎW2−v2/W2.

The last term ofH,

H1a = − Tasc1
†ca + ca

†c1d, s3d

represents the connection between the ring and the reservoir.

B. Dynamical equations and symmetry properties

In Refs. 20–22 an interesting connection has been sug-
gested between the rectification properties of the system and
the underlying symmetries of the equations of motion in sev-
eral ratchet problems. The main idea is that the symmetries
of the equation of motion that change the sign of the velocity
would lead to a vanishing dc component of the current. We
now turn to follow the lines suggested in those works to
carry out a similar symmetry analysis in our problem.

Let us first consider the simpler case of the ring isolated
from the reservoir, the problem is described byHring alone.
For the sake of simplicity in the notation we shall adopt a
system of units whereF0=1, "=1. The relevant equation of
motion is the Schrödinger equation

FIG. 1. (Color online) Scheme of the setup. The system indi-
cated in the red box defines the reservoir with chemical potential
ma.
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− i
]

]t
clstd = «lkstdckstd, s4d

being«lkstd=−Thse−iftdk,l+1+eiftdk,l−1d. We have adopted the
Einstein summation rule over site indexes. The current in the
isolated ring results

Jl,l+1
isol std = eTh Imfe−iftcl

*stdcl+1stdg. s5d

The matrix elements of the Hamiltonian satisfy

«lk
* s− td = «lkstd = «kl

* std. s6d

Hence, the inversiont→−t followed by the complex conju-
gation of Eq.(4) leads tocl

*s−td=clstd which, when replaced
in Eq. (5), results in the following property of the current:

Jl,l+1
isol s− td = − Jl,l+1

isol std. s7d

Since in our reasoning we have not assumed any particu-
lar form for the energy profileel, the criterion of Refs. 20–22
rules out the possibility of a dc current as far as time-reversal
symmetry is preserved in the device irrespectively of the
particular model assumed for the elastic scattering processes.
Another symmetry operation that changes the sign of the
current is spatial reflection, however, the latter is not a sym-
metry of the Schrödinger Eq.(4).

In the more general case, when inelastic scattering pro-
cesses are considered, the relevant equation of motion is the
Dyson equation for the Green’s function. In the framework
of Baym-Kadanoff-Keldysh formalism the latter has a matrix
form and one must work with two independent Green’s func-
tion: the retarded Green’s function

Gi,j
R st,t8d = − iQst − t8dkfcistd,cj

†st8dgl, s8d

and the lesser Green’s function

Gi,j
,st,t8d = ikcj

†st8dcistdl. s9d

The latter determines the mean values of the observables. In
particular, the current through a bondkl , l +1l is written as

Jl,l+1std = 2eRefThe
−iftGl+1,l

, st,tdg. s10d

The Dyson equation for the matricial Green’s function
leads to the equations of motion for the retarded and lesser
components23

− i
]

]t8
Gij

Rst,t8d − Gik
Rst,t8d«kjst8d

= dst − t8ddi j +E dt9Gik
Rst,t9dSkj

Rst9,t8d, sd

− i
]

]t8
Gij

,st,t8d − Gik
,st,t8d«kjst8d

=E dt9fGik
Rst,t9dSkj

,st9,t8d + Gik
,st,t9dSkj

A st9,t8dg,

s11d

while the evolution for the lesser component at equal times is
given by

i
dGij

,st,td
dt

− Gik
,st,td«kjstd + «ikstdGkj

,st,td

=E dt9fSik
Rst,t9dGkj

,st9,td + Sik
,st,t9dGkj

A st9,td

− Gik
Rst,t9dSkj

,st9,td − Gik
,st,t9dSkj

A st9,tdg, s12d

beingGi,j
A st ,t8d=fGj ,i

R st8 ,tdg* and Si,j
A st ,t8d=fS j ,i

R st8 ,tdg*.
In the Hamiltonian limit,Si,j

R st ,t8d=Si,j
,st ,t8d;0, in the

absence of many-body interactions. Making use of the prop-
erty of the matrix elements of the Hamiltonian(6) and of the
symmetry property of the Green’s functionGj ,i

,st ,t8d
=−fGi,j

,st8 ,tdg*, the property(7) for the time-inversion opera-
tion on the current is recovered.

It is easy to verify that any nonvanishing self-energy cor-
rection that fails to satisfy the propertiesSik

,st ,t8d
=Sik

.st ,t8d;0, Sik
Rst ,t8d=sikstddst− t8d, with sijstd=sji

* std
=sjis−td, breaks time-reversal symmetry in the equations of
motion. In particular, any self-energy represented by kernels
of the form

Sik
Rst,t8d = − iQst − t8d E dv

2p
h− 2 ImfSik

Rsvdgje−ivst−t8d,

Sik
,st,t8d = i E dv

2p
fsvdh− 2 ImfSik

Rsvdgje−ivst−t8d, s13d

with ImfSik
RsvdgÞ0, being fsvd the Fermi function, will

break time-reversal symmetry in the equations of motion for
the Green’s function and will break the property(7) for the
time-dependent current.

In our problem, the effect of the exchange of particles and
energy between the mesoscopic system and the reservoir can
be exactly written in terms of a self-energy correction at the
site l =1 of the tight-binding ring.19,24,25 The retarded and
lesser components of this self-energy are

Sik
Rst − t8d = di,1dk,1S1

Rst − t8d = − iQst − t8duTau2

3E dv

2p
rasvde−ivst−t8ddi,1dk,1,

Sik
,st − t8d = di,1dk,1S1

,st − t8d

= i uTau2E dv

2p
fsvdrasvde−ivst−t8ddi,1dk,1,

s14d

whererasvd is the density of states of the reservoir and the
Fermi function isfsvd=1/sebsv−mad+1d. In our calculations
we consider zero temperature, i.e.,fsvd=Qsv−mad. The
wide-band model leads to a constant imaginary retarded self-
energy, S1

Rsvd= is, and S1
,svd= i f asvds, being s

= uTau2p /W. The dissipative nature of the coupling to the
reservoir manifests itself in the fact thatS1

Rsvd has a finite
imaginary part. As discussed above, this breaks time-
inversion symmetry in the dynamical equation, removing the
inversion of the current under this symmetry operation. Ac-
cording to the criterion of Refs. 20–22, a nonvanishing net
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current is possible, since symmetries of the equation of mo-
tion leading to an inversion of the time-dependent current are
broken.

C. Evaluation of the Green’s function and the dc current

The formalism leading to the evaluation of the current
along the ring has been presented in Ref. 19. In this subsec-
tion we summarize the main equations and we defer the
reader to this work and references therein for further details.

Following Ref. 19, it is convenient to perform a gauge
transformation in the fermionic operators of the Hamiltonian
(2)

cn = expfinftgc̄n, s15d

according to which the Green’s function for the positions
m,n on the ring transforms as

Gm,n
R st,t8d = expfifsmt− nt8dgḠm,n

R st,t8d. s16d

Defining the Fourier transform

Gm,n
R st,t8d =E dv

2p
Gm,n

R st,vde−ivst−t8d, s17d

the resulting equation for the retarded Green’s function is

Ḡm,n
R st,vd = Gm,n

0 svd − Ḡm,N
R st,v + FdTN1stdG1,n

0 svd

− Ḡm,1
R st,v − FdT1NstdGN,n

0 svd, s18d

with

Ḡm,1
R st,vd + Ḡm,N

R st,v + FdTN1stdG1,1
0 svd + Ḡm,1

R st,v

− FdT1NstdGN,1
0 svd = Gm,1

0 svd

Ḡm,N
R st,vd + Ḡm,N

R st,v + FdTN1stdG1,N
0 svd + Ḡm,1

R st,v

− FdT1NstdGN,N
0 svd = Gm,N

0 svd, s19d

whereT1Nstd=fTN1stdg* = The
iFt. For each timet, the solution

of the above set of linear equations provides the complete
exact solution of the problem.

The equilibrium Green’s functionGm,n
0 svd corresponds to

the problem of an open chain in contact to the reservoir. It is
obtained from the solution of the Dyson equation

Gm,n
0 svd = gm,n

0 svd + Gm,1
0 svdS1

Rsvdg1,n
0 svd, s20d

where

gm,n
0 svd = o

n=1

N

Am
n An

n 1

v − En + ih
s21d

is the Green’s function of the chain isolated from the reser-
voir. It can be expressed in terms of the eigenvaluesEn and
eigenvectorsunl=olAl

null of the Hamiltonian

H̄0 = − Tho
l=1

N−1

sc̄l
†c̄l+1 + c̄l+1

† c̄ld + o
l=1

N

sVl + eldc̄l
†c̄l , s22d

whereVl =fl is the scalar potential due to the induced elec-
tric field.

The set(18) and(19) describes the process of the closing
of the biased chain by means of an effective time-dependent
hopping T1Nstd that pumpselectrons with a frequencyF
through the bondk1Nl. This set involves, in principle, an
infinite number of equations. In the numerical procedure,
upper and lower energy cutoffsL1,L2 are chosen such that
L1,En,L2, ∀n.

Starting from its definition(10), the current along the ring
can be written

Jl,l+1std = 2eThE dv

2p
RefS1

,svd

3Ḡl+1,1
R st,v + fdfḠl,1

R st,v + fdg * g, s23d

where we have usedG1,l
A st ,t8d=fGl,1

R st8 ,tdg*. Therefore, the
evaluation of the time-dependent current is reduced to the

evaluation ofḠl,1
R st ,vd obtained from Eq.(19). This quantity

displays an oscillatory behavior as a function oft, with the
period tB=2p /F of the Bloch oscillations. The dc compo-
nent does not depend on the bondkl , l +1l chosen for the
calculation and it is defined as

Jdc =
1

tB
E
0

tB

dtJl,l+1std. s24d

III. RESULTS

This section is devoted to analyze the behavior of the dc
current(24) as a function of the induced emfF, the strength
of ISP, and the chemical potentialma. The strength of ISP is
related to the degree of coupling between the ring and the
reservoir. In the case of the wide-band model, the parameter
s sets that measure. In the model with a semicircular density
of states, that measure is given byTa

2 /W. In our calculations,
we fixed W=4Th and changedTa. All energies will be ex-
pressed in units of the hopping parameterTh. We shall ana-
lyze three different energy profilesel for the tight-binding
model that define a clean one-band chain, a chain with a
two-sublattice structure, and a random potential.

A. Clean one-band ring

This case corresponds toel =0, l =1, . . . ,N in Eq. (2). In
the limit of vanishing dissipation(the ring isolated from the
reservoir) the system is described by the HamiltonianHringstd
alone, the problem has time-reversal symmetry and a vanish-
ing dc current is expected. In fact, forel =0, Hringstd can be
easily solved by performing a Fourier transform to thek
space. The retarded Green’s function can be calculated ana-
lytically, resulting Gm,n

R st ,t8d=−iQst− t8dok exphiksm
−ndjexph−iet

t8dsekssdj, with ekssd=−2Th cossk+fsd, beingk
=2np /L ,n=0, . . . ,N. The current can also be obtained ana-
lytically, resulting

Jstd = Tho
k

sinsk + ftd, s25d

where the summation extends over the set of occupiedk
states.
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The behavior of the dc current in the coupled system at a
fixed chemical potentialma for different strengths of ISP and
F is analyzed in Fig. 2. A wide-band model was assumed for
the reservoir in these calculations. The dc current displays a
maximum which shifts to lower values ofs asF decreases.
At low s, the imaginary part ofGm,n

0 svd evolve toward a
sequence of delta functions and the Green’s function

Ḡm,n
R st ,vd also develop a structure of peaks that get sharper.

From the practical point of view, this turns harder the evalu-
ation of the integral inv Eq. (23), preventing us from ex-
ploring the range ofs /Th,0.05. However, we think that the
range considered is enough to infer the trend towards→0.
The characteristic curvesJdc versusF are shown in the inset
for particular values ofs within the regimes with low, inter-
mediate, and strong coupling to the reservoir. In the latter
limit, the dc current remains linear within a wide range ofF
while for weak coupling, the departure from linear response
takes place at smallF.

To study the origin of this peculiar behavior we must
analyze the structure of the Eqs.(18) and(19). At each time

t, the Green’s functionḠm,n
R st ,vd contains a combination of a

large number ofv components(separated inDv=F) of the
Green’s function(20). In the weak coupling limit,Gm,n

0 svd is
sizable only within a neighborhood of theN frequenciesEn.
Therefore, aresonantcombination of components at differ-

ent frequencies is achieved whenDv,DEn, the latter being
the mean energy separation between two eigenenergies,
DEn=kEn+1−Enl,4Th/N. Whether such interference will be
constructive or destructive and give rise to a large or a small
component of the dc current is a question without an obvious
answer, particularly in the case of smallF, where the num-
ber of coupled frequencies is very large. On general grounds,
one expects that such an effect would strongly depend on the
underlying symmetries of the model. Related discussions
have been recently presented in problems of pumping intro-
duced by microwave fields26–28 where the Floquet represen-
tation of the wave function is used, leading to a structure of
the solution containing a mixing of frequencies that differ in
the frequency of the pumping field. In our problem, it be-
comes apparent that such interference is constructive regard-
ing the magnitude ofJdc and for this reason, in the weak
coupling limit, the current grows linearly as a function ofF,
reaching a maximum atF,DEn. The decrease forF
@DEn can be understood by noting that the number of reso-
nances is approximately 4Th/F, becoming smaller asF in-
creases. The maximum ofJdc as a function ofs can be also
interpreted in terms of a combination of components of the
Green’s function from different frequencies. In fact, the ef-
fect of increasing ISP is to spread the spectral weight of the
peaks ofGm,n

0 svd. Thus, for strong coupling the interference
involves a large number of frequencies but with a low(ap-
proximately constant) weight. For lower ISP, the amplitudes
can be large for frequencies close toEn but tend to be van-
ishingly small in between. The result is that there is a maxi-
mum in Jdc at some strength of ISP that seems to scale as
~F, at least, within the regimeF.DEn. On the side of
strong coupling, where the resonant effects are highly
smoothed, the resulting dc current is relatively smaller(con-
sistent with the idea that resistance increases with ISP) and
behaves linearly within a larger range ofF.

The effect of the length of the chain is also analyzed in
Fig. 2. The first issue to note is that in theN=200 sites ring
(see lower panel of Fig. 1, the dc current forF=0.2 remains
growing for the smallests considered. Instead, forN=20
and the same parameters, the current decreases down from its
maximum(cf. upper panel of Fig. 2). This behavior is con-
sistent with the picture of constructive resonances: The con-
dition F.DEn is achieved in this case at lowerF, while the
larger number of peaks increases the probability of reso-
nances and the current remains large, within a larger range of
F. For larger fields and for largers, the qualitative and
quantitative behavior is essentially the same as that observed
in the smaller ring.

Regarding the effect of the model for the reservoir, it
becomes clear from the results of Fig. 3 that it does not play
any relevant qualitative role since we can identify in these
plots the same features observed in Fig. 2. In Ref. 26 an
interesting connection have been found between the behavior
of Jdc as a function ofTa

2 when Ta
2 →0 and the underlying

symmetries of the Hamiltonian. The plots of Fig. 3 corre-
sponding to the two highest emfssF=0.4,0.5d, where the
decrease to a vanishingTa

2 can be cleanly captured within the
shown a range ofTa

2, suggest aJdc~Ta
2 behavior asTa

2 →0.
This is even more clear in the plot ofJdc/Ta

2 versusTa
2 shown

FIG. 2. (Color online) dc current as a function ofs in a ring
with N=20 sites for different values of the induced electric field
F=0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.5(upper panel) and
with N=200 for F=0.2, 0.3, 0.4, 0.5(lower panel). The chemical
potential of the reservoir isma=−1. The plots corresponding to the
lowest and the highestF are drawn in white and black symbols,
respectively, while grey symbols correspond to intermediate values.
Inset:Jdc versusF characteristic curve for different strengths of ISP
corresponding tos=0.05,0.2,0.8(red circles, green squares, and
blue diamonds).
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in the inset. This dependence can be understood by noting
that whenDEn+F@Ta

2 /W, the retarded Green’s function en-
tering the evaluation ofJl,l+1std [see Eq.(23)], can be re-
placed by the ones for the uncoupled ring(corresponding to
Ta

2 =0). Hence, for small enoughTa
2, the time-dependent cur-

rent and also the dc componentJdc become linear inTa
2. This

is in perfect agreement with the analysis done in Ref. 26 for
a linear device pumped with a laser in configurations with
broken time-reversal symmetry.

The behavior ofJdc as a function of the chemical potential
is shown in Fig. 4. It is remarkable that a semicircular shape
can be identified in the envelope of these functions. As men-
tioned before, the density of states of a semi-infinite tight-
binding chain of bandwidthW, is proportional to a semicircle
of radiusW/2. This motivates the comparison of the conduc-
tance of our device with the conductance of a quantum dot
which has two semi-infinite tight-binding chains with hop-
ping elementsTh and chemical potentialma attached to its
left and to its right, through a hybridization amplitudeweff.
The latter corresponds to the usual configuration employed
in a Landauer-like calculation of the conductance through a
dot connected to a left and a right lead. Assuming that a
small biasV is applied between the left and the right, the
conductance of such a system is given by a Landauer-like
formula29

Geff =
]Jdc

]V
= er0smadG, s26d

where r0smad=Î4Th
2−ma

2 /Th
2 is the density of states of the

semi-infinite chain andG=weff
2 reffsmad /4p, being reffsmad

the density of states of the central system dressed by the
contact with the two chains.

In order to define the conductance for the device of Fig. 1,
let us note that the induced electric field isE=F / sLcd.
Therefore, if we make the standard assumption that for small
F the current can be written asJdc=scE, beingsc the con-
ductivity, the conductance of the chain is defined fromJdc
=GEL. Therefore, in units wheresc=1d, the conductance for
small enough bias is

G =
Jdc

F
. s27d

If we adopt the expression(26) as aphenomenological
model for the conductance of our system, we obtain forG the
result shown in Fig. 5. In the limit of weak coupling, this
behavior is consistent with an effective density of states ap-
proximately constant along the bandwidth. Taking into ac-
count its sum rule, it should bereffsmad,Qsumau
−4Thdp /4Th. The large average value ofG indicates a large
effective hopping from the dot to the semi-infinite chains
sweff,12,8d for F=0.01, 0.1, respectively. The details of
the model used for the reservoir do not influence the final
behavior ofG. In fact, all the features in the weak coupling
regime observed within the wide-band model for the reser-
voir are also obtained with a reservoir with a semicircular
density of states(cf plot in dashed lines of Fig. 5). In the
strong coupling limit,weff,3 is approximately the same for
both fields and a fine structure ofN wide peaks is distin-
guished inreffsmad. The effective parametersG and weff do
not have any straightforward significance in the context of
our original model and the parallel between the driven ring
and the dot connected to semi-infinite chains is purely heu-
ristic. However, it is remarkable the similar behavior of the
conductance of the two devices. It suggests that although the
chain that forms the ring is made up by a discrete chain with

FIG. 3. (Color online) dc current as a function of the strength of
ISP for a model with a semicircular density of states with band-
width W=4. Different plots correspond toF=0.1, 0.2, 0.3, 0.4, 0.5.
The plots in white and black symbols correspond to the lowest and
the highestF, while the grey ones correspond to the intermediate
values. The chemical potential of the reservoir isma=−1. Inset:
Detail of the behavior ofJdc for low ISP. Red circles and blue
squares correspond toF=0.4,0.5, respectively. The behavior is
consistent withJdc~Ta

2 whenTa
2 →0.

FIG. 4. (Color online) dc current as a function of the chemical
potential of the reservoir(represented by a wide band model) for
two values of the emfF=0.1, 0.5(solid and dashed lines) and two
strengths of ISPs=0.05, 0.85(thick black and thin red lines), re-
spectively, for a ring withN=200 sites.
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a finite number of sites, the dressing due to the mixing of a
large number of frequencies tend to produce a structure such
that any site along the ring would feel as if placed between
two semi-infinite leads. In spite of this resemblance, the
quantitative properties of the conductance are different from
the one which would be measured in a Landauer device with
the chain forming the ring stretched and placed between two
reservoirs, as already discussed in Ref. 30. In fact, neither the
effective density of states at the site between the two effec-
tive leads nor the hopping elementweff correspond to the
configuration of a noninteracting site coupled to two leads
throughTh as in the original chain.

B. Ring with a two-band structure

As mentioned in the introduction, one of our motivations
is to analyze the behavior of the dc current in a disordered
system in order to explore the possibility of “resistive” be-
havior in the limit of vanishing dissipation. We found it in-
structive to study first an intermediate situation where the
potential profile ise2n=ee, e2n−1=eo, n=1, . . . ,N/2. This
structure defines two bands separated by an energy gap
which are the basic ingredient to discuss the effect of Zener
tunneling.

The dc component of the current as a function ofs is
shown in Fig. 6 for a profile withee=0.2,eo=0 and chemical
potentials of the reservoir within the lower band(upper
panel) and within the gap(lower panel). In the first case, a
behavior similar to that found in the clean one-band model
(cf. Figs. 2 and 3) is observed. Namely, a maximum of the
current that shifts to lowers as F decreases. The shift de-
pends, however, slower withF in the present case: Taking as
a reference the plot corresponding toF=0.2, we see that the

maximum in the two-band case takes place ats,0.2 while
in the clean ringJdc remained growing for the lowests used
in our calculations. The comparison of the plots of the upper
panel of Fig. 7 with those of the right panel of Fig. 3 shows
that the magnitude of the maxima in the weak dissipation
limit is smaller in the two-band ring than in the case of the
clean ring with the same number of sites in contact to a
reservoir with the same characteristics and with the same
chemical potential. The behavior ofJdc as a function of the
chemical potential shown in Fig. 7 shows that this is also the
case for other values of the chemical potential and dissipa-
tion strengths. The smaller current for chemical potentials
within the lower conduction band, indicates that the presence
of an energy gap in the structure of energy levels of the chain
contributes to a less efficient mixing of weights of the
Green’s function at different frequencies relative to the cor-
responding one in the clean one-band case.

The effect of ISP on the magnitude of the current through
the gap is shown in the lower panel of Fig. 6. Within the
weak coupling regime, the current is vanishingly small even
for fields significantly larger than the energy gaps,ueo

−eeud. This indicates that Zener tunneling alone(i.e., without
dissipation) is not enough to generate a dc response.

The behavior ofJdc as a function of the chemical potential
is shown in Fig 7. An important asymmetry is observed be-
tween the upper and lower bands, which is more pronounced
for low fields. This is an indication of the relevance of the
interband processes generated by the coupling of the elec-
trons with the field. This discourages us from following the
steps of the previous section in trying to make a parallel with
a device based in two semi-infinite leads with the same band

FIG. 5. (Color online) G (proportional to the effective density of
statesreffsmad obtained by assuming a model for the conductance
based on a dot coupled to two semi-infinite chains for the case of a
ring with N=20 sites and a wide band model for the reservoir. Thick
and thin solid lines correspond tos=0.05 ands=0.85, respectively.
Black and red lines correspond toF=0.01 andF=0.1, respectively.
The plot in blue dashed lines corresponds toF=0.1 and a model of
reservoir with a semicircular density of states withW=4 andTa

2

=0.1.

FIG. 6. dc current as a function ofs for two different chemical
potentials in a ring ofN=200 sites with a two-band structure de-
fined by eo=0, ee=0.2, and a reservoir with a constant density of
states. Different plots correspond toF=0.05, 0.1, 0.2, 0.3, 0.4, 0.5
(upper panel) andF=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8(lower panel).
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structure of the ring, since the latter would have two sym-
metric bands.

C. Ring with a random potential

This final subsection is devoted to analyze a disordered
ring, with a random potentialel =ewgl, being −1øgl ø1, a
random number. The dc current as a function of ISP strength
for a fixed chemical potential is shown in Fig. 8 for four
different realizations of the random potential. In all the cases
a similar behavior is found: The current exhibits a wide and
mild maximum at intermediate coupling and tend to zero in
the limit of vanishing ISP. The magnitude ofJdc at the
maxima is smaller than in the two-band ring and significantly
smaller than in the clean one-band system. As mentioned in
the previous subsection the small current in the limit of weak
coupling to the reservoir can be interpreted by noting that the
formation of energy gaps in the structure of the energy levels
of the chain tend to break the resonant behavior presented in
the clean chain for small fields in the weak coupling regime.
For small enoughs, the trend isJdc~s, as in the clean limit.

As a function of the chemical potential, the dc current
displays fluctuations that become stronger in the strong cou-
pling limit (see Fig. 9). The fluctuations bear a close resem-
blance with those observed in the behavior of the conduc-
tance of disordered quantum wires in Landauer-like
devices.31 A systematic analysis of the probability distribu-
tion of conductanceG defined in Eq.(27) over several dis-

order realizations as well as the behavior ofG as a function
of the system length is left for the future.

IV. SUMMARY AND CONCLUSIONS

We have studied the transport properties of a dissipative
tight-binding ring driven by means of a magnetic flux with a

FIG. 7. (Color online) dc current as a function the chemical
potential for a ring withN=200 sites and a two-band structure
defined byeo=0, ee=0.2, and a reservoir with a constant density of
states. The upper and lower panels correspond to weakss=0.05d
and strongss=0.85d coupling regimes. Different plots correspond
to different fieldsF=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. The ones
corresponding to the lowest and the highest fields are plotted in
thick black and orange lines, respectively.

FIG. 8. (Color online) dc current as a function of the strength of
ISP for a ring ofN=200 sites with a random potential with ampli-
tudeew=0.2 and a reservoir with a constant density of states. Dif-
ferent panels correspond to different realizations of the random po-
tential. Black circles, red squares, green diamonds, and blue
triangles correspond toF=0.2, 0.3, 0.4, 0.5, respectively.

FIG. 9. (Color online) dc current as a function of the chemical
potential for a ring ofN=200 sites with a random potential with
amplitudeew=0.2 and a reservoir with a constant density of states.
The upper and lower panels correspond to weakss=0.05d and
strong ss=0.85d coupling regimes. Different plots correspond to
different fieldsF=0.1, 0.2, 0.3, 0.4, 0.5. The ones corresponding to
the lowest and the highest fields are plotted in thick black and violet
lines, respectively.
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linear dependence in time. Dissipation is introduced by cou-
pling the mesoscopic ring to an external macroscopic system
that plays the role of a reservoir of particles and energy. We
have extensively analyzed the behavior of the dc component
of the current along the ring as a function of the strength of
dissipation and of the chemical potential of the reservoir for
clean chains, chains with a two-band structure and energy
gap, and disordered chains.

We have analyzed the influence of the specific model as-
sumed for the reservoir and we conclude that this does not
play any relevant role. In the weak coupling regime, the
structure of the energy levels of the Hamiltonian describing
the ring, seems to play a relevant role. Such structure deter-
mines the way in which contributions from different frequen-
cies of the Green’s function couple through the pumping
term in Eqs.(18) and (19).

In all the cases we expect a vanishing dc current in the
Hamiltonian limit (vanishing ISP). For the case of the clean
ring, we find that the current exhibits a maximum as a func-
tion of the ISP strength that seems to scale withF. For small
enoughF this maximum can lay very close to the limit of
vanishing ISP. The range of fields where a linear behavior of
the dc current as a function ofF is observed depends on the
strength of ISP. It is wide for strongly coupled systems and
very narrow for weakly coupled ones. Remarkably, the be-
havior of the conductance of the system as a function of the
chemical potential can be reproduced with a device consist-
ing in a quantum dot with a constant density of states and
two semi-infinite tight-binding chains with the same hopping
parameter as the original one, attached to its left and right
sides through a very large hopping element.

In the ring with a two-band structure, the behavior of the
dc current within each of the two conducting bands is similar
to that observed in the one-band case. However, its magni-
tude is smaller and at fixed chemical potential and emf, the
position of its maximum as a function of the ISP strength has
a softer dependence with the emf. An important asymmetry
is observed between the behavior of the current within the
upper and lower bands, while inelastic scattering is essential
to obtain a sizable magnitude of the current through the gap,
irrespectively the intensity of the induced emf.

The disordered ring can be seen as the N-band extension
of the two-band case. We have examined some typical real-
izations of the random potential and observed that as a func-

tion of inelastic scattering, the maximum in the dc current
takes place within the intermediate regime, becoming van-
ishingly small in the limit of weak coupling. As a function of
the chemical potential, the current displays fluctuations fol-
lowing patterns that depend on the degree of inelastic scat-
tering.

Our results are in agreement with the criteria based on
symmetry arguments suggested for ratchet problems,20–22ac-
cording to which a dc component of the current is possible
provided that the equations of motion of the system are not
invariant under symmetry operations that change the sign of
the time dependent current. In the case of the present prob-
lem the only possible symmetry that may introduce such an
inversion, is time reversal. This symmetry is an exact one in
the pure Hamiltonian limit where the ring is isolated from
the reservoir but it is immediately broken when the coupling
to the reservoir is considered. Furthermore, we have found
that the current grows linearly with the parameter that char-
acterizes the strength of the inelastic scattering. This behav-
ior has also been found in other pumped systems with broken
time-reversal symmetry.26 The behavior of the dc current in
the case of the two-band and N-band(disordered) ring is also
in agreement with the conclusions of Refs. 11–15, which
have been devoted to argue against the possibility of resistive
behavior caused by Zener tunneling alone. In our case we
were able to solve the problem exactly and to examine de-
tails of the behavior of the current for different strengths of
inelastic scattering. For this reason, we think that our results
provide a robust support to the idea that dissipation is an
essential ingredient to obtain resistive behavior in this sys-
tem.
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