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In this paper we study a four-species reaction-diffusion system where Turing patterns are stabilized by the
presence of fast reversible reactions between the morphogens and two different mobile complexing agents
(CAs) that are not necessarily in excess. We provide a quantitative explanation of how the interaction with the
CA changes the size of the Turing space making it possible to observe patterns even in a region where the free
diffusion coefficients of the relevant species are equal, as is usually the case in real systems. Our analytical
treatment gives a series of mathematical relations that can be helpful for those designing experiments where
Turing patterns are expected to appear. We also show how the mobility of CAs affect the characteristic size of
the pattern. Finally, we provide an example of biological interest in order to illustrate the main procedures and
results.
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I. INTRODUCTION

Self-organization far from thermodynamic equilibrium[1]
is an active area of research in an increasing number of
fields, such as fluids, optics, biophysics, and physical chem-
istry. Among the diversity of pattern formation phenomena,
the spontaneous diffusive instabilities of an homogeneous
mixture in reaction-diffusion systems, first proposed theoreti-
cally by Turing[2], remains as a paradigmatic example(see
Ref. [3] for a recent review). The Turing instability, sponta-
neously leads to chemical concentration structures, which are
space periodic, time stationary, and possess an intrinsic
wavelength. The symmetry breaking of an homogeneous
state has to involve three unavoidable ingredients: an activa-
tor species, taking part of the positive feedback process that
speeds up its own changes, an inhibitory process that exerts
control on the positive feedback loop, and a larger diffusive
range for the inhibition compared to the activation. In two
species reaction-diffusion systems, Turing patterns may
spontaneously grow if, for example, one of the chemicals is
involved in its own creation(i.e., an autocatalytic reaction),
and the other participates in a reaction that inhibits the pre-
vious activating process. Furthermore, it is necessary that the
inhibitor diffuse much faster than the activator. The values of
the reaction rates and the feeding(removal) of species
specify the minimum amount by which the diffusion coeffi-
cient of the inhibitor must exceed that of the activator in
order to observe these patterns[4].

Since the original paper by Turing, many two-species
model reaction schemes fulfilling the kinetic conditions were
proposed, and the corresponding reaction-diffusion systems
were analyzed in the literature. The threshold value for the
ratio of the diffusion coefficients is far from unity in most
circumstances, and always strictly different than 1. However,

in aqueous solutions all the chemicals involved in the reac-
tions have nearly equal diffusion constants. This fact, as well
as the great difficulties for sustaining constant nonequilib-
rium conditions in an spatially extended reactor[5], explain
the long delay between the original proposition of Turing and
the first clear observation of Turing patterns in laboratory
experiments by Castetset al. [6]. Theoretical developments
and numerical simulations based on model equations, but
taking into account the real constraints of the experiments,
were already available a few years before, and predicted the
appearance of localized Turing structures[7,8]. Turing pat-
terns were actually observed in experiments on the chlorite-
iodide-malonic acid(CIMA ) reaction, only after the inclu-
sion of an exogenous mechanism that created the conditions
on the diffusive ranges for their appearance. This was quali-
tatively pointed out in a paper by Lengyel and Epstein[9],
using a simplified version of a previously developed model
of the CIMA reaction which is completely based on empiri-
cal rate laws[10]. These papers set a theoretical framework
to understand the appearance of Turing patterns in the ex-
periments on the CIMA reaction[6,11]. The argument was
that both the gel and the starch molecules used in the experi-
ments to suppress nondiffusive transport and for visualiza-
tion purposes, respectively, played an active role in the ap-
pearance of the patterns. Indeed it was the reversible
complexation of iodide and iodine with large immobile mo-
lecular assemblies(starch molecules), that were responsible
for the necessary tuning of the “effective diffusion” con-
stants. Under a set of assumptions that are only approxi-
mately fulfilled in the particular case of the CIMA reaction,
Lengyel and Epstein provided a more quantitative support to
the idea of the effect of the complexing agent(CA) on the
Hopf and Turing bifurcations[12]. More recently, systematic
experiments performed in a gradient-free open reactor[13],
demonstrated a close connection between the model predic-
tions and the experimental results, in particular, with respect
to the role of immobile complexing agents.

While the experimental observation of Turing patterns in
controlled chemical reactors have triggered our theoretical
understanding of these phenomena, opening up the possibil-
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ity of technological applications, the question posed by Alan
Turing [2] about its role in living organisms still remains
open. Given that the autocatalytic chemical reactions sub-
strate and product inhibition are commonly encountered in
biochemical reactions, one of the bottle-necks in this realm is
to find biologically plausible mechanisms for the tuning of
the diffusion coefficients. It has been proposed that endog-
enous and exogenous molecular assemblies such as buffers
[14,15], and the membrane-filled structure of the cell cyto-
plasm[16] may provide the ingredients for the rescaling of
diffusion coefficients inin vivo systems, playing a similar
role as the gel and the starch used in laboratory experiments
[9,17]. Indeed, there is some evidence of spatial patterns in
living organisms that are not scale invariant, as well as other
indirect evidence that seems to justify its ultimate origin as
the result of a diffusion driven instability of Turing type
[4,18]. However, since the situation in biology is much more
involved than the one in chemistry, the actual relevance of
the Turing mechanism as a generator of patterns in biological
systems is still uncertain.

Our aim in this paper is to formalize the above statements
for a general reaction-diffusion system of activator-inhibitor
or substrate-depleted types. Having in mind the experiments
where Turing patterns were observed and the characteristics
of the biological systems where Turing structures have been
looked for, we suppose that some of the species involved are
also taking part in a reversible reaction with a complexing
agent. We also assume that the reaction with the CA occurs
on a time scale that is small compared to that of the other
process, which includes the rest of the chemical reactions,
the feeding or removal of chemicals, and diffusion. As we
have shown in Ref.[19], this hypothesis is verified in many
situations of interest. We show in this paper how fast inter-
actions deforms the set of parameter values for which a Tur-
ing instability occurs(the Turing space), by stabilizing sta-
tionary patterns in a region where the ratio of the free
diffusion coefficients of the activator and the inhibitor can be
set to 1, or even consider cases where the free diffusion of
the activator is larger than that of the inhibitor. In contrast to
the previous closely related work of Ref.[12], where the
relevant two-variable system of reaction-diffusion equations
were derived for a particularly simple limiting case to avoid
mathematical difficulties, in this paper a more general set of
equations are obtained using the multiple-time scale ap-
proach developed in Refs[17,19]. This makes it possible to
remove some simplifying assumptions used in Ref.[12], that
reduce the range of validity of their results. In fact, we can
handle the case where the CA diffuses, or where the CA is
not in excess, and so allow for large variations of the con-
centration of the CA in the course of the evolution. Also we
consider the effect of reversible complexation of both the
activator and the inhibitor. This should make our results to be
more widely applicable not only with regard to laboratory
experiments, where mobile dyes could be an option, and
where large excess is not always a good approximation, but
also in biological situations, where the overall behavior may
be qualitatively different depending on the transport proper-
ties of the CA involved[20], or when the role of CA is
played by enzymes which are often in small concentrations
compared with the metabolites.

After deriving the rescaled equations(i.e., the reduced
system obtained after the fast dynamics is properly collapsed
onto the variables that evolve at a relatively slow pace
[17,19]), we proceed further with the analysis providing a
series of analytical relations, and a procedure to be followed
in this sort of problems to assess if the appearance of stable
patterns can be expected for a given system. For a particular
example, we also show the agreement between the results of
the reduced approach with that of the full model.

The paper is organized as follows. In Sec. II we present
the analytical results on the stabilization of Turing patterns
by the action of the CA. After a brief review of the condi-
tions for the emergence of Turing patterns in a generic two
species model(Sec. II A), we show how the set of rescaled
reaction-diffusion equations that take into account the pres-
ence of rapid CA are obtained(Sec. II B). Then, we perform
the linear stability analysis on the rescaled equations and the
new conditions for the Turing instability are derived(Sec.
II C). Finally, in Sec. III, we show an example of biological
relevance in order to illustrate the main results. We discuss
the central points in the conclusions.

II. THE MODEL

A. Introductory remarks

The general form of a two species reaction-diffusion sys-
tem is

] u

] t
= fsu,vd + Du¹

2u,

] v
] t

= gsu,vd + Dv¹
2v,

s1d

whereu and v stand for the concentration of molecules of
speciesU andV, respectively, andDu andDv for their diffu-
sion coefficient. These equations reflect that the local con-
centration of a given species can change as a result of the
chemical reactions, and to a thermal transport process(diffu-
sion). The fsu,vd andgsu,vd functions are constructed from
the proposed reaction scheme using the law of mass action or
are determined empirically.

The study of Turing patterns starts from the assumption
that a homogeneous fixed point solutionsu0,v0d exists[i.e.,
the nullclinesfsu,vd=0 andgsu,vd=0 intersect atsu0,v0d].
The signs of the coefficients of the spatially homogeneous
dynamical system(1), linearized around the fixed point so-
lution, give important information about the destabilization
mechanism of the homogeneous solutionsu0,v0d. It can be
shown that when the signs of the stability matrix, whose
rows are the gradients off and g with respect tou and v
evaluated at the fixed point(e.g., fu;]f /]ugsu0,v0d) are given
by

A ; S fu fv

gu gv
D = S+ +

− −
DorS+ −

+ −
D , s2d

it is then possible to find a Turing-like instability whenever
the rate constant and the diffusion coefficients satisfy certain
constraints. The cases in Eq.(2) correspond to the substrate-
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depleted and activator-inhibitor classes, respectively[21].
The conditions for the existence of Turing patterns state that
the homogeneous fixed point solutionsu0,v0d must be stable
under small homogeneous perturbations, but become un-
stable to spatially inhomogeneous disturbances. In other
words, the eigenvalues of the linear operator that is obtained
by linearizing the full set of Eqs.(1) around the fixed point
solution must be negative when the diffusion terms are ab-
sent(homogeneous situation), but when they are present, the
stationary state has to become unstable to periodic perturba-
tions of wave numberk Þ0. So, a necessary and sufficient
condition for the existence of Turing patterns is that the real
part of the largest eigenvalue of this linear operator be posi-
tive for somek Þ0, but remain negative fork =0. We sum-
marize in Table I the conditions under which these require-
ments are fulfilled [4], where we have defined the
dimensionless diffusion ratiod=Dv /Du. Note that the condi-
tions in the first row of this table necessarily imply that
d.1. It follows from the second row that there is a critical
ratio of diffusion coefficientssdcd, above which the condi-
tions are fulfilled. In this way the fixed point solution will
become linearly unstable under inhomogeneous perturba-
tions of finite wave numbers within a certain range. Below
the critical ratio, there is no combination of the parameters of
the model that can give rise to Turing patterns.

B. Adding rapid complexing agents

When d,dc the Turing space, that is, the parameter do-
main where the otherwise stable stationary state is linearly
unstable to a nonuniform perturbation, contains no points. As
we have mentioned earlier, the problem is that whiled,1 in
most circumstances, the valuedc is in general much greater
than one. Thus, if we restrict ourselves to schemes similar to
Eq. (1), then it would be unlikely to observe these patterns.
In the same spirit of Refs.[9,12,14,22,23], we consider that
each morphogen undergoes a reversible reaction with some
CA. Taking CA into account is clearly justified in those cases
where we know exactly their identity. This occurs, for ex-
ample, in the CIMA reaction, but also in many biochemical
pathways where opposite feedback loops of activation and
inhibition coexist with interactions with known endogenous
buffers and enzymes, as in the glycolytic pathway[24]. In
these situations, the procedure that we will describe below,
allows us to establish if the interaction with the CA makes
the appearance of Turing patterns more or less likely. In
other cases, where a detailed knowledge of the reaction
scheme is not available, but where the existence of CA can
be taken for granted[25], the addition of a set of reactions

with CAs can be used to determine the range of dissociation
constants and CA concentration where Turing instabilities
could occur.

There are two cases worth studying. The case in which
both, the activator and the inhibitor react(with different af-
finities) with the sameCA [26], and the case in which each
species reacts with adifferentCA [27]. While the first case
introduces another source of coupling betweenU andV that
leads to the presence of cross-diffusion terms in the rescaled
equations, the second case is easier to analyze because the
rescaling of the equations is decoupled. For simplicity, we
will consider only the second case. The proposed interaction
with the CA has the following simple form:

S+ BS

kS
−

kS
+

CS, s3d

whereS can be eitherU or V, BS stands for the CA, andCS
for the complex formed betweenS and BS. While in many
real systems the mobility of the CA is small, and can be
neglected in front of those of theU andV molecules, in other
situations, the mobility is noticeable and cannot be underes-
timated, because the overall behavior of the system may be
qualitatively different depending on the transport properties
of the CA involved, as we mentioned before. So, we will
consider the diffusive transport of the CA, and assume that
the reaction with these CAs occurs much faster than any
other process in the system, and that their mobility is not
affected by the binding withS. With this in mind, defining
bu=fBUg, cu=fCUg, bv=fBVg andcv=fCVg, the reaction diffu-
sion system becomes

] u

] t
= fsu,vd + rusu,bud + Du¹

2u, s4d

] v
] t

= gsu,vd + rvsv,bvd + Dv¹
2v, s5d

] bu

] t
= russ,bud + Dbu

¹2bu, s6d

] cu

] t
= − russ,bud + Dbu

¹2cu, s7d

] bv

] t
= rvss,bvd + Dbv

¹2bv, s8d

] cv

] t
= − rvss,bvd + Dbv

¹2cv. s9d

Letting the total amount of the CA that reacts withS=U ,V to
be denoted bybs

T=bs+cs ss=u,vd, the fast reaction with the
complexing agent is described by

«rsss,bsd = − ks
+sbs + ks

−sbs
T − bsd, s= u,v, s10d

where 0,«!1 makes explicit the fact that reactions with
CAs are fast. Because of the absence of any source or sink

TABLE I. Conditions on the reaction kinetics at the fixed point
and the diffusion process that guarantee the appearance of Turing
patterns in generic two-species reaction-diffusion systems described
by Eq. (1) (see Ref.[4]).

Stable homogeneous Unstable inhomogeneous

fu+gv,0 d fu+gv.0

fugv− fvgu.0 sd fu+gvd2ù4dsfugv− fvgud
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term for the CA in Eqs.(6) to (9), its total amount remains
constant during the whole evolution. Furthermore, if we as-
sume that initially, the distribution ofbs

T is uniform in space,
these equations also imply the homogeneity ofbs

T throughout
the evolution. Taking advantage of the different timescales
present in the system(4)–(9), and following the procedure
described in Ref.[17], we perform a regular perturbative
expansion on the small parameter«. In this way, we are
focusing on the outer solution that is reached after a small
transient where the fast variables(the concentrations of the
complexing agents) rapidly approach a stable manifold,
which is uniquely defined by algebraic equilibrium relations
[28]. The reduced system of rescaled evolution equations for
the slow time-scale dynamics obtained from Refs.[4–9] is
given by

] u

] t
=

fsu,vd
1 + Ausud

+ dusud¹2u − Husud¹W u ·¹W u,

] v
] t

=
gsu,vd

1 + Avsvd
+ dvsvd¹2v − Hvsvd¹W v ·¹W v,

s11d

where we have defined

dsssd =
Ds + AsssdDbs

1 + Asssd
,

Hsssd =
2Dbs

Asssd

sks
d + sdf1 + Asssdg

,

Asssd =
ks

dbs
T

sks
d + sd2

s12d

and ks
d=ks

−/ks
+ stands for the dissociation constantss=u,vd.

Equations(11) were also derived in detail in the context of
calcium waves(see Ref.[29], p. 342). The CA concentra-
tions are —after a short transient— slaved tou and v via
algebraic relations(see Ref.[19]). Notice that the system of
equations(11) is no longer of reaction-diffusion type, except
for some limiting cases as the one treated by Ref.[12], and
others discussed in Ref.[19]. For simplicity, in the following
we will consider only the case of one space dimension. We
will look for a nonlinear transformation in order to get rid of
the nonlinear term proportional to the squared gradient ofs
in Eq. (11). Following Sneydet al. [22], we propose

u = csUd, v = usVd, s13d

wherec and u are unknown functions to be suitably deter-
mined. We will constrain the space of possible transforma-
tions to those that are —at least— twice differentiable and
monotonically increasing. The degrees of freedom can be
reduced by a reasonable requirement: in the absence of com-
plexation, or when the CA can be considered as immobile,
these functions should reduce to the identity transformation
[see Eq.(14) below]. The first equation in Eq.(11) can now
be written as

c8
] U

] t
=

fsc,ud
1 + Auscd

+ duscdc8
]2U

] x2 + fduscdc88 − Huscdc8 2g

3S ] U

] x
D2

, s14d

wherex denotes the spatial coordinate,c8 and c88 denote,
respectively, the first and second derivatives ofc with re-
spect toU. The relations forv may be obtained from Eq.(14)
by replacingc→u and U→V. If the unknown functionc
satisfies the following differential equation[22]:

duscdc88 = Huscdc8 2, s15d

then, the term that comes from the squared gradient ofu is
automatically removed. The integration of equation(15)
yields

cDu −
bu

Tku
dDbu

ku
d + c

= aU + a8, s16d

where the constants of integrationa and a8 can be deter-
mined using the constraints that we imposed on the proposed
transformation, that is,

a = Du,a8 = 0. s17d

Thus, we finally obtain the following equations forU andV:

] U

] t
=FsU,Vd + du„csUd…

]2U

] x2 ,

] V

] t
=GsU,Vd + dv„usVd…

]2V

] x2 , s18d

where

FsU,Vd =
1

c8

fsc,ud
1 + Auscd

= duscdfsc,ud/Du, s19d

GsU,Vd =
1

u8

gsc,ud
1 + Avsud

= dvsudgsc,ud/Dv. s20d

A couple of things are worthy of remark here. First, as can be
appreciated from their definition[see Eq.(12)], the functions
dsssd, that play the role of the diffusivities in the evolution
equations ofU andV represent a density dependent weighted
average between the diffusion coefficients of the speciesS
and that of the CA with whichS reacts. If the diffusion
coefficient of the CA is equal to that ofS, then dsssd=Ds,
which makes sense because in this situation its mobility is
not affected by the binding to the CA. If, on the contrary, the
CA is immobile, then the effective diffusion coefficient ofS
is simply its free diffusion coefficient divided by the same
rescaling factor that appears in the reaction term. In this case
the rescaling factor can also be derived from a microscopic
analysis of the system[19], and may be associated to the
average amount by which the time of free diffusive motion is
reduced by the interaction with the CA.
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The second point we want to stress is that the homoge-
neous fixed point solutions foru andv after rescaling coin-
cide with the homogeneous stationary solutions of the
reaction-diffusion system in the absence of CA, as can be
seen, for example, from the last two definitions of the new
reaction terms in the transformed equations. Finally, given
that the transformation(13) is monotonous, it is clear that
homogeneous fixed point solutions in theu−v variables cor-
respond to homogeneous fixed point solutions in theU−V
space, and the same holds for patterns. Thus, the presence or
absence of a pattern in theU−V space and in the original
u−v are in a one-to-one correspondence.

We write for completeness the explicit form of the trans-
formation from the concentrationusx,td to the function
Usx,td and viceversa(we avoid writing the twin condition
for v↔V):

U=c−1sud = u −
kdbu

TDbu

duskd + ud
,

u=csUd =
U − kd

2
+

1

2
ÎsU + kdd2 + 4kdbu

TDbu
/Du.

Given thatffcsU0d ,usV0dg=0 andgfcsU0d ,usV0dg=0, where
U0=c−1su0d andV0=u−1sv0d, it follows that at the homoge-
neous steady state:

FU =
dusu0d

Du
fuc8sU0d, FV =

dusu0d
Du

fvu8sV0d,

GU =
dvsv0d

Dv
guc8sU0d, GV =

dvsv0d
Dv

gvu8sV0d.

Then we conclude that the(transformed) kinetic functions
that are obtained for the rescaled equations, preserve the
same structure of signs in the stability matrix as the original
one. This result follows from the fact that the proposed re-
actions with CA do not change the characteristics of the in-
teraction between the morphogens. By varying the available
free activator-inhibitor molecules, CAs may modify the
probability of reactive collisions embodied in the weight of
the reaction terms, but not the same kind of interaction as
reflected in these derivatives.

C. Linear stability analysis with complexing agents included

The linear analysis near the homogeneous fixed point so-
lution of Eq.(18) is analogous to the one performed with the
system(1). To assess the effect of CAs, it is convenient to
express the conditions for the Turing instability when mobile
CAs are present, in terms of the conditions that we required
for the original system without CAs. We summarize the re-
sults in Table II, where we have scaled out a positive pref-
actor from the condition on the determinant of the stability
matrix, and defined the dimensionless ratiosR
;fdusu0d /dvsu0dgD and D;dsc8 /u8d. Comparing Tables I
and II we may see that the effect of the reactions with the
CAs appears only through the positive factorR. As we will
see now, its presence introduces important changes regarding
the structure of the Turing space.

In spite of the algebraic complexity of the terms in Table
II and of the cumbersome transformationsc and u, at least
numerically, it is now a straightforward exercise to compute
the Turing space. Namely, one only needs to grid the space
of parameters, and plug into the relations of Table II all the
different parameter combinations and save those that verify
all conditions simultaneously. Note that for the inequalities
of the first row of Table II to hold simultaneously, it is nec-
essary thatdvsv0d.dusu0d. This necessary condition repre-
sents the extension of the formerDv.Du condition to the
case where reactions with CAs are taken into account. But
now it is no longer necessary for the free diffusion of the
inhibitor to be larger than that of the activator. There is a key
difference between them: while the value ofd is fixed, and
thus, the conditiond.dc is unlikely to be reached in the
absence of CAs, the value ofD can be driven above thresh-
old because of its dependence on genuine tunable variables,
such as the CA concentration. A last point worth to remark
concerns the effect of CAs on the wave number that corre-
sponds to the most unstable modekc. It readily follows that

kc
2 = Îc8u8kc,0

2 , kc,0
2 =Î fugv − fvgu

DuDv
, s21d

where kc,0 corresponds to the critical wave number in the
absence of complexing agents. Thus, the departures of the
wavelength of the patterns because of the presence of CAs
are embodied through the first factor, which is equal to unity
only when CAs do not diffuse. This agrees with the calcula-
tion of [30] for the CIMA reaction. If the dissociation con-
stants are known, Eq.(21) may be used to estimate the dif-
fusion coefficient of CAs, by varying their concentration,
and comparing the changes exerted on the macroscopic
length with those predicted by Eq.(21).

As a simple illustration of the above results, let us con-
sider the reaction diffusion system(4)–(9) with immobile
CAs, formally settingDbu

=Dbv
=0. Then,c8=u8=1, and the

four conditions for the Turing instability now reads

R fu + gv , 0, s22d

fugv − fvgu . 0, s23d

d fu + gv . 0, s24d

sd fu + gvd2 ù 4dsfugv − fvgud, s25d

where in this caseR is simply given by

TABLE II. Modified conditions for the appearance of Turing
patterns when reactions with complexing agents are taken into
account.

Stable homogeneous Unstable inhomogeneous

Rfu+gv,0 Dfu+gv.0

fugv− fvgu.0 sDfu+gvd2ù4Dsfugv− fvgud
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R= Rsu0,v0d =
1 + Avsv0d
1 + Ausu0d

. s26d

Except for Eq.(22), these restrictions look similar to the
ones obtained in Ref.[4]. Note that the rescaling factor ob-
tained by Ref.[12] is a limiting case of Eq.(26), when the
dependence on the fixed point can be neglected i.e., the con-
centrations at the fixed point are negligible with respect to
the dissociating constant), and no interaction ofv with a CA
exist. We can see from these relations what the starch mol-
ecules, or other immobile CAs do in order to allow the ob-
servation of patterns in experiments: they simply set a value
of R sufficiently lower than 1, so as to permit the stabiliza-
tion of patterns withd,1. As we have mentioned, while the
free diffusion ratio cannot be tuned, it is possible for the ratio
R to be manipulated experimentally, taking advantage of its
dependence on the total concentration of CAs. The role of
immobile complexing agents can be interpreted more clearly.
Note that, in such a case, the rescaling enters into the equa-
tions foru andv through a multiplicative factor on the right-
hand side of Eq.(11). Then it is clear that the stationary
solutions cannot change by the presence of the immobile
CAs. Thus, given that the Turing bifurcation involves only
stationary solutions, the point in the space of parameters
where the Turing bifurcation occurs also remains the same.
This can also be appreciated directly from the condition on
the determinant of the stability matrix, because the point in
the parameter space where the determinant is zero(i.e.,
where the Turing bifurcation occurs through a pitchfork or a
transcritical bifurcation) is not changed by the presence of
the prefactor due to the complexing agents. Instead, what the
immobile CAs do is to change the place where the Hopf
bifurcation withk=0 occurs(another instability that the fixed
point can suffer), by modifying the sign of the trace of the
matrix A [31]. In this way, a positive trace(an unstable
homogeneous fixed point surrounded by a closed orbit) can
become negative(a stable fixed point) because of the immo-
bile CA. Then, when this stable homogeneous fixed point
solution collides with or splits up into other stationary inho-
mogeneous solutions(as it occurs in transcritical and pitch-
fork bifurcations), the latter solutions will inherit the stability
of the homogeneous fixed point solution. If the complexing
agents are mobile, in principle, new stationary solutions
could be created by the presence of the CA. A large number
of possibilities arises in this case, whose analysis goes be-
yond the aims of the present work.

III. APPLICATION: THE SCHNACKENBERG
MODEL (SM)

In order to proceed further with the analysis of the last
example we need to restrict ourselves to a particular
reaction-diffusion model. We analyze in this section, an ex-
tensively studied model in connection with Turing patterns
[4], to which we add a set of reactions with buffers. This
extended model reads

X

k−1

k+1

A, B→
k2

Y, 2X 1 Y→
k3

3X, s27d

X 1 BX

k−4
X /«

k+4
X /«

CX, s28d

Y 1 BY

k−4
Y /«

k+4
Y /«

CY. s29d

The reaction scheme(27) constitutes the so-called Schnack-
enberg model(SM). If the concentration ofA andB are kept
at certain nonequilibrium values, the SM displays oscilla-
tions in the concentration ofX andY. We add to the model
the set of fast reactions with buffers(28) and (29). This ex-
tended model has many advantages. On one hand, it is
simple enough to allow us to obtain the boundary of the
Turing space analytically, making it possible to see how its
position changes as a function of the concentration of the
buffers. On the other hand, it is intrinsically interesting as a
plausible model behind the Turing-like patterns found in
some living organisms. Indeed, an important motivation for
studying this system is the idea that a similar mechanism
controls some features of the unicellular algae Acetabularia
[4,32]. While this simple model reproduces some of the ex-
perimental observations, such as the intrinsic wavelength of
the pattern or the window of external calcium concentration
where the patterns can be formed, one of its weak points, is
the unrealistic requirement on the ratio between the free dif-
fusion coefficients of the ions(probably Ca++ and H+) that
would play the role of morphogens. However, it is reason-
able to suppose that these ions(or even cAMP, which is
another plausible morphogen instead of H+) are buffered in
the course of the reactions, and that the system with rescaled
diffusion and reactions permits the formation of patterns with
a reasonable ratio between the free diffusion coefficients. We
can take the values of real intracellular buffers, such as
troponin-C or calmodulin (see Ref. [29], and references
therein), to have an idea of the typical order of magnitude of
such rescaling. Reasonable ranges for the concentration of
these two buffers are within 10 and 100mM, with dissocia-
tion constants between 1 and 5mM [33]. Also, both buffers
diffuse in the cytoplasm at rates that are lower than
20mm2/s, a value which is at least one order of magnitude
below that of any of the proposed morphogens. The rest of
the kinetic and feeding parameters are considered to vary in
the same ranges as in Ref.[4].

In the remainder of this section we first sketch how the
reduction procedure is performed considering, for simplicity
fBYg=0, and comparing the main results with those of the
full system(Sec. III A). We then use the results of Sec. II to
find and analyze the Turing space of the reduced set of equa-
tions (Sec. III B).

A. The reduced equations

Using mass action kinetics and writingX=fXg, Y=fYg,
A=fAg, B=fBg, BX=fBXg, and CX=fCXg, the reaction-
diffusion equations associated to the scheme(27)–(29) are
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] X

] t
= k−1A − k1X + k3X

2Y −
1

«
sk4XBX − k−4CXd + DX¹2X,

s30d

] Y

] t
= k2B − k3X

2Y + DY¹2Y, s31d

] BX

] t
= −

1

«
sk4XBX − k−4CXd, s32d

] CX

] t
=

1

«
sk4XBX − k−4CXd. s33d

In order to simplify the analysis of the system we introduce
dimensionless variables

u = Xk, v = Yk, t =
DX

L2 t, d = DY/DX,

a =
k−1A

k1
k, b =

k−1B

k1
k, k = Sk3

k1
D1/2

, g = k1
L2

DX
,

bu =
BX

BT
, a = k−4

L2

DX
, h = akBT, b =

k4

kk−4
,

where BT is the total buffer concentration andL is some
characteristic length. In terms of these dimensionless quanti-
ties, (30)–(33) can be rewritten as

] u

] t
= gsa − u + u2vd +

h

«
s1 − bu − bubud + ¹2u, s34d

] v
] t

= gsb − u2vd + d¹2v, s35d

] bu

] t
=

a

«
s1 − bu − bubud, s36d

where we have used the conservation of the amount of buffer
in its two forms. We propose an expansion of the buffer
concentration in powers of the small parameter« :bu=bu

s0d

+«bu
s1d+¯. Then, it follows that bu

s0d=s1+bud−1, and
bu

s1d=sb /abu
s0dd s]u/]td. After a short transient, the evolution

occurs on a slow manifold and is properly described by

] u

] t
= grsudsa − u + u2vd + rsud¹2u, s37d

] v
] t

= gsb − u2vd + d¹2v, s38d

where

rsud =
1

1 + ms1 + bud−2, m =
hb

a
=

BT

ku
d . s39d

The only parameters that can be regarded as truly tunable are
a,b, and m, because the first two are proportional to the

concentrations of the infinite sources to which the system is
supposed to be connected, and the latter, to the total concen-
tration of buffer. Equations(37) and (38) make clear that
even ford<1, the effective diffusion rates ofu and v may
differ, in particular, if rsud is sufficiently low. We may also
see that the reaction terms are also rescaled by the reduction
procedure. The(homogeneous) fixed point solution of sys-
tem (34)–(36) [and also of Eqs.(37) and(38)] can be written
in terms ofa andb asu0=a+b, v0=b/ sa+bd2, andbu0

=f1
+bsa+bdg−1. Applying the linear stability conditions suma-
rized in Table II, it is now possible to obtain vectors of pa-
rameters that belong to the Turing space. We show in Fig. 1
the results of a numerical integration of Eqs.(37) and (38)
for d=1 and a set of parameter valuessa=0.02,b=0.3,g
=500,m=10,b=0.1d inside the Turing space obtained as de-
scribed. We can observe the evolution from a random initial
condition near the homogeneous fixed point towards a Tur-
ing pattern.

We study now whether the property mentioned earlier ac-
cording to which the wavelength of the Turing pattern is
independent of the CA concentration when the CA is immo-
bile, also holds for the complete system of equations
(30)–(33). To this end, we show in Fig. 2 the real part of the
largest eigenvalue of the linear operator of Eqs.(34)–(36),
for «=0.0001,a=0.2, andh between 20 and 40(or equiva-
lently, m between 10 and 20). The rest of the parameters are
as in Fig. 1. As can be seen, the predictions of the reduced
model are verified by the full one, in particular, the invari-
ance of the wavelength with the buffer concentration. As can
be apreciated from this figure, the maximum value ofkc

2 is
close to 160, which implies a wavelength of approximately
0.5. Again this value is close to the one that spontaneously
emerges in the simulation of the reduced model, giving con-
fidence on the reduction procedure. Interestingly, it is also

FIG. 1. Time evolution of the dimensionless concentration pro-
file v towards a Turing pattern in the Schnackenberg model with
CAs. The space variablex/L is also adimensional(see the lower left
graph). Frames(a) – (i) correspond, respectively, to timest=0.008,
t=0.04, t=0.08, t=0.24, t=0.4, t=0.6, t=1, t=4, and t=20. The
diffusion coefficient of the activator and the inhibitor were consid-
ered to be exactly equalsd=1d. The initial condition is randomly
distributed around the fixed point. Other parameters in the main
text.
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observed that the whole band of unstable modes results in-
dependent of the concentration of CA, and that fork=0 the
system evolves towards the equilibrium solution. There is a
critical concentration of complexing agent(a minimum of
h,15.65) that is needed to supress oscillations.

B. Analysis of the Turing space

Having shown that the reduced model is in fact a good
representation of the whole system whene is small, we now
study the reduced equations(37) and (38) within the frame-
work developed in Secs. II B and II C. The kinetic functions
of the unbuffered system in this case are given byfsu,vd
=gsa−u+u2vd and gsu,vd=gsb−u2vd. Inserting them in
Eqs.(22)–(25), together with the specific form of the param-
eter R that comes from the interaction of the morphogens

with their respective CAs, we obtain the relations that deter-
mine the Turing space. Except for some limiting cases where
the boundaries of the Turing space can be found analytically,
in most cases we have to resort to numerical techniques. In
the following, however, we will analyze one of these situa-
tions where analytical calculations are possible. To this end,
we suppose that the concentrations ofu and n are much
smaller thanku

d andkv
d, respectively. In this circumstance, the

dependence ofR on the homogeneous fixed point can be
neglected, and we are allowed to writeR.s1+bv

T/kv
dd s1

+bu
T/ku

dd−1. The set of pointssa,b,Rd that satisfy conditions
(22)–(25) simultaneously(i.e., Turing space) can be shown
to lie, for a fixed value ofR, between two boundary curves in
the sa,bd plane that are parametrically given defined by

fa1std,b1stdg =
t

2R
sR− t2,R+ t2d,

fa2std,b2stdg =
t

2S1 −
2t
Îd

−
t2

d
,1 +

2t
Îd

+
t2

d
D .

s40d

We show in Fig. 3 how the Turing space changes as a
function of R for d=2. Depending on the value ofR the
Turing space can be enlarged or shrinked. Given that the
value of d is fixed, we must find a critical value ofR, Rc,
below which the Turing space is nonempty. The explicit
value of theRc may be obtained as done in Ref.[4] (see p.
401), that is, by looking for a value ofR such that
faistd ,bistdg=s0,1d for both i =1,2 simultaneously at a fixed
d value. It is straightforward to see then thatRc=ds3
+2Î2d−1.

IV. CONCLUSIONS

The general concept behind Turing-like instabilities is that
of short-range activation with long-range inhibition[4]. In
two-species activator-inhibitor reaction-diffusion systems,
this requires that the inhibitor diffuse faster than the activa-
tor, at least by a critical amount that depends on the param-

FIG. 2. Dispersion curves obtained from the complete system of
equations(30)–(33): growth rate of a perturbation with(dimension-
less) wave vectork for h=20 (solid curve) and h=40 (dashed
curve). Both the band of unstable modes and the wavelength of the
most unstable ones2p /kcd, are independent of the buffer concen-
tration. This result persists even whenh→1/e. Whenh is below
,15.65, the homogeneous fixed point loses stability, and the Turing
bifurcation dissapears.

FIG. 3. The Turing space is the
enclosed domain above the filled
line [Eq. (41)] and below the
dashed one[Eq. (40)]. In (a) R
=Rc and the Turing space contains
no points. In(b); (c), and (d), R
=0.25, 0.1, 0.01, respectively.
Note that the dashed line is the
same for all the plots, becaused
has a fixed value(see the text).
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eters of the reaction and feeding(source) terms. Several
models have been proposed in the literature in order to ex-
plain real biological pattern formation processes by means of
a Turing-like instability[4,18,32,34]. Some of these models
lack a biological motivation, and others tend to capture quite
schematically generic regulatory controls. In all these previ-
ous studies there is almost unrestricted freedom to choose
kinetic parameters. Thus, even if the modeled patterns are
astonishingly similar to the real ones, the similarity could be
far from having any biological significance. On the other
hand, even in those cases where there is some clue to the
identities of the morphogens, the diffusion ratio is arbitrary
tuned to “suitable” values, i.e., those lying beyond the insta-
bility threshold. Treatingd as a bifurcation parameter neces-
sarily implies that other reactions not explicitly considered,
change the diffusion coefficients of the relevant molecules.
The importance of these “ghost reactions” was first clearly
stated by Lengyel and Epstein[9,12] to explain the experi-
ments on the chlorite-iodide-malonic-acid(CIMA ) reaction
where Turing patterns were first convincingly observed in
gel reactors[6,11]. A careful analysis of those experiments
qualitatively showed that the diffusion coefficient of iodide
was reduced by the interaction with the starch molecules
loaded in the gel for visualization purposes. This would
—they argued— provide the necessary difference between
the diffusive rates of the morphogens involved, even though
their free diffusion coefficients were similar.

Tuning the ratio of free diffusion coefficients to suitable
values invoking the presence of a rescaling mechanism be-
came customary in the literature on Turing patterns after the
work of Ref. [9]. Following this approach, Turing patterns
were predicted theoretically or observed numerically[16,18].
Our aim in this paper was to analyze the occurrence of Tur-
ing patterns including a detailed description of the reactions
that can provide the necessary rescaling mechanism. There
have been other works that also include these other reactions
[9,10,12,30]. Although the analysis presented in Ref.[12] is
similar to ours, it contains a set of assumptions that are ex-
cessively restrictive. In particular, assuming that the com-
plexing agent is in large excess with respect to the activator
species is not an essential feature for the appearance of pat-
terns, neither is the fact that the complexing agent be tightly
fixed to a large molecular network, and so, do not diffuse.

From a theoretical point of view, our paper removes the
constraints of Ref.[12]. Namely, our goal is to provide ex-
plicit analytical formulas that can be used to “manipulate”
the shape of the Turing space, in order to drive a given sys-
tem towards a region where Turing patterns can develop. The
degree of freedom that we use for this purpose(the fast re-
action with the CA), is supported not only on the experimen-
tal evidence that comes from the CIMA reaction, but also on
biological experiments where it has been demonstrated that
endogenous or exogenous CAs tailor the repertoire of spa-
tiotemporal organization that a system can display[35,36]. In
particular, we have argued that the Schnackenberg model
gives a qualitative framework for the problem of pattern for-
mation in the unicellular algae Acetabularia. This problem
had been studied in Ref.[4], but again, assuming an unreal-
istic ratio for the diffusion coefficients of the proposed mor-
phogens. With our treatment, on the other hand, we start

from a more general set of equations from which the effec-
tive ratio of diffusion coefficients is obtained, as well as the
rescaling of the reaction terms. In this example we assumed
that it was the interaction of the activatory species, with
some endogeneous buffer(using characteristic values for the
dissociation rates and concentration than those actually
found in real cells), to be the process that made possible the
appearance of a Turing structure. It is important to remark,
however, that the application of the Schnackenberg model to
the pattern formation process in the algae is not based on the
knowledge of the real kinetic mechanisms involved, but on
analytical convenience and predictive power[4]. Thus, our
application of the method should be regarded as an illustra-
tive example and not as proof of the relevance of Turing’s
ideas to the biological realm. In this regard, the situation is
more favorable in Ref.[24], where it has been shown that
Turing structures can indeed appear in cells because of the
feedback loops involved in the glycolytic pathway. For the
case of glycolysis, the kinetic mechanisms are quite well
understood, and so the finding of patterns using mathemati-
cal models that accurately reproduce the temporal behavior,
give genuine theoretical support to the existence of Turing
structures at the cellular or supracellular level.

From an experimental point of view, the mathematical
relations summarized in Table II can be used as a tool to
choose between different sorts of CAs(with different disso-
ciation constants and mobilities), or to regulate CA concen-
trations in order to see a stationary pattern. Even if the start-
ing set of equations have serious limitations to capture the
actual constraints of the experimental setup(for example,
they implicitly assumed the validity of the pool chemical
approximation[3]), we expect that this work can be used as
a guide for finding Turing patterns in the laboratory, and for
the design of experiments with new classes of chemical re-
actions.

It is believed that spatial patterns in biological systems are
connected with the morphogenetic process. According to this
view, the process of development is initiated by the forma-
tion of a Turing-like structure that plays the role of a prepat-
tern for the subsequent process of development and growth.
If Turing patterns are really relevant to a cell or a group of
cells (as it is supposed to occur during the early stages of the
development of the embryo), the mathematical relations de-
rived here may illustrate the mechanism for the cell to switch
the pattern on or off. Small changes in the production or
degradation rates of certain proteins may lead to a sudden
emergence or dissapearance of a global organization.
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