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Role of complexing agents in the appearance of Turing patterns
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In this paper we study a four-species reaction-diffusion system where Turing patterns are stabilized by the
presence of fast reversible reactions between the morphogens and two different mobile complexing agents
(CAs) that are not necessarily in excess. We provide a quantitative explanation of how the interaction with the
CA changes the size of the Turing space making it possible to observe patterns even in a region where the free
diffusion coefficients of the relevant species are equal, as is usually the case in real systems. Our analytical
treatment gives a series of mathematical relations that can be helpful for those designing experiments where
Turing patterns are expected to appear. We also show how the mobility of CAs affect the characteristic size of
the pattern. Finally, we provide an example of biological interest in order to illustrate the main procedures and
results.

DOI: 10.1103/PhysRevE.69.066207 PACS nunier05.45-a, 82.40.Ck, 89.75:k, 82.39—k

I. INTRODUCTION in aqueous solutions all the chemicals involved in the reac-
o ) o tions have nearly equal diffusion constants. This fact, as well
Self-organization far from thermodynamic equilibrit] a5 the great difficulties for sustaining constant nonequilib-
is an active area of research in an increasing number Qium conditions in an Spatia“y extended reactbr, exp|ain
fields, such as fluids, optics, biophysics, and physical chemthe long delay between the original proposition of Turing and
istry. Among the diversity of pattern formation phenomenajthe first clear observation of Turing patterns in laboratory
the spontaneous diffusive instabilities of an homogeneousexperiments by Castett al. [6]. Theoretical developments
mixture in reaction-diffusion systems, first proposed theoretiand numerical simulations based on model equations, but
cally by Turing[2], remains as a paradigmatic examfdee taking into account the real constraints of the experiments,
Ref. [3] for a recent review The Turing instability, sponta- were already available a few years before, and predicted the
neously leads to chemical concentration structures, which ar@ppearance of localized Turing structuf@sg]. Turing pat-
space periodic, time stationary, and possess an intrinsi€rms were ac_:tually observed in gxperiments on the_chlorite—
wavelength. The symmetry breaking of an homogeneou#dide-malonic acidCIMA) reaction, only after the inclu-
state has to involve three unavoidable ingredients: an activaion of an exogenous mechanism that created the conditions
tor species, taking part of the positive feedback process th&" the diffusive ranges for their appearance. This was quali-

speeds up its own changes, an inhibitory process that exertatiVely pointed out in a paper by Lengyel and Epstn

control on the positive feedback loop, and a larger diffusiveUSiNd @ simplified version of a previously developed model

range for the inhibition compared to the activation. In two of the CIMA reaction which is completely based on empin-

; . e . al rate lawq10]. These papers set a theoretical framework
species reaction-diffusion systems, Turing pattern.s MY, understand the appearance of Turing patterns in the ex-

involved in it tori tocatalvii " ?Jeriments on the CIMA reactiof6,11]. The argument was
Involved In 1ts own crea |or_Q|.e., an autoca aytlc_ reac BN that both the gel and the starch molecules used in the experi-
a_nd the (_)the_r participates in a reaction t_hat inhibits the Pr€ments to suppress nondiffusive transport and for visualiza-
vious activating process. Furthermore, it is necessary that the, | purposes, respectively, played an active role in the ap-
inhibitor diffuse much faster than the activator. The values Opearance of the patterns. Indeed it was the reversible
the Feacr‘]"’” .ra'ltes and the fbeedI;lq'gehm?lvazj.f(f)f 'speC|esﬁ' complexation of iodide and iodine with large immobile mo-
specify the minimum amount by which the diffusion Coeffi- |, assembliegstarch molecules that were responsible
cient of the inhibitor must exceed that of the activator iN¢or the necessary tuning of the “effective diffusion” con-
ordgr to ot?]servg t_hefe patter[bm$. Turi ._stants. Under a set of assumptions that are only approxi-
Ince the original paper Dy Turing, many tv.v.o'SpeC'eSmately fulfilled in the particular case of the CIMA reaction,
model reaction schemes fulfilling the kinetic conditions WEre| ongyel and Epstein provided a more quantitative support to
proposed, and Fhe cor_respondlng reaction-diffusion systems,. idea of the effect of the complexing agéBiA) on the
were analyze_d |n_the Iltergtgre. T_he threshold \_/alqe for thEHopf and Turing bifurcation§12]. More recently, systematic
ratio of the diffusion coefficients is far from unity in most experiments performed in a gradient-free open readsy,
circumstances, and always strictly different than 1. Howeveryamonstrated a close connection between the model predic-
tions and the experimental results, in particular, with respect
to the role of immobile complexing agents.
*Electronic address: strier@crpp-bordeaux.cnrs.fr; present ad- While the experimental observation of Turing patterns in
dress: Centre de Recherche Paul Pascal — CHRSce. controlled chemical reactors have triggered our theoretical
"Electronic address: silvina@df.uba.ar understanding of these phenomena, opening up the possibil-
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ity of technological applications, the question posed by Alan After deriving the rescaled equatiorise., the reduced
Turing [2] about its role in living organisms still remains system obtained after the fast dynamics is properly collapsed
open. Given that the autocatalytic chemical reactions subsnto the variables that evolve at a relatively slow pace
strate and product inhibition are commonly encountered irf17,19), we proceed further with the analysis providing a
biochemical reactions, one of the bottle-necks in this realm igeries of analytical relations, and a procedure to be followed
to find biologically plausible mechanisms for the tuning of i this sort of problems to assess if the appearance of stable
the diffusion coefficients. It has been proposed that endogyatierns can be expected for a given system. For a particular
enous and exogenous molecular assemblies such as buffergsmple, we also show the agreement between the results of
[14,15, and the membrane-filled structure of the cell cyto-iha reduced approach with that of the full model.

plasm[16] may provide the ingredients for the rescaling of The paper is organized as follows. In Sec. Il we present

?(I)Teu?ilgThgogegl(;ﬁgttshlenga\:gr? jg:éemébp;?gtlggy 2x%$=ﬁren£§e analytical results on the stabilization of Turing patterns
[9,17]. Indeed, there is some evidence of spatial patterns i )o/ntgioerlcttrllgne?;et?eer?c’?a. (’)A‘fﬂ_?rr‘fin b”jttfrvr:gv.vno; th:ngggdt:;vo
living organisms that are not scale invariant, as well as othe! 9 uring p : 9 :

indirect evidence that seems to justify its ultimate origin as>PECIes mode(Sec. Il A), we show how the set of rescaled

the result of a diffusion driven instability of Turing type reaction—diff_usion equations that take into account the pres-

[4,18). However, since the situation in biology is much more €nce of rapid CA are obtaing&ec. Il B.. Then, we perform

involved than the one in chemistry, the actual relevance ofe linear stability analysis on the rescaled equations and the

the Turing mechanism as a generator of patterns in biologic]€W conditions for the Turing instability are deriveSec.

systems is still uncertain. IC). Flnal!y, in Sec. I, we show an example of b|olog|cal
Our aim in this paper is to formalize the above statementgelevance in qrde( to illustrate the main results. We discuss

for a general reaction-diffusion system of activator-inhibitor the central points in the conclusions.

or substrate-depleted types. Having in mind the experiments

where Turing patterns were observed and the characteristics Il. THE MODEL

of the biological systems where Turing structures have been

looked for, we suppose that some of the species involved are

also taking part in a reversible reaction with a complexing The general form of a two species reaction-diffusion sys-

agent. We also assume that the reaction with the CA occunem is

on a time scale that is small compared to that of the other

A. Introductory remarks

process, which includes the rest of the chemical reactions, 9u _ f(u,0) + D V2U
the feeding or removal of chemicals, and diffusion. As we at ' e
have shown in Ref[19], this hypothesis is verified in many 9v (1)
situations of interest. We show in this paper how fast inter- ot =g(u,v) +D, V%,

actions deforms the set of parameter values for which a Tur-
ing instability occurg(the Turing space by stabilizing sta- whereu andv stand for the concentration of molecules of
tionary patterns in a region where the ratio of the freespecied/ andV, respectively, and, andD, for their diffu-
diffusion coefficients of the activator and the inhibitor can besjon coefficient. These equations reflect that the local con-
set to 1, or even consider cases where the free diffusion dfentration of a given species can change as a result of the
the activator is larger than that of the inhibitor. In contrast tochemical reactions, and to a thermal transport progdiffsi-

the previous closely related work of R€fl2], where the  sjon). The f(u,v) andg(u,v) functions are constructed from
relevant two-variable system of reaction-diffusion equationshe proposed reaction scheme using the law of mass action or
were derived for a particularly simple limiting case to avoid gre determined empirically.

mathematical difficulties, in this paper a more general set of The study of Turing patterns starts from the assumption
equations are obtained using the multiple-time scale apthat a homogeneous fixed point solutiam,vo) exists|i.e.,
proach developed in Refd7,19. This makes it possible t0  the nuliclinesf(u,v)=0 andg(u,v)=0 intersect atuy,vo)].
remove some simplifying assumptions used in REZ], that  The signs of the coefficients of the spatially homogeneous
reduce the range of validity of thglr results. In fact, we cangynamical systentl), linearized around the fixed point so-
handle the case where the CA diffuses, or where the CA igtion, give important information about the destabilization
not in excess, and so allow for large variations of the cony,echanism of the homogeneous solutiog,vo). It can be
centration of the CA in the course of the evolution. Also Wegpqvn that when the signs of the stability matrix, whose
consider the effect of reversible complexation of both the,5\vs are the gradients df and g with respect tou and v
activator and the inhibitor. This should make our results to b&y,ajuated at the fixed poice.g., f,= af/ au] ) are given
more widely applicable not only with regard to laboratory nY (Ugo)

experiments, where mobile dyes could be an option, an(li)y

where large excess is not always a good approximation, but (fu fv> <+ + ) (+ - )
also in biological situations, where the overall behavior may A= = or ,
be qualitatively different depending on the transport proper- 9 G

ties of the CA involved[20], or when the role of CA is it is then possible to find a Turing-like instability whenever
played by enzymes which are often in small concentrationghe rate constant and the diffusion coefficients satisfy certain
compared with the metabolites. constraints. The cases in EQ) correspond to the substrate-

(2)
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TABLE I. Conditions on the reaction kinetics at the fixed point with CAs can be used to determine the range of dissociation

and the diffusion process that guarantee the appearance of Turigbnstants and CA concentration where Turing instabilities
patterns in generic two-species reaction-diffusion systems describagbyld occur.

by Eg. (1) (see Ref[4]). There are two cases worth studying. The case in which
. both, the activator and the inhibitor regetith different af-
Stable homogeneous Unstable inhomogeneous  finjties) with the sameCA [26], and the case in which each
species reacls wih diferenCA (27 Whe e st cae
fug,=f,9.>0 (df,+g,)*=4d(f,g, - f,0u)

leads to the presence of cross-diffusion terms in the rescaled
equations, the second case is easier to analyze because the
rescaling of the equations is decoupled. For simplicity, we

ill consider only the second case. The proposed interaction
ith the CA has the following simple form:

depleted and activator-inhibitor classes, respectijelyj.
The conditions for the existence of Turing patterns state th%
the homogeneous fixed point solutitum,,v,) must be stable

under small homogeneous perturbations, but become un- kS
stable to spatially inhomogeneous disturbances. In other S+ Bg=Cq, (3
words, the eigenvalues of the linear operator that is obtained ks

by '"?ea“zmg the full set of Eqsl) arom_Jnd Fhe fixed point whereS can be eithet/ or V, Bg stands for the CA, an@g
solution must be negative when the diffusion terms are abfor the complex formed betweed and Bs While in many
sen;(homogeneous situatigrbut when they are present, the real systems the mobility of the CA iss.small, and can be
stationary state has to become unstable to periodic perturbﬂ'eglected in front of those of theand) molecules. in other
tions of wave numbek # 0. So, a necessary and sufficient f

L ) X ; ituations, the mobility is noticeable and cannot be underes-
ot g Sonelot o1 s bt oy b pocmaed, ecause he ovral bfavir of e system may be
It?ve for somel?;é 0 b%t remain negative fd{—% We sum? qualitatively different depending on the transport properties

marize in Table | the conditions under which these re uire—Of the CA involved, as we mentioned before. So, we will
) ; AU onsider the diffusive transport of the CA, and assume that
ments are fulfilled [4], where we have defined the

dimensionless diffusion ratid=D,/D,. Note that the condi- the reaction with these CAs occurs much faster than any

tions in the first row of this table necessarily imply that other process in the system, and that their mobility is not
lons ! w ! y 1mply thal otected by the binding witts. With this in mind, defining
d>1. It follows from the second row that there is a critical

ratio of diffusion coefficientsd.), above which the condi- by=[By, cu=[Cy, b,=[By] andc,=[C,], the reaction diffu-
. : : . . . . sion system becomes
tions are fulfilled. In this way the fixed point solution will

become linearly unstable under inhomogeneous perturba- au " )
tions of finite wave numbers within a certain range. Below 9t f(u,v) +r(u,by) + D, VU, (4)
the critical ratio, there is no combination of the parameters of
the model that can give rise to Turing patterns. p
1%
— =9(u,v) +r’(v,b,) +D, V%, (5)
{9t v v
B. Adding rapid complexing agents
Whend<d, the Turing space, that is, the parameter do-
. . . L ab, 5
main where the otherwise stable stationary state is linearly — =rY(s,b,) + Dy, V?by, (6)
unstable to a nonuniform perturbation, contains no points. As at !
we have mentioned earlier, the problem is that whitel in
most circumstances, the v_aldg is in general much greater aCy = —rY(sb,) + Dy V2 )
than one. Thus, if we restrict ourselves to schemes similar to ot T b,*

Eq. (1), then it would be unlikely to observe these patterns.

In the same spirit of Refg9,12,14,22,2B we consider that ab

each morphogen undergoes a reversible reaction with some — =r%s,b,) + D, V?b,, (8)
CA. Taking CA into account is clearly justified in those cases at ’
where we know exactly their identity. This occurs, for ex-

ample, in the CIMA reaction, but also in many biochemical dc,
pathways where opposite feedback loops of activation and at
inhibition coexist with interactions with known endogenous

buffers and enzymes, as in the glycolytic pathwag]. In Letting the totaITamount of the CA that reacts vyShu,_Vto
these situations, the procedure that we will describe belowP€ denoted byog=bs+cs (s=u,v), the fast reaction with the
allows us to establish if the interaction with the CA makesComplexing agent is described by

the appearance of Turing patterns more or less likely. In s _ -7 _ _

other cases, where a detailed knowledge of the reaction or(sby) = ~kssh +ks(bs ~ by, s=uv, (10
scheme is not available, but where the existence of CA cawhere 0<e<1 makes explicit the fact that reactions with
be taken for grante@@5], the addition of a set of reactions CAs are fast. Because of the absence of any source or sink

=-r%s,b,) + vav2c,,. 9)
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term for the CA in Egs(6) to (9), its total amount remains Ju f(4,6)

constant during the whole evolution. Furthermore, if we as- ‘/"I = T+A) +dy(py’
e . . . T - . . u

sume that initially, the distribution dfg is uniform in space,

these equations also imply the homogeneitjz)})ﬂqroughout v (ﬂ)z

the evolution. Taking advantage of the different timescales ax /)’

present in the systerg®)—9), and following the procedure

described in Ref[17], we perform a regular perturbative wherex denotes the spatial coordinat®, and ¢'' denote,

expansion on the small parameter In this way, we are respectively, the first and second derivativesyofvith re-

focusing on the outer solution that is reached after a smapect tol. The relations fov may be obtained from E¢14)

transient where the fast variablébe concentrations of the by replacingg— 6 and U— V. If the unknown functiony

complexing agents rapidly approach a stable manifold, satisfies the following differential equatiq@2]:

which is uniquely defined by algebraic equilibrium relations

#U
—e HaWw =y 7]

(14)

[28]. The reduced system of rescaled evolution equations for Ay =Hy W)y 2, (15
the sl%w time-scale dynamics obtained from R¢#-9 is then, the term that comes from the squared gradient isf
given by automatically removed. The integration of equati(ib)
yields
au f(u, - -
ou__fuo) +dy(WV2u-H,(wVu-Vu, bTkD
ﬁt 1+AU(U) D _ uu bU_ U+ ! 16
(11) wu—k3+¢—a a’, (16)
14 u, - -
LA M + du(v)Vzv -H,(v)Vv - Vu,
it 1+Av) where the constants of integratianand o’ can be deter-
mined using the constraints that we imposed on the proposed
where we have defined transformation, that is,
a=D,a’ =0. 17
Ds + As(S)DbS
d(s) =1+—As(s)' Thus, we finally obtain the following equations forandV:
2Dy, A(9) au #U
Hys) =2 (12) “==F(UV) +d,(H{U)) .
(ks +9)[1+A|(9)] dt Ix
kbl
As) = aVv PV
(K +9)? —L=GUV) +d, (o)~ (18)

and kgzk;/k; stands for the dissociation constgstu,v). where
Equations(11) were also derived in detail in the context of

calcium waves(see Ref.[29], p. 349. The CA concentra- _1 (o _

tions are —after a short transient— slavedut@nd v via F(U,V) = V1+A0) =du(P (4, 0/Dy, (19
algebraic relationgsee Ref[19]). Notice that the system of

equationg11) is no longer of reaction-diffusion type, except 1

for some limiting cases as the one treated by REZ], and G(U,V) = _,M =d,(0)g(y, 6)/D,. (20)
others discussed in RdfL9]. For simplicity, in the following 0 1+A,(0)

we will consider only the case of one space dimension. We ) i
will look for a nonlinear transformation in order to get rid of /A COuple of things are worthy of remark here. First, as can be

the nonlinear term proportional to the squared gradierg of @PPreciated from their definitiofsee Eq(12)], the functions
in Eq. (11). Following Sneycet al. [22], we propose dy(s), _that play the role of the dlffu5|y|t|es in the evolgtlon
equations ofJ andV represent a density dependent weighted
average between the diffusion coefficients of the speSies
u=yU), v=6v), (13 and that of the CA with whichS reacts. If the diffusion
coefficient of the CA is equal to that @&, thendy(s)=D,
where ¢ and 6 are unknown functions to be suitably deter- which makes sense because in this situation its mobility is
mined. We will constrain the space of possible transformanot affected by the binding to the CA. If, on the contrary, the
tions to those that are —at least— twice differentiable andCA is immobile, then the effective diffusion coefficient &f
monotonically increasing. The degrees of freedom can bé& simply its free diffusion coefficient divided by the same
reduced by a reasonable requirement: in the absence of comrescaling factor that appears in the reaction term. In this case
plexation, or when the CA can be considered as immobilethe rescaling factor can also be derived from a microscopic
these functions should reduce to the identity transformatiomnalysis of the systerfil9], and may be associated to the
[see Eq(14) belowj. The first equation in Eq:11) can now average amount by which the time of free diffusive motion is
be written as reduced by the interaction with the CA.
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The second point we want to stress is that the homoge- TABLE Il. Modified conditions for the appearance of Turing
neous fixed point solutions far andv after rescaling coin- patterns when reactions with complexing agents are taken into
cide with the homogeneous stationary solutions of theaccount.
reaction-diffusion system in the absence of CA, as can bé
seen, for example, from the last two definitions of the new  Stable homogeneous Unstable inhomogeneous
reaction terms in the transformed equations. Finally, given
that the transformatioiil3) is monotonous, it is clear that
homogeneous fixed point solutions in thev variables cor-
respond to homogeneous fixed point solutions in theV
space, and the same holds for patterns. Thus, the presence or
absence of a pattern in thé—V space and in the original
u-v are in a one-to-one correspondence.

We write for completeness the explicit form of the trans-
formation from the concentratiom(x,t) to the function
U(x,t) and viceversgwe avoid writing the twin condition
for v V):

Rf,+g,<0 Df+g,>0
fugu_ fugu >0 (Dfu+gv)22 4D(fugu - fugu)

In spite of the algebraic complexity of the terms in Table
Il and of the cumbersome transformatiosfisand 6, at least
numerically, it is now a straightforward exercise to compute
the Turing space. Namely, one only needs to grid the space
of parameters, and plug into the relations of Table Il all the
different parameter combinations and save those that verify
all conditions simultaneously. Note that for the inequalities
kdeDb of the first row of Table Il to hold simultaneously, it is nec-
—_—, essary that,(vg) >d,(ug). This necessary condition repre-
dy(ky+u) sents the extension of the formBy,>D,, condition to the
U-k, 1 case where reactions with CAs are taken into account. But
_ _J~ _ 2 T now it is no longer necessary for the free diffusion of the
u=y(U) = 2 ¥ 2\/(U tha™H 4kdb”Dbu/D“' inhibitor to be larger than that of the activator. There is a key
. difference between them: while the value abfs fixed, and
Given thatf[(Uo), &(Vo)]=0 andg[y(Uo), (Vo) =0, where s the conditiord>d, is unlikely to be reached in the
Uo=¢7(up) and Vo=6""(vo), it follows that at the homoge- 5psence of CAs, the value &f can be driven above thresh-

neous steady state: old because of its dependence on genuine tunable variables,
d,(up) dy(Uo) such as the CA concentration. A last point worth to remark
Fu ===/ (Up),  Fy=—21,0(Vo), concerns the effect of CAs on the wave number that corre-
D, D, sponds to the most unstable mddelt readily follows that
G _dv(UO) _ du(vo)
u - D -

gu¥’ (Uo), Gy 9,0' (Vo).
D v [0 nr fgv_fvg
v v =V 0o Ko=\ " 5p v (@D
u~v

Then we conclude that th@ransformed kinetic functions

that are obtained for the rescaled equations, preserve tnﬁherekco corresponds to the critical wave number in the
same structure of signs in the stability matrix as the origina '

I ;
. absence of complexing agents. Thus, the departures of the
one. This result follows from the fact that the proposed r.e'wavelength of the patterns because of the presence of CAs

actioqs with CA do not change the charactgristics of thg INare embodied through the first factor, which is equal to unity
teraction between the morphogens. By varying the avallablgnly when CAs do not diffuse. This agrees with the calcula-

free activator-inhibitor molecules, CAs may modily the tion of [30] for the CIMA reaction. If the dissociation con-

probability of reactive collisions embodied in the weiglht of stants are known, Eq21) may be used to estimate the dif-

fusion coefficient of CAs, by varying their concentration,
and comparing the changes exerted on the macroscopic
length with those predicted by E¢1).

C. Linear stability analysis with complexing agents included As a simple illustration of the above results, let us con-

The linear analysis near the homogeneous fixed point sgxder the reaction diffusion syste(rzl)—(g), W'fh immobile
lution of Eq.(18) is analogous to the one performed with the CAS: formally settingdy, =Dy, =0. Then,y’=¢"=1, and the
system(1). To assess the effect of CAs, it is convenient tofour conditions for the Turing instability now reads
express the conditions for the Turing instability when mobile
CAs are present, in terms of the conditions that we required Rf,+g, <0, (22)
for the original system without CAs. We summarize the re-
sults in Table Il, where we have scaled out a positive pref- f.9, - f,0,>0, (23)
actor from the condition on the determinant of the stability
matrix, and defined the dimensionless ratioR

reflected in these derivatives.

=[d,(up)/d,(ug)]D and D=d(¢'/6’). Comparing Tables | df,+g,>0, (24)
and Il we may see that the effect of the reactions with the

CAs appears only through the positive facRirAs we will (df,+9g,)%=4d(f g, -f,00), (25)
see now, its presence introduces important changes regarding

the structure of the Turing space. where in this cas® is simply given by
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1+A,(v) Kige
R= R(Uo,UQ) = 1 +AU(U0) . (26) X+ Bx — Cx, (28)
KK e

Except for Eq.(22), these restrictions look similar to the
ones obtained in Ref4]. Note that the rescaling factor ob-

tained by Ref[12] is a limiting case of Eq(26), when the K e
dependence on the fixed point can be neglected i.e., the con- Y+ By = Cy. (29
centrations at the fixed point are negligible with respect to K e

the dissociating constgntand no interaction o with a CA

exist. We can see from these relations what the starch mol- . .
ecules, or other immobile CAs do in order to allow the ob- | N€ reaction schemg?) constitutes the so-called Schnack-

servation of patterns in experiments: they simply set a valu§NPerg mode(SM). If the concentration oA andB are kept

of R sufficiently lower than 1, so as to permit the stabiliza-& certain nonequilibrium values, the SM displays oscilla-
tion of patterns wittd~ 1. As we have mentioned, while the tonS in the concentration ot and ). We add to the model

free diffusion ratio cannot be tuned, it is possible for the ratioN€ Set of fast reactions with buffe(88) and(29). This ex-

R to be manipulated experimentally, taking advantage of itd€nded model has many advantages. On one hand, it is
dependence on the total concentration of CAs. The role ofiMPle enough to allow us to obtain the boundary of the
immobile complexing agents can be interpreted more clearly! Uring space analytically, making it possible to see how its

Note that, in such a case, the rescaling enters into the equR2Sition changes as a function of the concentration of the
tions foru andw through a multiplicative factor on the right- buffers. On the other hand, it is intrinsically interesting as a

hand side of Eq(11). Then it is clear that the stationary Plausible model behind the Turing-like patterns found in
solutions cannot change by the presence of the immobil€@Me living organisms. Indeed, an important motivation for
CAs. Thus, given that the Turing bifurcation involves only Studying this system is the idea that a similar mechanism

stationary solutions, the point in the space of parametergontrols some features of the unicellular algae Acetabularia

where the Turing bifurcation occurs also remains the sama%34- While this simple model reproduces some of the ex-

This can also be appreciated directly from the condition orP€imental observations, such as the intrinsic wavelength of
the determinant of the stability matrix, because the point irf"€ pattern or the window of external calcium concentration
the parameter space where the determinant is zeeq where the patterns can be formed, one of its weak points, is

where the Turing bifurcation occurs through a pitchfork or athe unrealistic requirement on the ratio between the free dif-
transcritical bifurcationis not changed by the presence of fusion coefficients of the iongprobably C&" and H') that
the prefactor due to the complexing agents. Instead, what thgould play the role of morphogens. However, it is reason-
immobile CAs do is to change the place where the HopfPl€ t0 suppose that these io@ even cAMP, which is

bifurcation withk=0 occursianother instability that the fixed 2nother plausible morphogen instead of) are buffered in
point can suffer, by modifying the sign of the trace of the the course of the reactions, and that the system with rescaled
matrix A [31]. In this way, a positive tracgan unstable diffusion and reactions permits the formation of patterns with

homogeneous fixed point surrounded by a closed Ydait a reasonable ratio between the free diffusion coefficients. We

become negativéa stable fixed pointbecause of the immo- €an take the values of real intracellular buffers, such as

bile CA. Then, when this stable homogeneous fixed poinfroPoninC or calmodulin (see Ref.[29], and references
solution collides with or splits up into other stationary inho- tNerein, to have an idea of the typical order of magnitude of

mogeneous solution@s it occurs in transcritical and pitch- SUCh rescaling. Reasonable ranges for the concentration of
fork bifurcations, the latter solutions will inherit the stability hese two buffers are within 10 and 1004, with dissocia-

of the homogeneous fixed point solution. If the complexingtion constants between 1 andud/ [33]. Also, both buffers
agents are mobile, in principle, new stationary solutiondJiffuse in the cytoplasm at rates that are lower than
could be created by the presence of the CA. A large numbefQ #F/s, a value which is at least one order of magnitude

of possibilities arises in this case, whose analysis goes b&€low that of any of the proposed morphogens. The rest of
yond the aims of the present work. the kinetic and feeding parameters are considered to vary in

the same ranges as in R§4].
In the remainder of this section we first sketch how the
Ill. APPLICATION: THE SCHNACKENBERG reduction procedure is performed considering, for simplicity
MODEL (SM) [By]=0, and comparing the main results with those of the
full system(Sec. lll A). We then use the results of Sec. Il to

In order to proceed furthe_r with the analysis of the_ IaStfind and analyze the Turing space of the reduced set of equa-
example we need to restrict ourselves to a partlcuIaEions (Sec. Il B)

reaction-diffusion model. We analyze in this section, an ex-
tensively studied model in connection with Turing patterns
[4], to which we add a set of reactions with buffers. This A. The reduced equations
extended model reads
" K o Using mass action kinetics and writing=[ X], Y=[)],
X=A, B—=)Y, 2X+)Y-3X, (27) A:[A], B:[B], BX:[BX]!_ and CX:[CX]! the reaction-
k-1 diffusion equations associated to the sch&Ri§—29) are
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X 1 4
— = KlA - klx + k3X2Y - _(k4XBX - k_4CX) + DXVZX, [ (a) [ (b) [ (C)
o7 & NG :J\/\’\’\/J\ NN AN
(30) 2 | | I L | L | L I | |
aY ! @ @) o)
— = k,B — kgX?Y + D\V?Y, 31 i i i
o v i MW
. | s | L s | | L s | L | s
9By 1 2
—= == —(k,XBy = k_,Cy), 32 _
Py 8(k4 Bx — K_4Cx) (32 3 ) 5
3
9Cx 1 - - »
a7 g ReXBxm ey (33 Tz 300z 30 1 2z 3

In order to simplify the analysis of the system we introduce _ _ ) ) _
dimensionless variables FIG. 1. Time evolution of the dimensionless concentration pro-

file v towards a Turing pattern in the Schnackenberg model with
CAs. The space variabid L is also adimensiondbee the lower left
graph. Framega) — (i) correspond, respectively, to times0.008,
t=0.04,t=0.08,t=0.24,t=0.4, t=0.6, t=1, t=4, andt=20. The

D
u= Xk, v =Yk, t=L—;(7', d=Dy/Dy,

a= @K b= @K K= (@)llz y=k L_2 diffusion coefficient of the activator and the inhibitor were consid-
ky Ky k) Dy’ ered to be exactly equati=1). The initial condition is randomly
B 2 K distributed around the fixed point. Other parameters in the main
bu:_x, a= K4—, n= CKKBT, ﬁ:—4, text.
BT DX KK4

concentrations of the infinite sources to which the system is

supposed to be connected, and the latter, to the total concen-

Ytation of buffer. Equationg37) and (38) make clear that

even ford=1, the effective diffusion rates af andv may

Ju , 7 , differ, in particular, ifr(u) is sufficiently low. We may also

T ya-u+uw)+ ;(1 —b,—-Bub) +V<U, (34  see that the reaction terms are also rescaled by the reduction
procedure. Thehomogeneoysfixed point solution of sys-

tem (34)—«36) [and also of Eqe:37) and(38)] can be written

where By is the total buffer concentration arid is some

ties, (30)«33) can be rewritten as

Jv = y(b-u?) +dV?, (35) in terms ofa andb asup=a+b, vy=b/(a+b)?, and bu0=[1

at +p(a+b)]™L. Applying the linear stability conditions suma-
rized in Table I, it is now possible to obtain vectors of pa-

dby, rameters that belong to the Turing space. We show in Fig. 1

o

e ;(1 =b, - Buby), (36)  the results of a numerical integration of E¢87) and (38)

for d=1 and a set of parameter values=0.02,b=0.3,y
where we have used the conservation of the amount of buffer500,4=10,8=0.1) inside the Turing space obtained as de-
in its two forms. We propose an expansion of the bufferscribed. We can observe the evolution from a random initial
concentration in powers of the small parameftebu:bgo) condition near the homogeneous fixed point towards a Tur-
+ebP+---. Then, it follows that b®=(1+gu)™%, and ing pattern.
b"=(B/ab?) (qulat). After a short transient, the evolution e study now whether the property mentioned earlier ac-

occurs on a slow manifold and is properly described by cording to which the wavelength of the Turing pattern is
independent of the CA concentration when the CA is immo-

bile, also holds for the complete system of equations
(30)—«33). To this end, we show in Fig. 2 the real part of the
largest eigenvalue of the linear operator of E@})—(36),
Jv for £=0.0001,0=0.2, andzn between 20 and 40or equiva-
— =y(b-u?) +dVZ, (38) lently, « between 10 and 20The rest of the parameters are
at as in Fig. 1. As can be seen, the predictions of the reduced
where model are verified by the full one, in particular, the invari-
ance of the wavelength with the buffer concentration. As can
_ _ be apreciated from this figure, the maximum valuekbis
T 1+p(l+pu)? K="y Kd” close to 160, which implies a wavelength of approximately
0.5. Again this value is close to the one that spontaneously
The only parameters that can be regarded as truly tunable aeenerges in the simulation of the reduced model, giving con-
a,b, and u, because the first two are proportional to thefidence on the reduction procedure. Interestingly, it is also

% =yr(u)(a-u+u?) +r(u)Va, (37)

1 n8 _Br

r(u) (39
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with their respective CAs, we obtain the relations that deter-
mine the Turing space. Except for some limiting cases where
the boundaries of the Turing space can be found analytically,
in most cases we have to resort to numerical techniques. In
the following, however, we will analyze one of these situa-
tions where analytical calculations are possible. To this end,
we suppose that the concentrationswfand » are much
smaller thark? andk?, respectively. In this circumstance, the
dependence oR on the homogeneous fixed point can be
neglected, and we are allowed to wriEé=(1+bI/kg)(1
+bI/kﬂ)‘1. The set of pointga,b,R) that satisfy conditions
(22)—«25) simultaneouslyi.e., Turing spacecan be shown
to lie, for a fixed value oR, between two boundary curves in
FIG. 2. Dispersion curves obtained from the complete system ofh€ (2,b) plane that are parametrically given defined by
equationg30)—(33): growth rate of a perturbation witfdimension- t
lesg wave vectork for =20 (solid curvg and =40 (dashed [a,(1),by()] =—=(R-t? R+1?),
curve). Both the band of unstable modes and the wavelength of the 2R

L 1 n | L 1 E|
0 100 200 300 400
e

most unstable on€w/k.), are independent of the buffer concen- 2t 12 2t t2 (40
tration. This result persists even when—1/e. When 7 is below [a(t),by(1)] =5 1-—+=- a,l t=t+ .

~15.65, the homogeneous fixed point loses stability, and the Turing vd vd

bifurcation dissapears. We show in Fig. 3 how the Turing space changes as a

function of R for d=2. Depending on the value @& the
observed that the whole band of unstable modes results iffFuring space can be enlarged or shrinked. Given that the
dependent of the concentration of CA, and thatkeiO the  value ofd is fixed, we must find a critical value &}, R,
system evolves towards the equilibrium solution. There is @elow which the Turing space is nonempty. The explicit
critical concentration of complexing age(d minimum of  value of theR, may be obtained as done in R¢4] (see p.
n~15.65 that is needed to supress oscillations. 401), that is, by looking for a value ofR such that

[a(t),b;(t)]=(0,1) for bothi=1,2 simultaneously at a fixed

d value. It is straightforward to see then thBL=d(3

B. Analysis of the Turing space +2\;§)—1l
Having shown that the reduced model is in fact a good

representation of the whole system wheis small, we now
study the reduced equatio(i37) and(38) within the frame-
work developed in Secs. Il B and Il C. The kinetic functions  The general concept behind Turing-like instabilities is that
of the unbuffered system in this case are givenfhly,v) of short-range activation with long-range inhibiti¢4]. In
=y(a-u+u?) and g(u,v)=y(b-u?). Inserting them in two-species activator-inhibitor reaction-diffusion systems,
Egs.(22)—25), together with the specific form of the param- this requires that the inhibitor diffuse faster than the activa-
eter R that comes from the interaction of the morphogenstor, at least by a critical amount that depends on the param-

IV. CONCLUSIONS

005~ /,* AN — 005 /7 S —
N FIG. 3. The Turing space is the
) AN enclosed domain above the filled
0 ! | L | . 0 L | L | AR line [Eq. (41)] and below the
0 0.2 0.4 0 0.2 0.4 dashed ondEg. (40)]. In (@ R
=R; and the Turing space contains
, ; , ; ; , no points. In(b); (c), and(d), R
01l ] 01l n =0.25,0.1, 0.01, respectively.
Note that the dashed line is the
- ~~ - F - ~< - same for all the plots, becauske

a a , ~ has a fixed valug¢see the text
0.05 N 005 , AN —

I
’
|

(©) Ty (d) Ty
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eters of the reaction and feedingource terms. Several from a more general set of equations from which the effec-
models have been proposed in the literature in order to exive ratio of diffusion coefficients is obtained, as well as the
plain real biological pattern formation processes by means afescaling of the reaction terms. In this example we assumed
a Turing-like instability[4,18,32,34 Some of these models that it was the interaction of the activatory species, with
lack a biological motivation, and others tend to capture quit&some endogeneous buffersing characteristic values for the
schematically generic regulatory controls. In all these previgissociation rates and concentration than those actually
ous ;tudies there is almost unrestricted freedom to choosgynd in real celly to be the process that made possible the
kinetic parameters. Thus, even if the modeled patterns argshearance of a Turing structure. It is important to remark,
astonishingly similar to the real ones, the similarity could bey,qyever, that the application of the Schnackenberg model to
far from having any biological significance. On the othery,q natern formation process in the algae is not based on the

hand, even in those cases where there is some clue to tr&?Elowledge of the real kinetic mechanisms involved, but on

identities of the morphogens, the diffusion ratio is arbitrary : . L
tuned to “suitable” values, i.e., those lying beyond the insta—analyt'c"JII convenience and predictive povid]. Thus, our

bility threshold. Treatingl as a bifurcation parameter neces- application of the method should be regarded as an illustra-

sarily implies that other reactions not explicitly considered,t've example and not as proof of the relevance of Turing’s

change the diffusion coefficients of the relevant molecules!d€as to the biological realm. In this regard, the situation is

The importance of these “ghost reactions” was first clearlynore favorable in Ref{24], where it has been shown that
stated by Lengyel and Epstejd, 12 to explain the experi- Turing structure; can mdged appear in cells because of the
ments on the chlorite-iodide-malonic-aci@IMA) reaction ~ feedback loops involved in the glycolytic pathway. For the
where Turing patterns were first convincingly observed inc@se of glycolysis, the kinetic mechanisms are quite well
gel reactorg6,11]. A careful analysis of those experiments Understood, and so the finding of patterns using mathemati-
qualitatively showed that the diffusion coefficient of iodide @l models that accurately reproduce the temporal behavior,
was reduced by the interaction with the starch molecule§ive genuine theoretical support to the existence of Turing
loaded in the gel for visualization purposes. This wouldStructures at the cellular or supracellular level. _
—they argued— provide the necessary difference between From an expe.rlmen.tal point of view, the mathematical
the diffusive rates of the morphogens involved, even thougf€lations summarized in Table Il can be used as a tool to
their free diffusion coefficients were similar. choose between different sorts of CAsith different disso-
Tuning the ratio of free diffusion coefficients to suitable ciation constants and mobilitigsor to regulate CA concen-
values invoking the presence of a resca”ng mechanism bé[atlons in order .tO see a Stathnary Pa?ter.n. Even if the start-
came customary in the literature on Turing patterns after thé'd set of equations have serious limitations to capture the
work of Ref.[9]. Following this approach, Turing patterns actual constraints of the experimental se@pr example,
were predicted theoretically or observed numericplly,1g.  they implicitly assumed the validity of the pool chemical
Our aim in this paper was to analyze the occurrence of Tur@PProximation/3]), we expect that this work can be used as
ing patterns including a detailed description of the reactiong guide for finding Turing patterns in the laboratory, and for
that can provide the necessary rescaling mechanism. Thetae design of experiments with new classes of chemical re-
have been other works that also include these other reactio@§tions. _ o
[9,10,12,30. Although the analysis presented in REf2] is Itis bellev_ed that spatial patter.ns in biological sygtems are
similar to ours, it contains a set of assumptions that are exconnected with the morphogenetic process. According to this
cessively restrictive. In particular, assuming that the comViéw, the process of development is initiated by the forma-
plexing agent is in large excess with respect to the activatotion of a Turing-like structure that plays the role of a prepat-
species is not an essential feature for the appearance of pd@/n for the subsequent process of development and growth.
terns, neither is the fact that the complexing agent be tightlyf Turing patterns are really relevant to a cell or a group of
fixed to a large molecular network, and so, do not diffuse. cells(as it is supposed to occur during the_early stages of the
From a theoretical point of view, our paper removes thed_evelopment of_ the embryothe math_ematlcal relations d_e-
constraints of Ref[12]. Namely, our goal is to provide ex- rived here may illustrate the mechamsm_ for the cell to .SWItCh
plicit analytical formulas that can be used to “manipulate”the pattern on or off. Small changes in the production or
the shape of the Turing space, in order to drive a given Sygegradatlon rates of certain proteins may Ieaq to a sudden
tem towards a region where Turing patterns can develop. Th@mergence or dissapearance of a global organization.
degree of freedom that we use for this purp@be fast re-
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tal evidence that comes from the CIMA reaction, but also on
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