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Abstract

We study a reaction diffusion system of the activator—inhibitor type with inhomogeneous reaction terms showing spatiotemporal
chaos. We analyze the topological properties of the unstable periodic orbits in the slow chaotic dynamics appearing, which can be
embedded in three dimensions. We perform a bi-orthogonal decomposition analyzing the minimum number of modes necessary
to find the same organization of unstable orbits.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction inhomogeneous reaction—diffusion syst§sh of the
type used to describe chemical reactions in dé]s
Spatiotemporal chao$l] has been extensively and patterns in coupled electrical circUs.
studied within the context of coupled maps, the Among the main issues in the study of spatiotempo-
complex Ginzburg—Landau equation, the Kuramoto— ral chaos we can select those related to clarifying some
Shivashinsky equation and other related equati@hs aspects of the relation between pattern formation and
However, studies of spatiotemporal chaos in reaction— chaos as well as the low-dimensional description of the
diffusion models closely connected to experimental chaotic behavior. The latter aspect, that is understand-
systems are scarce. Here we analyze the characterising that physically continuous systems with an infinity
tics of the chaotic dynamics recently found in a simple of degrees of freedom (spatially extended systems) usu-
ally show temporal behavior that can be well described
_— _ o by models with few degrees of freedom, is of extreme
~ Corresponding author. Present address: Institutolsied™de o0 2 noe 1 this context there arise some questions.
Cantabria (UC-CSIC), Avda Los Castros s/n, 39005 Santander, . ; . . .
Spain. Fax: +34 942 200 935. For instance, in low-dimensional dynamical systems,
E-mail addresswio@ifca.unican.es (H.S. Wio). chaotic solutions coexist with unstable periodic orbits
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which constitute the backbone of the strange attractor: initially homogeneous oscillatory medium whose re-
could some orbits be extracted from the time series of action properties are suddenly modified in a localized
our extended system? and, is the complex time evolu- region.
tion of the system of a dimensionality small enough to In the central bistable region the fields converge
be understood in terms of simple stretching and folding rapidly to values close to those corresponding to one
mechanisms? of the two natural states of the bistable medium ¢

In order to investigate these questions within £0.8, v+ ~ 1+0.14) (chosen depending on the initial
reaction—diffusion systems, we have analyzed the samecondition), and continue performing small amplitude
simple, inhomogeneous, activator—inhibitor model dis- oscillations around those values. Hence, there is a spon-
cussed in Ref[3]. It is worth remembering here that taneous symmetry breaking which is “inherited” from
reaction—diffusion models of the activator-inhibitor the properties of the (uncoupled) bistable medium.

type have provided a useful theoretical framework for
describing pattern formation phenomena with applica-
tions ranging from physics to chemistry, biology and
technology[6-8].

In Ref.[3] by introducing spatial dependence of the
parameters of the activator—inhibitor equations, a sys-

Note that the equations of the model are symmetric un-
der the simultaneous changes> —u, v — —v. The
rest of the system evolves to different asymptotic be-
haviors depending on the parameteendD, as indi-
cated inFig. 1, and described in detail ii3].

All the numerical calculations have been done as

tem in which different parts of the media do not share follows. First, the system of partial differential equa-
the same reaction properties was modelled. The casetions was approximated by a system of coupled ordi-
considered corresponds to a finite one-dimensional os- nary differential equations, obtained by a finite differ-
cillatory medium with an immersed bistable spot. In ence scheme. Then the resulting equations were solved
that system, in addition to stationary, Hopf-like and by a Runge—Kutta method of order 2. Different space
Turing-like patterns, quasiperiodic inhomogeneous o0s- and time discretization schemes were employed in or-
cillations and spatiotemporal chaos were also found. der to check the results.

In Ref. [9], different generalizations of the system The organization of the paper is the following. In
(bidimensional versions) have been studied. In the the next section we show that, in the quasiperiodic and
present paperwe analyze the dynamics of the same one<€haotic regimes, there are two dynamical time scales,
dimensional system in the quasiperiodic and chaotic a fast and a slow one. We show that it is possible to

regions. More specifically, one of our main aims is to
understand the topological properties of the chaotic dy-
namics. The model is given by the reaction—diffusion
equations
u:a)%u—us—i—u—v, b=Dv8§v+u—yv, Q)
which describe a bistable medium fpr> 1 and an
oscillatory one fory < 1. In order to model the inho-
mogeneous situation of a bistable domain immersed
in an oscillatory medium, a spatial dependence of
this parameter is introduced settipg= y(x) = 0.9+
5exp(10x%) [10]. This leads toy ~ 0.9 < 1 for

|x] > 0.8 (oscillatory medium) and > 1 for|x| < 0.8
(bistable medium). As was done [8], we here con-
sider a finite one-dimensional domairk < x < L)
with non-flux boundary conditions it L and homoge-
neous initial conditions belonging to the homogeneous
limit cycle that exists for the cage= 0.9. This choice

of the initial state corresponds to the description of an
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Fig. 1. Phase diagram indicating the different asymptotic regimes in

the (L, D,) plane: stationary patterns (SP), Turing patterns (TP), pe-

riodic inhomogeneous oscillations (PO), quasiperiodic oscillations

(QP) and spatiotemporal chaos (CH). The vertical dotted segment
indicates the region of main interest for this work.
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find segments of the time series of the slow dynamics
which approximate unstable periodic orbits and study
the organization of the orbits. Bection 3we present

the bi-orthogonal decomposition of the spatiotemporal

187

Typical time series are shownhig. 2 InFig. 2aand
¢, the time evolution of (L) is displayed for a parame-
ter value at which the system behaves quasiperiodically
(chaotically). The slow varying amplitude is shown in

time series, and show that it is possible to capture the Fig. 2b and d, where we have plotted the values of the

main features of the chaotic dynamics by considering
a small number of modes. Bection 4we present our
conclusions.

2. Characterization of the slow chaotic
dynamics: analysis of the unstable periodic
orbits

In the non-stationary regions of the phase diagram
shown inFig. 1, the time evolution of the fields and
v is classified as periodic, quasiperiodic or chaffic
Here, we analyze the transition from periodic oscilla-
tions to chaotic behavior along the line indicated with
a vertical dotted segment iRig. L We fix L =72,

maxima ofu(L) as a function of (i.e.,u(L) measured
at timest,,).

In general, in low-dimensional dynamical systems,
chaotic solutions coexist with unstable periodic orbits
which constitute the backbone of the strange attractor.
We will see that, in our system, itis possible to extract
approximations of periodic unstable orbits from the
time series of the mentioned slow dynamics, and that
the analysis of the organization of these orbits shows
that the chaotic dynamics is low-dimensional.

We begin by defining aeconstructed periodic or-
bitsthe segments of the time series which can be used as
surrogates of the unstable periodic orbits of the system.
These segments are chosen if they pass a close return
test[11]. More precisely, ify(i) represents the data, a

for which the dynamics corresponds to inhomogeneous close return is a segmentppoints beginning at thih

periodic oscillations foD, < 1, quasiperiodic oscilla-
tions for 1< D, < 1.3, and spatiotemporal chaos for
1.3 < D, < 2.(ForD, > 2the quasiperiodic and peri-
odic behaviors appear again and 105 > 2.3 station-
ary Turing patterns arise.) To begin, we will mainly
focus our attention on the chaotic region.

As a measure of chaoticity, 8], the sensibility to
initial conditions was computed. It is important to no-
tice that the time series displayed a common feature:
a fast oscillation of the field (at the natural frequency
of the oscillatory medium), eventually modulated by a
slow varying amplitude. It is the dynamics of this am-
plitude what we will analyze here. In order to study this
slow dynamics we record the timegs(n = 1,2, ...)
at which theu-field at x = L reaches a local maxi-
mum as function of (i.e., whend,u(x, 1)|,—r = 0 and
8,2u(x, t)|lx=z < 0 holds simultaneously), and analyze
the values ol for these times at different spatial po-
sitions. This is equivalent to taking a Poincare section,
and is a way of averaging the fast time scales.

The difference,, — r,_1 is of the order of the nat-
ural period of the oscillatory mediumq = 14.6), but
slightly larger (in general, it fluctuates betwegrand
20) as the oscillations are slowed down by the pres-
ence of the bistable inhomogeneity. In the periodic re-
gion, t, — t,—1 converges to the period of the motion
asn — oo.

position of the file, for whichy(i + k) ~ y(i + k + p)
fork =1, 2, ....Inthis notationpis called the period.

We have looked for unstable orbits at the whole
time series of the slow dynamics of thefield (data
taken at times,) at four different positionsxg = 0,
x1 = 14 (approximately one Turing wavelength away
the bistable domain), >~ xp = L/2 = 36, andx = L.

In Fig. 3a and c we display a segment of periods 2
and 4 taken from a time series corresponding to data
at x = L. An embedding of the data (a multivariate
environment created using time delays) is shown in
Fig. 3 and d. InFig. 4a and b we show the embed-
ding of two different reconstructed segments of peri-
ods 2 and 3, respectively, coming from data at xj.

It is worth mentioning that the unstable periodic or-
bits do not have properties corresponding to the in-
version symmetry oEq. (1) because of the symme-
try breaking of the solutions and also because of the
“stroboscopic” observation of the dynamicsHig. 4c,

we show a more complex reconstructed periodic orbit
coming also from data at= x1. Since we have no el-
ements to conjecture that the chaotic dynamics can live
in three dimensions, it could be argued that embedding
the segments in a three-dimensional space might not
be useful. Yet, if the reconstructed shows some kind of
geometrical organization it would be a most valuable
indication of the geometric process taking place in a
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Fig. 2. (a) Evolution of«(L) for D, = 1.1 (quasiperiodic regime) in a time window in the asymptotic regime; (b) slow dynamics: plot of the
maxima ofu(L) corresponding to the same time window; (c) and (d), ibidem figures (a) and (b),fer 1.4 (chaotic regime).

small dimensional manifold within the available phase
space.

It is possible to see that the orbitseiy. 3 and d
wind around each other as expected if they were re
lated by a period doubling bifurcation. The topological
organization of the orbits is quantitatively described in
terms of their relative rotation rates and self-relative ro-

rate is srrr= —1/2, 0, for the period 3 orbit oFig. 4b,
it is srrr=(—1/3)%, 0, and the relative rotation rate
between the orbits of periods 2 and 3 was found to be

- rrr = —1/3. Notice that this organization is compat-

ible with a horseshoe mechanidfi?], and that this
mechanism includes the signature of period doubling.
A challenge exists in order to find a simple geo-

tation rates. These numbers aim at describing the way metrical mechanism responsible for the creation of the

in which the orbits wind around each othj&R]. In or-

orbit displayed irFig. 4c. This orbit cannot be placed in

der to do so, the curves are given an orientation, and a horseshoe template. Yet, recently, a classification of

in a two-dimensional projection, a record is made of
which segments pass over which in the original em-

templates was proposed for covering the Smale horse-
shoe[13]. We have observed that the orbiteig. 4c

bedded orbits. In terms of these indices, the relative can be placed in one of such geometric objects, which

rotation rates are computed as explainedili]. For
the period 2 orbit ofig. 4a, the self-relative rotation

is one of the four inequivalent four-branchdduble
coverswith rotation symmetry of the Smale. More
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0.35 atthe several positions, the organization of the unstable
0-35 V periodic orbits that we have found is the same every-
030 =TT 030 where. (In the four positions we find the same kind of
R %532 orbits, including the one dfig. 4c.) However, there are
0.25 Soriod 2 0.35:) - some differences in the frequency of occurrence of the
56000 27000 8000 > 0.30 0.35 orbits: note that, we have orbits with the “small curl”
(@) t (b) upward (as inFig. 3) or downward (as irFig. 4a).
The same two possibilities appear for orbits of periods
0.35 ¥ f'"l A 1/1 [" 0.35 3and 4. Forthe cases of the signal takerai andx>,
. V J \ w V ~— 030 the orbits of periods 2 and 3 occur preferably with the
20.30 025 small curl downward, while, fox = L they occur (al-
0.30 most always) with the small curl upward. This is found
0.25] Period4 , 035 53055 independently of whether the fields in the bistable do-
19000 20000 21000 22000 ' ' main converge to negative or positive values.
(c) t (d) The observation that the organization of unstable

periodic orbits is more complex, but some how related
Fig. 3. () Slow dynamics: values of the fielflL) at times, fora g the one of the Smale horseshoe, gives a hint of what
time window in which a segment_ corresponding to a p_erlod 2 0rb|_t kind of periodic orbits can eventually be found as pa-
appears. Note that the segment is repeated almost twice. (b) Period .
2 orbit corresponding to the segment indicated in (a) obtained from rameters are changed. For example, it suggest that a
an embedding in three dimensions using time delays (the axis corre- period doubling sequence may occur in the transition
spond to the data taken#t #,+1 ands, ). (c) ldem (a) for a period from the periodic regime to the chaotic regime. With
4 orbit. (d) Embedding of the segment of (c). All the data correspond - thjs jn mind, we revisited in detail the transition zone in
to a simulation done fob, = 1.4. the phase diagram of the system going from the periodic
region to the chaotic one along the segment indicated
specifically, the one identified with topological indices in Fig. 1 A period doubling of the slow dynamics can
(no, n1) = (1, 0) [13]. This template can also hold any be clearly identified, as can be seerfig. 5.
orbit of the Smale horseshoe template. The analysis made of the slow dynamics of our ex-
However, it cannot be expected that such template tended system showed that the high dimension of the
correctly describes the whole dynamics of the slow phase space is not fully explored. On the contrary, an
varying amplitude. This is because it is not possible important collapse of dimensionality takes place. In
that a rotation symmetry appear when using a delay the next section we investigate the minimum number
embedding. Hence, the embedded attractor must haveof spatial (linear) modes approximating the spatiotem-
a different symmetry or not symmetry at all, and it is poral dynamics that are required in order to recover
expected that other unstable periodic orbits exist (dif- the topological organization of unstable periodic orbits
ferent to the ones we have found and with no rotation observed in the slow dynamics.
symmetry).
_ Note that, when observing the_fielq at timeszn, it 3. Bi-orthogonal decomposition
is found that the scales over which it varies are quite
different at the four studied positionsg( x1, x> and Itis not easy to know a priori which is the number of
xp): atx = L, u(t,) oscillates between 0.2 and 0.35 spatial modes which are activated as the dynamics be-
(since we are watching only the times at whidi., 7) comes non-trivial. In our problem, we only know that
is maximum); atc = x1 andx = x», u(z,) take values atleast three modes should be active in order to account
in a more or less symmetric way betwee.35 (in the for the complex behavior described in the previous sec-
whole range of the free limit cycle); at= xg (in the tion. A method exists to unveil the active structuresin a
bistable domain) the oscillations are of much smaller spatiotemporal problem: the bi-orthogonal decomposi-
amplitude (typically two orders of magnitude), and are tion (BOD)[14,15] This is the most efficient linear de-
not centered at zero. We remark that, in spite of these composition scheme, in the sense that there is no other
differences in the metrical properties of the dynamics linear decomposition able to capture, with a smaller
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Fig. 4. Periodic orbits reconstructed from data takenatx; = 14 at the timeg, using an embedding of time delays with axist, +1, f,+2:
(a) period 2 orbit; (b) period 3 orbit; (c) complex periodic orbit.

number of modes, the same degree of approximation. We have observed that, for system (1), the main differ-
In our system, the BOD for the spatiotemporal signal ences in the BOD corresponding to the three dynami-

(u(x, t), v(x, 1)) is given by cal regimes appear in the chronos and that the spatial
~ modes are similar in all the three cases. However, we
(x, 1), v(x, 1)) = Zaklﬂk(t)(;ﬁk(x), @) have neither studied in detail the BOD along the tran-

sition to chaos nor analyzed the question of modes’
competition. Our analysis was mainly focused on find-
where thax,f (with @1 > a2 > --- > 0) are the eigen-  ing the number of modes that are necessary to recover
values of the temporally averaged two point correlation the topological organization of unstable orbits for the
matrix[14], the$k(x) = (pur(x), puir(x)) are the corre-  chaotic situation presented in the previous section.
sponding eigenfunctions (called topos), and th¢) In Fig. 6a we show the eigenvalues of the BOD com-
(called chronos) are given by puted for three different points along the transition line
L indicated inFig. L a periodic case, a quasiperiodic
_ case and the chaotic situation studied in the previous
Vi) = a /o (. Neu(@) + v(x. Do) dx. (3) section. InFig. 6b we show the first four topos for the

k=1
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Fig. 5. Slow dynamics time series showing a period doubling sequence. Plefs ef L) at timesy, for different values ofD, (indicated

in the figure) following the transition from periodic regime to quasiperiodic and chaotic. (a) The periodic region where a fixed point occurs
in the slow dynamics. (b)—(e) The quasiperiodic region, orbits of periods 1, 2, 4 and 16 are respectively observed in the slow dynamics. (f)
A quasiperiodic regime showing a chaotic-like transient followed by high-period orbit (not identifiable in the figure). (g) and (h) The chaotic
regime. Al calculations are fat = 72.

chaotic case. No significant differences are observed in (quasi-stationary) bistable region. (Note that the topo
the spatial modes corresponding to the three regimes.2 in Fig. 6o contributes only around the bistable region
We have observed that, in all the three regimes, the (x ~ 0).)

ith mode has — 1 spatial nodes (i.e., the spatial points In the case of periodic motion, in order to recon-
whereu(x) = 0), sedrig. 6b. Also, inallthe three cases, struct the trivial topology of a single periodic orbit,
the second mode is quasi-stationary and it mainly con- only the first mode is necessary (which gives a quasi-
tributes to the formation of the fields’ profiles in the homogeneous periodic oscillation). Moreover, in this
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10°4g. = D9 Periodi ther something special in this number, nor a way of
E ‘: TR RS eriodic . . . . . e .
Tae LV —e—D,=1.1 Quasiperiodic having predicted it a priori. However, it is important
TN \ —A—Djg=1.4 Chaotic to point out that the extended system under study can
@ 10° 4 0\3:.&&& in principle display an infinite dimensional dynamics,
= ] Neo-e A-A_ and yet, it dynamically collapses to a five-dimensional
© 4 A . . . .
z E 0\.‘.&&‘\ system which describe the dynamics of the amplitudes
;3-; 10' 4 - eg oA of the linear modes. Furthermore, it is remarkable that
] \ h the fact that five modes are active does not imply that
the dimensionality of the observed strange attractor is
10" . g T : T " T larger than four. On the contrary, the topological orga-
5 10 15 20 ok - g -
. nization of the approximated unstable periodic orbits
(a) order of decreasing energy . . .
clearly suggest a lower dimensionality.
0.4 —— topo 1
' --- topo2 4. Conclusions
----- topo 3
—-—-- topo 4 . . .
0ol In this work we studied the spatiotemporal solu-

tions of a reaction—diffusion system of the activator—
inhibitor type. Despite the infinite number of possible
degrees of freedom, we have found that the complex
dynamics that emerges can be described in terms of a
small number of modes. The activated modes are co-
0) 0 10 20 30 X 40 50 60 70 herent structures which were computed from the sim-
ulations of this extended problem. By separating the
. . L : . dynamics over two time scales, we observed that the
Fig. 6. Bi-orthogonal decomposition: (a) eigenvalues for three dif- .. L .
ferent values oD, corresponding to chaotic, quasiperiodic and pe- qugln of the Chaotl_Clty lies on the behavior Of the SIOYV
riodic regimes; (bju-field components of the four principal topos ~ time scale dynamics. The study of these time series
(corresponding to the four larger eigenvalues) for the chaotic case showed not only that the system behaves as a small
with D, = 1.4. dimensional dynamical system, but also suggest that
this dynamics may be understood in terms of simple
region, we have observed that the whole spatiotempo- geometrical process related to the Smale horseshoe. In
ral dynamics (i.e., the periodic wave propagation phe- fact, a branched manifold recently described in the lit-
nomenon) can be highly accurately described by con- erature can hold all the approximated unstable orbits
sidering an expansion with only three modes (2), as it that we were able to reconstruct. However, symmetry
is suggested b¥ig. 6a. Regarding the description of reasons indicate that the true mechanism should not
guasiperiodic and chaotic motion, it requires a higher be exactly the one corresponding to that template. The
number of modes, as can be inferred fréig. 6a. In description of the dynamics in terms of a simple ge-
these regimes all the chronos seems to be non-periodicometric structure not only highlights the collapse of
(excepting the second, which is constant up to a good dimensionality, but it also allowed us to predict the ex-
approximation). istence of specific solutions for unexplored regions of
Finally, for the chaotic case analyzed in the previ- parameter space, such as the reported period doubling
ous section, we have reconstructed the dynamics of thesequence.
system using different numbers of modes. The main
result of our analysis is that the minimum number of
modes required to recover the topological organiza- Acknowledgments
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