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Abstract

We study a reaction diffusion system of the activator–inhibitor type with inhomogeneous reaction terms showing spatiotemporal
chaos. We analyze the topological properties of the unstable periodic orbits in the slow chaotic dynamics appearing, which can be
embedded in three dimensions. We perform a bi-orthogonal decomposition analyzing the minimum number of modes necessary
to find the same organization of unstable orbits.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Spatiotemporal chaos[1] has been extensively
tudied within the context of coupled maps, the
omplex Ginzburg–Landau equation, the Kuramoto–
hivashinsky equation and other related equations[2].
owever, studies of spatiotemporal chaos in reaction–
iffusion models closely connected to experimental
ystems are scarce. Here we analyze the characteris-
ics of the chaotic dynamics recently found in a simple
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antabria (UC-CSIC), Avda Los Castros s/n, 39005 Santander,
pain. Fax: +34 942 200 935.
E-mail address:wio@ifca.unican.es (H.S. Wio).

inhomogeneous reaction–diffusion system[3] of the
type used to describe chemical reactions in gels[4]
and patterns in coupled electrical circuits[5].

Among the main issues in the study of spatiotem
ral chaos we can select those related to clarifying s
aspects of the relation between pattern formation
chaos as well as the low-dimensional description o
chaotic behavior. The latter aspect, that is unders
ing that physically continuous systems with an infin
of degrees of freedom (spatially extended systems)
ally show temporal behavior that can be well descr
by models with few degrees of freedom, is of extre
relevance. In this context there arise some quest
For instance, in low-dimensional dynamical syste
chaotic solutions coexist with unstable periodic or
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which constitute the backbone of the strange attractor:
could some orbits be extracted from the time series of
our extended system? and, is the complex time evolu-
tion of the system of a dimensionality small enough to
be understood in terms of simple stretching and folding
mechanisms?

In order to investigate these questions within
reaction–diffusion systems, we have analyzed the same
simple, inhomogeneous, activator–inhibitor model dis-
cussed in Ref.[3]. It is worth remembering here that
reaction–diffusion models of the activator–inhibitor
type have provided a useful theoretical framework for
describing pattern formation phenomena with applica-
tions ranging from physics to chemistry, biology and
technology[6–8].

In Ref.[3] by introducing spatial dependence of the
parameters of the activator–inhibitor equations, a sys-
tem in which different parts of the media do not share
the same reaction properties was modelled. The case
considered corresponds to a finite one-dimensional os-
cillatory medium with an immersed bistable spot. In
that system, in addition to stationary, Hopf-like and
Turing-like patterns, quasiperiodic inhomogeneous os-
cillations and spatiotemporal chaos were also found.
In Ref. [9], different generalizations of the system
(bidimensional versions) have been studied. In the
present paper we analyze the dynamics of the same one-
dimensional system in the quasiperiodic and chaotic
regions. More specifically, one of our main aims is to
understand the topological properties of the chaotic dy-
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initially homogeneous oscillatory medium whose re-
action properties are suddenly modified in a localized
region.

In the central bistable region the fields converge
rapidly to values close to those corresponding to one
of the two natural states of the bistable medium (u± �
±0.8, v± � ±0.14) (chosen depending on the initial
condition), and continue performing small amplitude
oscillations around those values. Hence, there is a spon-
taneous symmetry breaking which is “inherited” from
the properties of the (uncoupled) bistable medium.
Note that the equations of the model are symmetric un-
der the simultaneous changesu → −u, v → −v. The
rest of the system evolves to different asymptotic be-
haviors depending on the parametersL andDv as indi-
cated inFig. 1, and described in detail in[3].

All the numerical calculations have been done as
follows. First, the system of partial differential equa-
tions was approximated by a system of coupled ordi-
nary differential equations, obtained by a finite differ-
ence scheme. Then the resulting equations were solved
by a Runge–Kutta method of order 2. Different space
and time discretization schemes were employed in or-
der to check the results.

The organization of the paper is the following. In
the next section we show that, in the quasiperiodic and
chaotic regimes, there are two dynamical time scales,
a fast and a slow one. We show that it is possible to
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amics. The model is given by the reaction–diffus
quations

˙ = ∂2
xu− u3 + u− v, v̇=Dv∂2

xv+ u− γv, (1)

hich describe a bistable medium forγ > 1 and an
scillatory one forγ < 1. In order to model the inho
ogeneous situation of a bistable domain imme

n an oscillatory medium, a spatial dependence
his parameter is introduced settingγ = γ(x) ≡ 0.9 +
exp(−10x4) [10]. This leads toγ � 0.9< 1 for
x| > 0.8 (oscillatory medium) andγ > 1 for |x| < 0.8
bistable medium). As was done in[3], we here con
ider a finite one-dimensional domain (−L ≤ x ≤ L)
ith non-flux boundary conditions in±L and homoge
eous initial conditions belonging to the homogene

imit cycle that exists for the caseγ = 0.9. This choice
f the initial state corresponds to the description o
ig. 1. Phase diagram indicating the different asymptotic regim
he (L,Dv) plane: stationary patterns (SP), Turing patterns (TP)
iodic inhomogeneous oscillations (PO), quasiperiodic oscilla
QP) and spatiotemporal chaos (CH). The vertical dotted seg
ndicates the region of main interest for this work.
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find segments of the time series of the slow dynamics
which approximate unstable periodic orbits and study
the organization of the orbits. InSection 3, we present
the bi-orthogonal decomposition of the spatiotemporal
time series, and show that it is possible to capture the
main features of the chaotic dynamics by considering
a small number of modes. InSection 4we present our
conclusions.

2. Characterization of the slow chaotic
dynamics: analysis of the unstable periodic
orbits

In the non-stationary regions of the phase diagram
shown inFig. 1, the time evolution of the fieldsu and
v is classified as periodic, quasiperiodic or chaotic[3].
Here, we analyze the transition from periodic oscilla-
tions to chaotic behavior along the line indicated with
a vertical dotted segment inFig. 1. We fix L = 72,
for which the dynamics corresponds to inhomogeneous
periodic oscillations forDv < 1, quasiperiodic oscilla-
tions for 1< Dv < 1.3, and spatiotemporal chaos for
1.3< Dv < 2. (ForDv > 2 the quasiperiodic and peri-
odic behaviors appear again and forDv > 2.3 station-
ary Turing patterns arise.) To begin, we will mainly
focus our attention on the chaotic region.

As a measure of chaoticity, in[3], the sensibility to
initial conditions was computed. It is important to no-
tice that the time series displayed a common feature:
a ncy
o y a
s m-
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m
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Typical time series are shown inFig. 2. InFig. 2a and
c, the time evolution ofu(L) is displayed for a parame-
ter value at which the system behaves quasiperiodically
(chaotically). The slow varying amplitude is shown in
Fig. 2b and d, where we have plotted the values of the
maxima ofu(L) as a function oft (i.e.,u(L) measured
at timestn).

In general, in low-dimensional dynamical systems,
chaotic solutions coexist with unstable periodic orbits
which constitute the backbone of the strange attractor.
We will see that, in our system, it is possible to extract
approximations of periodic unstable orbits from the
time series of the mentioned slow dynamics, and that
the analysis of the organization of these orbits shows
that the chaotic dynamics is low-dimensional.

We begin by defining asreconstructed periodic or-
bitsthe segments of the time series which can be used as
surrogates of the unstable periodic orbits of the system.
These segments are chosen if they pass a close return
test[11]. More precisely, ify(i) represents the data, a
close return is a segment ofppoints beginning at theith
position of the file, for whichy(i+ k) ≈ y(i+ k + p)
for k = 1,2, . . .. In this notation,p is called the period.

We have looked for unstable orbits at the whole
time series of the slow dynamics of theu field (data
taken at timestn) at four different positions:x0 = 0,
x1 = 14 (approximately one Turing wavelength away
the bistable domain),x � x2 = L/2 = 36, andx = L.

In Fig. 3a and c we display a segment of periods 2
and 4 taken from a time series corresponding to data
a te
e n in
F d-
d eri-
o
I or-
b in-
v e-
t f the
“
w rbit
c l-
e live
i ding
t t not
b d of
g ble
i in a
fast oscillation of the field (at the natural freque
f the oscillatory medium), eventually modulated b
low varying amplitude. It is the dynamics of this a
litude what we will analyze here. In order to study
low dynamics we record the timestn (n = 1,2, . . .)
t which theu-field at x = L reaches a local max
um as function oft (i.e., when∂tu(x, t)|x=L = 0 and

2
t u(x, t)|x=L < 0 holds simultaneously), and analy
he values ofu for these times at different spatial p
itions. This is equivalent to taking a Poincare sec
nd is a way of averaging the fast time scales.

The differencetn − tn−1 is of the order of the na
ral period of the oscillatory medium (τ0 = 14.6), but
lightly larger (in general, it fluctuates betweenτ0 and
0) as the oscillations are slowed down by the p
nce of the bistable inhomogeneity. In the periodic
ion, tn − tn−1 converges to the period of the moti
sn → ∞.
t x = L. An embedding of the data (a multivaria
nvironment created using time delays) is show
ig. 3b and d. InFig. 4a and b we show the embe
ing of two different reconstructed segments of p
ds 2 and 3, respectively, coming from data atx = x1.

t is worth mentioning that the unstable periodic
its do not have properties corresponding to the
ersion symmetry ofEq. (1) because of the symm
ry breaking of the solutions and also because o
stroboscopic” observation of the dynamics. InFig. 4c,
e show a more complex reconstructed periodic o
oming also from data atx = x1. Since we have no e
ments to conjecture that the chaotic dynamics can

n three dimensions, it could be argued that embed
he segments in a three-dimensional space migh
e useful. Yet, if the reconstructed shows some kin
eometrical organization it would be a most valua

ndication of the geometric process taking place
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Fig. 2. (a) Evolution ofu(L) for Dv = 1.1 (quasiperiodic regime) in a time window in the asymptotic regime; (b) slow dynamics: plot of the
maxima ofu(L) corresponding to the same time window; (c) and (d), ibidem figures (a) and (b) forDv = 1.4 (chaotic regime).

small dimensional manifold within the available phase
space.

It is possible to see that the orbits ofFig. 3b and d
wind around each other as expected if they were re-
lated by a period doubling bifurcation. The topological
organization of the orbits is quantitatively described in
terms of their relative rotation rates and self-relative ro-
tation rates. These numbers aim at describing the way
in which the orbits wind around each other[12]. In or-
der to do so, the curves are given an orientation, and
in a two-dimensional projection, a record is made of
which segments pass over which in the original em-
bedded orbits. In terms of these indices, the relative
rotation rates are computed as explained in[12]. For
the period 2 orbit ofFig. 4a, the self-relative rotation

rate is srrr= −1/2,0, for the period 3 orbit ofFig. 4b,
it is srrr = (−1/3)2,0, and the relative rotation rate
between the orbits of periods 2 and 3 was found to be
rrr = −1/3. Notice that this organization is compat-
ible with a horseshoe mechanism[12], and that this
mechanism includes the signature of period doubling.

A challenge exists in order to find a simple geo-
metrical mechanism responsible for the creation of the
orbit displayed inFig. 4c. This orbit cannot be placed in
a horseshoe template. Yet, recently, a classification of
templates was proposed for covering the Smale horse-
shoe[13]. We have observed that the orbit ofFig. 4c
can be placed in one of such geometric objects, which
is one of the four inequivalent four-brancheddouble
coverswith rotation symmetry of the Smale. More
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Fig. 3. (a) Slow dynamics: values of the fieldu(L) at timestn for a
time window in which a segment corresponding to a period 2 orbit
appears. Note that the segment is repeated almost twice. (b) Period
2 orbit corresponding to the segment indicated in (a) obtained from
an embedding in three dimensions using time delays (the axis corre-
spond to the data taken attn, tn+1 andtn+2). (c) Idem (a) for a period
4 orbit. (d) Embedding of the segment of (c). All the data correspond
to a simulation done forDv = 1.4.

specifically, the one identified with topological indices
(n0, n1) = (1,0) [13]. This template can also hold any
orbit of the Smale horseshoe template.

However, it cannot be expected that such template
correctly describes the whole dynamics of the slow
varying amplitude. This is because it is not possible
that a rotation symmetry appear when using a delay
embedding. Hence, the embedded attractor must have
a different symmetry or not symmetry at all, and it is
expected that other unstable periodic orbits exist (dif-
ferent to the ones we have found and with no rotation
symmetry).

Note that, when observing theu-field at timestn, it
is found that the scales over which it varies are quite
different at the four studied positions (x0, x1, x2 and
xL): at x = L, u(tn) oscillates between 0.2 and 0.35
(since we are watching only the times at whichu(L, t)
is maximum); atx = x1 andx = x2, u(tn) take values
in a more or less symmetric way between±0.35 (in the
whole range of the free limit cycle); atx = x0 (in the
bistable domain) the oscillations are of much smaller
amplitude (typically two orders of magnitude), and are
not centered at zero. We remark that, in spite of these
differences in the metrical properties of the dynamics

at the several positions, the organization of the unstable
periodic orbits that we have found is the same every-
where. (In the four positions we find the same kind of
orbits, including the one ofFig. 4c.) However, there are
some differences in the frequency of occurrence of the
orbits: note that, we have orbits with the “small curl”
upward (as inFig. 3b) or downward (as inFig. 4a).
The same two possibilities appear for orbits of periods
3 and 4. For the cases of the signal taken atx0, x1 andx2,
the orbits of periods 2 and 3 occur preferably with the
small curl downward, while, forx = L they occur (al-
most always) with the small curl upward. This is found
independently of whether the fields in the bistable do-
main converge to negative or positive values.

The observation that the organization of unstable
periodic orbits is more complex, but some how related
to the one of the Smale horseshoe, gives a hint of what
kind of periodic orbits can eventually be found as pa-
rameters are changed. For example, it suggest that a
period doubling sequence may occur in the transition
from the periodic regime to the chaotic regime. With
this in mind, we revisited in detail the transition zone in
the phase diagram of the system going from the periodic
region to the chaotic one along the segment indicated
in Fig. 1. A period doubling of the slow dynamics can
be clearly identified, as can be seen inFig. 5.

The analysis made of the slow dynamics of our ex-
tended system showed that the high dimension of the
phase space is not fully explored. On the contrary, an
important collapse of dimensionality takes place. In
t ber
o em-
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t bits
o

3

r of
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s osi-
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he next section we investigate the minimum num
f spatial (linear) modes approximating the spatiot
oral dynamics that are required in order to reco

he topological organization of unstable periodic or
bserved in the slow dynamics.

. Bi-orthogonal decomposition

It is not easy to know a priori which is the numbe
patial modes which are activated as the dynamic
omes non-trivial. In our problem, we only know t
t least three modes should be active in order to acc

or the complex behavior described in the previous
ion. A method exists to unveil the active structures
patiotemporal problem: the bi-orthogonal decomp
ion (BOD)[14,15]. This is the most efficient linear d
omposition scheme, in the sense that there is no
inear decomposition able to capture, with a sma
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Fig. 4. Periodic orbits reconstructed from data taken atx = x1 ≡ 14 at the timestn using an embedding of time delays with axistn, tn+1, tn+2:
(a) period 2 orbit; (b) period 3 orbit; (c) complex periodic orbit.

number of modes, the same degree of approximation.
In our system, the BOD for the spatiotemporal signal
(u(x, t), v(x, t)) is given by

(u(x, t), v(x, t)) =
∞∑
k=1

αkψk(t)
φk(x), (2)

where theα2
k (with α1 > α2 > · · · > 0) are the eigen-

values of the temporally averaged two point correlation
matrix[14], the
φk(x) = (φuk(x), φvk(x)) are the corre-
sponding eigenfunctions (called topos), and theψk(t)
(called chronos) are given by

ψk(t) = 1

αk

∫ L

0
(u(x, t)φu(x) + v(x, t)φv(x)) dx. (3)

We have observed that, for system (1), the main differ-
ences in the BOD corresponding to the three dynami-
cal regimes appear in the chronos and that the spatial
modes are similar in all the three cases. However, we
have neither studied in detail the BOD along the tran-
sition to chaos nor analyzed the question of modes’
competition. Our analysis was mainly focused on find-
ing the number of modes that are necessary to recover
the topological organization of unstable orbits for the
chaotic situation presented in the previous section.

In Fig. 6a we show the eigenvalues of the BOD com-
puted for three different points along the transition line
indicated inFig. 1: a periodic case, a quasiperiodic
case and the chaotic situation studied in the previous
section. InFig. 6b we show the first four topos for the
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Fig. 5. Slow dynamics time series showing a period doubling sequence. Plots ofu(x = L) at timestn for different values ofDv (indicated
in the figure) following the transition from periodic regime to quasiperiodic and chaotic. (a) The periodic region where a fixed point occurs
in the slow dynamics. (b)–(e) The quasiperiodic region, orbits of periods 1, 2, 4 and 16 are respectively observed in the slow dynamics. (f)
A quasiperiodic regime showing a chaotic-like transient followed by high-period orbit (not identifiable in the figure). (g) and (h) The chaotic
regime. Al calculations are forL = 72.

chaotic case. No significant differences are observed in
the spatial modes corresponding to the three regimes.
We have observed that, in all the three regimes, the
ith mode hasi− 1 spatial nodes (i.e., the spatial points
whereu(x) = 0), seeFig. 6b. Also, in all the three cases,
the second mode is quasi-stationary and it mainly con-
tributes to the formation of the fields’ profiles in the

(quasi-stationary) bistable region. (Note that the topo
2 in Fig. 6b contributes only around the bistable region
(x ∼ 0).)

In the case of periodic motion, in order to recon-
struct the trivial topology of a single periodic orbit,
only the first mode is necessary (which gives a quasi-
homogeneous periodic oscillation). Moreover, in this
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Fig. 6. Bi-orthogonal decomposition: (a) eigenvalues for three dif-
ferent values ofDv corresponding to chaotic, quasiperiodic and pe-
riodic regimes; (b)u-field components of the four principal topos
(corresponding to the four larger eigenvalues) for the chaotic case
with Dv = 1.4.

region, we have observed that the whole spatiotempo-
ral dynamics (i.e., the periodic wave propagation phe-
nomenon) can be highly accurately described by con-
sidering an expansion with only three modes (2), as it
is suggested byFig. 6a. Regarding the description of
quasiperiodic and chaotic motion, it requires a higher
number of modes, as can be inferred fromFig. 6a. In
these regimes all the chronos seems to be non-periodic
(excepting the second, which is constant up to a good
approximation).

Finally, for the chaotic case analyzed in the previ-
ous section, we have reconstructed the dynamics of the
system using different numbers of modes. The main
result of our analysis is that the minimum number of
modes required to recover the topological organiza-
tion of orbits is five. This means that using five modes
(and not four) we were able to recover the orbits pre-
sented in the previous section. There seems to be nei-

ther something special in this number, nor a way of
having predicted it a priori. However, it is important
to point out that the extended system under study can
in principle display an infinite dimensional dynamics,
and yet, it dynamically collapses to a five-dimensional
system which describe the dynamics of the amplitudes
of the linear modes. Furthermore, it is remarkable that
the fact that five modes are active does not imply that
the dimensionality of the observed strange attractor is
larger than four. On the contrary, the topological orga-
nization of the approximated unstable periodic orbits
clearly suggest a lower dimensionality.

4. Conclusions

In this work we studied the spatiotemporal solu-
tions of a reaction–diffusion system of the activator–
inhibitor type. Despite the infinite number of possible
degrees of freedom, we have found that the complex
dynamics that emerges can be described in terms of a
small number of modes. The activated modes are co-
herent structures which were computed from the sim-
ulations of this extended problem. By separating the
dynamics over two time scales, we observed that the
origin of the chaoticity lies on the behavior of the slow
time scale dynamics. The study of these time series
showed not only that the system behaves as a small
dimensional dynamical system, but also suggest that
this dynamics may be understood in terms of simple
g oe. In
f lit-
e rbits
t etry
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b The
d ge-
o of
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i s of
p bling
s

A

ipt.
P n-
eometrical process related to the Smale horsesh
act, a branched manifold recently described in the
rature can hold all the approximated unstable o

hat we were able to reconstruct. However, symm
easons indicate that the true mechanism should
e exactly the one corresponding to that template.
escription of the dynamics in terms of a simple
metric structure not only highlights the collapse
imensionality, but it also allowed us to predict the

stence of specific solutions for unexplored region
arameter space, such as the reported period dou
equence.
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A. Horváth, M. Dolnik, A.P. Mũnuzuri, A. Zhabotinsky, I. Ep-
stein, Phys. Rev. Lett. 83 (1999) 2950.

[5] G. Heidemann, M. Bode, H.G. Purwins, Phys Lett. A 177
(1993) 225.

[6] J.D. Murray, Mathematical Biology, Springer-Verlag, 1985.
[7] A.S. Mikhailov, Foundations of Synergetics I, Springer-Verlag,

1990.
[8] D. Walgraef, Spatio-Temporal Pattern Formation, Springer-

Verlag, New York, 1997;
E. Meron, Phys. Rep. 218 (1992) 1.

[9] S. Bouzat, H.S. Wio, Phys. Rev. E 63 (2001) 056213 (10 pages).
[10] The exact shape of this function is unimportant, as was dis-

cussed in[3] and[9].
[11] G.B. Mindlin, R. Gilmore, Physica D 58 (1992) 229.
[12] R. Gilmore, Rev. Mod. Phys. 70 (4) (1998).
[13] C. Letellier, R. Gilmore, Phys. Rev. E 63 (2000) 016206.
[14] N. Aubry, R. Guyonnet, R. Lima, J. Stat. Phys. 64 (1991) 683.
[15] P. Holmes, J.L. Lumely, G. Berkooz, Turbulence, Coherent

Structures Dynamical Systems and Symmetry, Cambridge Uni-
versity Press, 1997.


	Characterization of spatiotemporal chaos in an inhomogeneous active medium
	Introduction
	Characterization of the slow chaotic dynamics: analysis of the unstable periodic orbits
	Bi-orthogonal decomposition
	Conclusions
	Acknowledgments
	References


