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Abstract

We consider the back-to-back region in the energy—energy correlatiefidn collisions. We
present the explicit expression of tEiHa%) logarithmically enhanced contributions up to next-to-
next-to-leading logarithmic accuracy. We study the impact of the results in a detailed comparison
with precise LEP and SLC data. We find that, when hadronization effects are taken into account as is
customarily done in QCD analysis it e~ annihilations, the extracted value @§(My) is in good
agreement with the current world average.

0 2004 Elsevier B.V. All rights reserved.

PACS 12.38.Bx; 12.38.Cy; 12.38.Qk

1. Introduction

Precise data oa™e~ annihilation into hadrons have provided detailed experimental
tests of QCD and one of the best opportunities to measure the strong coupling cegstant
A particularly well suited observable is the energy—energy correlation (EBG)efined as
an energy-weighted correlation for the cross section corresponding to the proeess-
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hg +hp+ X as

1 d¥ EL E)
;dCOSX - G_ Z/ doete-—np, hy+x 0(COSY + COSOyp), (1)

whereE, and E;, are the energies of the particlgg,is the centre-of-mass energy,, =
7 — x is the angle between the two hadrons, afds the total cross section ferfre™ —
hadrons.

The two-hadron cross sectiefie™ — h, + hj, + X depends on the fragmentation func-
tions of the partons into the final-state hadrons. However, thanks to the momentum sum
rule

1
Z/dxth/q(x,M%) =1, (2
ho

EEC becomes independent of them, and can thus be computed in QCD perturbation theory.

Theoretical calculation2—4] for the EEC function have been performed up to next-
to-leading order (NLO) accuracy in QCB-12], allowing a detailed comparison with the
available data.

As is well known, fixed-order calculations have a limited kinematical range of applica-
bility. In the back-to-back region, defined 8y, — = (x — 0), the multiple emission
of soft and collinear gluons gives rise to der logarithmic contbutions of the form
og log?~1y, wherey =sir? x /2. As y decreases, the logarithms become large and there-
fore invalidate the use of the fixed-order perturbative expansion.

These logarithmic contributions can be resummed to all offd&;,44] The resumma-
tion formalism is very close to the one developed for the transverse-momentum distribution
of high-mass systems in hadronic collisichg/hen the transverse momentu;% of the
detected final state is much smaller than its invariant n@ssarge logarithmic contribu-
tionsa log?' 1 g2/ 02 arise which must be resummed to all orders.

The coefficients that control the resuntina at a given order can be computed if an
analytical calculation at the same order exists. In the case of hadronic collisions, the com-
plete form of the logarithmically enhanced contributions has been comfiligdn this
paper we present the result of a similar calculation, performed for EEC. Our calculation
allows us to fix the still missing coefficients él(aé) and to extend the resummation for
this observable to full next-to-next-to-lead logarithmic (NNLL) accuracy. We also study
the numerical impact of our results and present a comparison with LEP and SLC data.

The paper is organized as follows. In Sectibwe review the resummation formalism
and we discuss the results of our calculation. In Sec8iove present numerical results,
and we also consider the inclusion of hadronization effects. In particular, we perform a fit
to OPAL and SLD data.

2 The role of the transverse momentum is played, in the case of EEC, by the vafabled? sir?(x /2).
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2. Soft-gluon resummation

The EEC function can be decomposed as

1 dx 1dx 1 4xfn)
or dCcoSy  or dCOoSy or d COSy

®3)

the first term on the right-hand side of E®) contains all the logarithmically enhanced
contributionsg/ylog™ y at smally and has to be evaluated by resumming them to all
orders. The second is free of such contributions and can be computed by using fixed-order
perturbation theory.

The resummed component can be writtefil&s14]

14509 @2 o F
o7 doosy — 8 11(es(2%) f dbbJo(bar)S(Q, b). @
0

The large logarithmic corrections are exponentiated in the Sudakov form factor

0? 2 2
S(Q,b):exp{— f ‘%[A(as(qz))ln%+B(as(q2))]}. (5)

b3/b2

The Bessel functiodp(bgr) andbg = 2¢~VE have a kinematical origin.

The resummation formula in E@4) has a simple physical interpretation. When the
triggered partons are back to back, the €siin of accompanying radiation is strongly
inhibited and only soft and collinear partons can be radiated. The fun&fi@(Q?))
embodies hard contributions from virtual corrections at sgate Q. The form factor
S(Q, b) contains virtual and real contributions from soft (the functibhand flavour-
inclusive collinear (the functiorB) radiation at scales/b < g < Q. At extremely low
scalesg < 1/b, real and virtual corrections ceel because EEC is infrared safe.

The functionsA, B and H in Egs.(4), (5) are free of logarithmic corrections and can
be computed using a perturbative expansionssin

Alas) = Z(%) AP (6)

n=1
B(as) :Z(%) B™. (7
n=1
H(as) =1+ Z(%) H®. 8)
n=1

By explicitly performing theg? integration in Eq(5) the form factor can be recast in
the following form[16—18}

S(Q.b) = exp{Lgi(asPoL) + g2(aspPoL) + asga(asPoL) + - - -}, ©)
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whereas = as/m and the large logarithni = log 0?b?/b3 at largeb corresponds to the
logy, which becomes large at small(the limit y < 1 (g7 < Q) corresponds t@b > 1
through a Fourier transform).

The explicit expressions of the functions arée®

AD A +log(l— A
g0y = A2 teed A

Bo A
BD AD A
g2(0) = E log(1—A) — ﬁz ( +log(1— A))
AD Q2
+ ﬁ— (ﬁ + log(1— )\)) log = R
AD B, ( oL — 1) + log(1—A) A )
B3 9 1-%» 1-2)
A® )2 B@
gl =——m—""5—— 7

282 (1—-12%  fo 1—x

AP g, (A(s,\ -2) (1—21)log(l— ,\))
g \2a-12 (1— )2

BYB /A log(1— 1) AD )2 , 02
B2 (1—,\+ 1-2 ) log u2

R
A A@ )2
+ log Q2 (B(l) e

0 1- Bo (1—2)

A 1-21
+ A<l)§—§ (m + a2 log(1 — x)))

1- 22
+ A<1>(2ﬂﬂl4 157 log?(1— 1)

Bob2 — B? B2 }
4 + 4
B3 BY(L— 1)

2 (1—x)2

+log(l— x)[
A 2
+ m(ﬂoﬂz(z =30 + ﬁﬁ\)) (10)

and the coefficients of the QCB function are defined as

1
~(17C% —5Cany —3Crny),

1
Po= 1—2(11CA —2ny), p1= 24(

3 Throughout the paper we use thES renormalization scheme.
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2857 1415 , 205 2
Bo = 64 A_ 57 CAnf 18CACan~I—Can
79 11
+ 54CAnf~|— 9 Can> (11)

The functionsg1, g2, g3 control the LL, NLL, NNLL contributions, respectively. The
coefficientsAD, A@ and BV were computed a long time agd4] and are the same
as appear in the quark form factor in the transverse momentum distributions in hadronic
collisions. They read

AD = Cr,
BY = —gCF,
AP = :—2L<CA<i—; - %2> - gnf>A<1). (12)
By using foror the NLO expression
oNLO = A Z ( + E§CF> (13)
the coefficienty D is [1]
HY = _Cp (141+7§>. (14)

The coefficientd® has been obtained recently, as the leading soft term in the three-loop
splitting functiong19,20]

@ 1] ,(245 67 11 11, 55
AY =—1Cy ___§2+€§3+€§2 + Cpny —ﬂ+2§3

4 24 9
209 10 7 1
c — 3] — =n% |AD, 15
+ Anf< Tos T 9 %2 3§3> 27n} (15)

whereg, is the Rieman function (2 = 712/6, 3 =1202...).

In order to be able to perform the resummation up to NNLL accuracy, only the coef-
ficient B is lacking. There have been in the pasteral attempts to obtain a numerical
value for this coefficienf16,21] In this work we will present the analytical result f8f2).

A direct way of extracting the resummation coefficients consists in comparing the log-
arithmic structure of a fixed-order perturbative calculation of the EEC, with the expansion
of the resummed formula in E¢4). The expansion up t@(ag) reads

14509 1
or dcosy 4y

2
1 3
() ooty (-2 oa) o

+(—A®@ — goBD 1 (B(1>)2 — ADHD)logy

{ 5S[-aDogy + BD]
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L B@ 4 gOHD | 243(A<l>)2} + o(ag)}, (16)

where we have setg = Q.

An analytic calculation bEEC at NLO (i.e., up td?(a%)) would allow the extraction
of the coefficientsA®, B HD  A@ and B@ . However the full analytic result is not
really necessary to this purpose: it is sufficient to compute its syiadthaviour.

The strategy to obtain the smallbehaviour is the one applied for a similar calculation
in the case of the transverse-momentum distribution in hadronic collifl&jsThe sin-
gular behaviour at small (¢7) is dictated by the infrared (soft and collinear) structure of
the relevant QCD matrix elements. &«s) this structure has been known for a long time
[22]. In recent years, the universal functions tbatrol the soft and collinear singularities
of tree-level and one-loop QCD amplitudes@(v%) have been computdé3,24] By us-
ing this knowledge, and exploiting the simidmematics of the leadg-order subprocess,
we were able to construétmproved factorization formulae that allow the control afl
infrared singular regions, avoiding problems of double courtl®d. We have used these
improved formulae to approximate the relevant matrix elements and compute theysmall-
behaviour of EEC in a simpler manner.

Compared with thealculation of Ref[15], in the case of EEC there is an additional
complication. The definition of EEC in Eql) implies that a sum over all possible par-
ton pairs has to be performed. Thus an infrared-finite result can be recovered only after
summing over all the correlations.

For hadron-initiated processes, the coefficiBﬁ)F is generally dependent on the re-
summation scheme, and on the way the resummation formula is actually orgfi8ted
However, despite these ambiguities, it always has the fa&h

B — 1

1
V4l T 5hoAy. a=q.g. (17)

Whereya(z) is the coefficient of thé(1 — z) term in the two-loop splitting functiof25,
26]. The second term in E§17) depends on the virtual correction to the procegs—
F(gqr, 0%). Considering the similarity between EEC and the transverse momentum spectra
in hadronic collisions, it is natural to expect a similar form for the coefficR#t for the
EEC, modulo possible crossing effects.

More precisely, since the leading-order subprocess which is relevant here is the produc-
tion of agg pair, we expect

1
B = =2y + CrfoX. (18)

Assuming Eq(18), a calculation of one of the two colour factarg Tg or CrC, is suffi-
cient to fix the coefficienk in Eq.(18). We have computed both tlt&-7x and theCrCy4
contributions to Eq(16) and found complete agreement with all known results. Our results
are also consistent with E¢1L8) and allow us to fix

1 5
2 _ ()] 2
B =2y, +CF,30<671 —2), (19)
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the coefficienty;z) being

3 72 17 1172
VJZ)=C%<§ - —-I-6;°3> -I-CFCA( —3§3>

2 24" 718
1 272

In principle, since the contribution to E¢LL6) proportional to the colour factc(f% has not
been computed, the result in £49)is not fully established. However, besides the parallel
with transverse momentum distributionshadronic collisions, Wich strongly suggests
Eq. (18), there are two additional arguments that confirth Tthe first one relies on the
correspondence that should exist between our coeffi@i€itand the quark coefficient in
the non-singlet (NS) schenj&8]

2
2) 1 2 T 1

Bq,NSZ_EVq( )+CFﬁO<€ - §>, (21)
which is expected to directly measure the intensity of collinear radiation from quarks at
O(aé). We find that the difference between E¢E9) and (21)can indeed be explained as
a pure crossing effect due to an additional factor present in the phase space in the case of
EEC.

Finally, the numerical value a8 for ny =5, B®® = 11.2, is in good agreement with
the estimate of Refl21], B® ~ 10.7° obtained with the numerical program EVENT2
[11].

The resummed component obtained in E.has to be properly matched to the fixed-
order result valid at large. The matching is performed as follows:

1 qx(in) 1 dx 1 dx(es
or dcosy [;dcosx]f_o. a [E d cosy Lo'

(22)

The first term on the right-hand side of E&2)is the usual perturbative contribution; it is
computed with the numerical program of REf1] at a given fixed order (LO or NLO) in
as. The second term is obtained by using the expansion of the resummed component (see
Eq.(16)) to thesame fixed order inus. This procedure guarantees that the right-hand side
of Eq. (3) contains the full information on the perturbative calculation plus resummation
of the logarithmically enhanced contributions to all orders.

As we will show in the next section, our result in Hd9) allows us to perform an
excellent matching between the resummed and perturbative NLO result.

We finally note that the functiong are singular ag. — 1. The singular behaviour is
related to the presence of the Landau pole in the QCD running coupling. To properly define
theb integration, a prescription to deal withebe singularities has to be introduced. Here,

4 \We also note that our result agrees with the one guessed by K. Clay and S.[2]&ksed on the similarity
of EEC to Drell-Yan and, as far as tldg-n i part is concerned, with an independent calculafix].
5 More precisely, the numerical estimate of RigfL] is for the coefficientG 1, which is related taB @ by

2
B@ =1Go1+ Cpnp — (& — Z)CpCp — £(3)C2.
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analogously to what was done in RE#8], we follow Ref.[29] and deform the integration
contour to the complek-space.

3. Phenomenological results

In the following we present quantitative results at NiLLO and NNLL + NLO ac-
curacy. At NLL+ LO the resummed component in Hg) is evaluated by including the
functionsgy and gz in Eq. (10) and the coefficien#™® in Eq. (14). The finite compo-
nent in Eq.(22) is instead evaluated at LO and the one-loop expressiondas used.
At NNLL + NLO we include also the functiogs in the resummed component and we
evaluate the finite part at NLO, witdas at two-loop level.

The NLL+ LO results are shown iRigs. 1 and 2They are obtained by fixing’é%:DS =
0.1665 GeV, corresponding tas(Mz) = 0.130. InFig. 1we show the results fqrg = Q.
The dotted line is the LO result, which divergestec as x — 0. The solid line is the
matched result, and the dasheceligives the matching term in E¢R22). Note that we
plot 1/o7d ¥ /d x, so that the matching term is actualtyy) = 1/o7d X /dx. As can
be observed, the matching term is well behaved up to very small valyesiofl becomes
dominant at largey , where the fixed-order contribution is expected to control the matched
calculation.

The scale dependence at NHLLO is studied inFig. 2, where the results for the scales
ur = Q/2, 0,20 are shown. The lower plot shows the detail of the regich3¢} < 60°.

IlI.I|II\I|III\|IlIII{IIIIIIII

2.0— Q=91.2 GeV
- A=0.1665 GeV
15—
s NLL+LO
r L
- T T e LO
= -
Fi L Yio

0.5

0.0 Ir-l""l_‘T‘l—l‘l_\__l —lil‘T_J__l_l__I-Eiliiili-i-il-:u-r-rul'vl-
10 20 30 40 50 60

(=]

Fig. 1. Results to NLL+ LO accuracy.
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X

Fig. 2. Results to NLL+ LO accuracy: scale dependence.

The NNLL + NLO results are shown irfrigs. 3 and 4 They are obtained using
A'&T)S =0.23 GeV, corresponding tes(Mz) = 0.118. As beforeFig. 3 shows the re-
sults for ug = Q. The dotted line is the NLO contribution, which diverges-teo as
x — 0. The solid line is the matched result, and the dashed line gives the matching termin
Eqg.(22). We see that this matching term displays a very smooth behavigura®, and
this is a further confirmation of the validity of our result in E§9). The NNLL + NLO
result is plotted irFig. 4for ug = Q/2, 0, 2Q. As in Fig. 2, the lower panel shows the
detail of the region 30< x < 60°.

We see that scale variations act differently in the Igvand mediumy regions. In the
region of the peak, lowering (increasingy has the effect of increasing (loweringg (i g)
and thus increasing (damping) the Sudakov suppression. This results in the fact that, at
NNLL + NLO, the curve ajug = 20 is higher than the one atg = Q/2. This behaviour
changes ag increases and gt = 60° the curves are in thasual order. At NLL+ LO
these two distinct features (Sudakov suppression and perturbative increases)véte
less evident, and thus the scale degence appears smaller than at NNELNLO. At
NNLL + NLO the scale dependence is abeifi% at the peak and abotit% aty = 60°,
giving an idea of the theoretical uncertainty in the resummed calculation.

We find that the NNLL effect is dominated by the contributiorB® in the functiongs.
By keeping only the term proportional ®® in the functiongs in Eq.(10), the difference
with respect to the full NNLL+ NLO result is smaller than 1%.
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Fig. 3. Results to NNLL+ NLO accuracy.
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Fig. 4. Results to NNLL+ NLO accuracy: scale dependence.
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[

1 /o dZ/dy
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Fig. 5. NNLL + NLO results in the fully range.

Fig. 5 shows the NNLL+ NLO matched result in the full range of. We see that,
contrary to what happens in other approaches-gpace resummatioid2], there are no
oscillations in the medium—high region, where the matched result follows the NLO fixed
order calculation.

Before moving to the comparison with the experimental data, we want to study the
convergence of the resummed expression, as a check of the validity of the prescription in-
troduced in[29] and used to deal with the Landau pole Hig. 6 we compare the purely
resummed result in E@¢4) at NNLL accuracy (that is with the functions, g2, ¢z and the
coefficientd D included) with its expansion up KO(ag). As can be observed, the expan-
sion converges very rapidly to the resummed result in the region of megjwonfirming
the validity of the prescription where the fixed-order result dominates (see the lower plot
for a detailed comparison). Nonethelessrethough the higher the expansion the better
the agreement with the resummed result at smaller valugsfof x < 10° the fixed-order
result is bound to fail, no matter how many orderperturbation theory are included, thus
requiring the resummation to all orders.

We can now perform a comparison of the most accurate theoretical NNNLO
results with the precise OPA[30] and SLD[31] data. As the extraction of the strong
coupling constanis is one of the main motivations for the measurement of event-shape
observables, we perform a fit of the experimental data on EEC leatifgp as a free
parameter. We do not attempt to produce the most accurate extractigtéf ), since we
cannot properly take into accoucrrelations between the dgtaints and therefore just
add systematic and statistical errors in quadrature.
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Q

Fig. 6. Comparison between the purely resummed and the expanded expressioﬁ)(ué)tbfor the EEC.

For the moment we neglect hadronization effects, but we will come back to this point
below. The reader should keep in mind that the results obtained without including those
effects should be considered with care.

In a first sample we include data in the rangé 5y < 12(° and fix the renormaliza-
tion scale toug = Q = M. The upper limit is chosen so as to cut the large angle region
where another resummation would be required.

The quality of the fitis poor, as can be determined by the valyépd.o.f. = 5.17, with
a rather large value for the coupling constagtMz) = 0.133+ 0.002, in agreement with
similar results found by OPA[30]. The uncertainty is dominated by missing higher-order
contributions, estimated by repeating the fit withh = 1/2(2) M. Better fit results are
actually found when the renormalization scale is also varied, with a reduction of a factor
of 2in x2 whenu g ~ M /2 and a slightly lower preferred value of the coupling constant.

In a second attempt, we include data in the range:(x < 63°, to isolate the region
where the effects of the resummation are ddeably more significant. Even with the
scale fixed tour = Mz, a very reasonable value gf2/d.o.f. = 1.67 is found, corre-
sponding toas(Mz) = 0.131+ 0.002. The error is again dominated by scale variations
ur =1/2Mz, 2M 7. The nice comparison between tiesummed calculation and the data
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Fig. 7. NNLL + NLO: purely PT fit in the lowx region.

in the low-angle region is shown Fig. 7. It is clear that our NNLL+ NLO result for the
EEC can reproduce very well the data up to the lowest measured angle.

Since the lowy region is particularly sensitive to non-perturbative (NP) effects,
whereas in the large angle region we may expect non-negligible higher-order (NNLO)
contributions, we have repeated the fit in the range<d% < 63°. The value ofy?/d.o.f.
goes down to 0.66 but the result f@g(Mz) does not change significantly.

We have also investigated the possible effect of the unknown second-order coefficient
H®@ (see Eq(8)), by letting it vary together witlxs(M) in the range 0 < x < 63°. The
results show that data still prefer a hig(M) and a relatively smali .

Up to now we have considered only the perturbative contribution in the theoretical cal-
culation. However, NP contributions are expected to be relevant, particularly for small
angleq[1,13,33] Thus, following Ref[21], we include NP effects by supplementing the
Sudakov form factor in E(5) with a correction of the form

Snp = e~ 2919 (1 — 2azb). (23)

We have performed a three-parameter preliminary fit to the data still in the range G<
63°. We find that the data prefer very small values of the NP coefficignizz| < 0.002.
We have thus set; = 0 to perform the fit. We obtain faxs(Mz) anda; the following
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result:
as(Mz) =0.13070902 a1 =15"32GeV? (24)

with x2/d.o.f. = 0.99. The error is dominated by scalacertainty, which is estimated as
above by repeating the fit withg = 1/2(2) M.

We see that the quality of the fit improves, but the valuegif/ ) still remains high
with respect to the world average(Mz) = 0.1182+ 0.0027[34]. Moreover, the three-
parameter fit suggests that in our approach the NP coefficigatmore important than,.

We conclude that the parametrization in E2(3) is not able to fully take into account the
hadronization effects, particularly at medium and large valuggs. dhe extracted “effec-

tive” coupling as thus absorbs part of the hadronization effects. We stress that this result
is not an artifact of the resummation procedure, since a similar effect is observed when the
large-angle data are companeith the fixed order NLO result.

A different method to include NP (hadronization) corrections, extensively applied in the
QCD analysis to event-shape variables at LEP, is to use a parton shower Monte Carlo. This
method is certainly model-dependent, since different approaches have been developed to
describe the hadronization process, but hasdiartage that the free parameters are tuned
through fits to large sets of different data.

In Refs.[30,31]the data for EEC have been corrected at parton level before performing
the QCD analysis. We have used the parton-level data of[B@fto repeat our fit. The
hadron—parton correction factors are large, from abduirl the very smally region to
~ 0.9 at largey . The quality of the fitin terms of 2/d.o.f. is generally worse than before,
but errors related to the hadronization correction have not been included. The uncertainty
from hadronization is usually estimated by trgidifferent alternatives for the hadroniza-
tion correction, and using the spread in tlesults as an estimate of the ensuing error. In
Ref.[30] the hadronization uncertainty e (M) is estimated to be aboui4%.

In the kinematical range 25< x < 63> we find x2/d.o.f. = 3.78 andas = 0.119+
0.001, with a very similar resulty?/d.o.f. = 5.02 andas = 0.120+ 0.001) when the fit
range is extended to 15 x < 120°. Finally, when the fit is repeated by allowing the vari-
ation of the renormalization scale, excellent results are obtained, the best fit corresponding
to as = 0.1175,x2/d.o.f. = 1.36 anduy = 0.28M (seeFig. 8). Thus, when hadroniza-
tion effects are taken into account using a Monte Carlo, as done in[B@f31] the results
we obtain foras(Myz) are in complete agreemienith the world average.

We note that the QCD analysis performed by OPAL on the same parton-level data gave,
instead as(Mz) = 0.132"3938[30], considerably higher than our result. The analysis of
Ref.[30] (as well as the one of RgB1]) used the NLL resummed calculation of REf6].

In order to understand the origin of the discrepancy, we have compared our results with
those of Ref[16]. We find that the differences are not negligible, especially in the region
x < 40°, and may explain the above discrepancy. The approach of F&dfwas based on

an approximated analytic evaluation of thepace integral of Eq4), and suffers from an
unphysical singularity at very smafl. The effect of this singularity may propagate also
within the range of the fit, thus spoiling the resummed prediction. The other source of
difference is that the coefficie®®, or equivalentlyG,1, was evaluated numerically, thus
leading to a larger uncertainty in the matching procedure.
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Fig. 8. Comparison of NNLI+ NLO fit to parton level OPAL data witlkg(M ) = 0.1175.

4. Conclusions

In this paper we have considered the observable known as energy—energy correlation
in ete™ collisions. We have provided the complete structure ofCﬂQeé) logarithmically
enhanced contributions up to NNLL accuraby giving the expression of the unknown
second-order coefficiel#® , needed to reach full NNLL precision.

We have presented perturbative predictions both at MILO and NNLL+ NLO accu-
racy, by showing that the knowledge of the calculated coeffidiéfitallows us to perform
an excellent matching of the resummed and fixed-order calculations. We have studied the
impact of the results in a detailed comparison to precise LEP and SLC data. A good de-
scription of the data is obtained but the extracted valugs6§/,) turns out to be high when
hadronization effects are neglected or parametrized using the form (80By contrast,
using OPAL data corrected at parton levehtttvere obtained by estimating hadronization
corrections using a Monte Carlo parton shower, the valueg@¥ ) we find are in good
agreement with the current world average.
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