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Abstract. A class of braneworld models can lead to phantom-like acceleration
of the late universe, but without the need for any phantom matter. In the simplest
models, the universe contains only cold dark matter and a cosmological constant.
We generalize these models by introducing a quintessence field. The new feature
in our models is that quintessence leads to a crossing of the phantom divide,
w = −1. This is a purely gravitational effect, and there is no phantom instability.
Furthermore, the Hubble parameter is always decreasing, and there is no big rip
singularity in the future.
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1. Introduction

Observations of supernovae redshifts, cosmic microwave background anisotropies and the
large-scale structure provide increasingly strong evidence that the late-time universe is
accelerating. If general relativity is a correct description of large-scale gravity, then the
acceleration typically originates from a dark energy field with w ≡ p/ρ < −1

3
. The

simplest model is LCDM, where the dark energy is the vacuum energy (w = −1). It gives
a very good fit to the data [1], but with an unnaturally small and fine-tuned value of Λ.
Quintessence scalar fields, with w > −1, produce more general dynamical behaviour, but
they do not improve the fit to the data, and also do not solve the theoretical problems
faced by LCDM. ‘Phantom’ scalar fields, with w < −1, have the same theoretical problems
as quintessence, but in addition, classically they have the unphysical behaviour that
the energy density increases with the expansion of the universe, and they also lead to
instability of the quantum vacuum.

Current data do not rule out a phantom value, w < −1. The WMAP 3-year data, in
combination with large-scale structure and SN data, allows for w < −1; in a flat general
relativistic model [2],

w = −1.04 ± .06. (1)

Models with w < −1 but without the problem of quantum instability are therefore
still an interesting possibility. An effective w such that w < −1 can occur in modified
gravity theories, without any phantom matter that renders the quantum vacuum unstable.
Instead, gravity itself produces phantom-like acceleration. Sahni and Shtanov [3] showed
that a class of braneworld models exhibited effective phantom behaviour. In these models,
the four-dimensional brane universe contains only matter and a cosmological constant Λ.
A five-dimensional gravitational effect screens Λ, leading to phantom dynamics.

These models are a variant of the Dvali–Gabadadze–Porrati (DGP) braneworld model,
generalized to cosmology by Deffayet [4]. The standard DGP model is a self-accelerating
model without any form of dark energy, and the effective w is always non-phantom.
However, there is another branch of DGP models, with a different embedding of the 4D
brane universe in the 5D bulk space–time. The self-accelerating DGP model is the (+)
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branch. The DGP(−) model is very different. It does not self-accelerate, but requires
dark energy on the brane. It experiences 5D gravitational modifications to its dynamics,
which effectively screen the dark energy. At late times, as gravity leaks off the 4D brane,
the dynamics deviates from general relativity. The transition from 4D to 5D behaviour is
governed by a crossover scale rc, the same as in the DGP(+) branch.

The simplest DGP(−) model has a cosmological constant Λ, and we follow Lue
and Starkman [5] and call this the LDGP model. The dynamics of these models were
investigated by Lue and Starkman [5], and observational constraints on the models have
been considered by Lazkoz et al [6]. The energy conservation equation for CDM remains
the same as in general relativity, but the Friedman equation is modified:

ρ̇ + 3Hρ = 0, (2)

H2 +
H

rc
=

1

3
(ρ + Λ). (3)

(The DGP(±) branches have ∓H/rc in equation (3).) These equations imply

Ḣ = −ρ

2

[
1 − 1√

1 + 4r2
c(ρ + Λ)/3

]
. (4)

Equation (3) shows that at early times, i.e., for H � r−1
c , the general relativistic Friedman

equation is recovered, but at late times, the H/rc term is important and the Friedman
equation is non-standard.

At late times, gravity leakage screens the cosmological constant, leading to an effective
dark energy [3, 5]

ρeff = Λ − 3
H

rc
, (5)

where ρeff and weff = peff/ρeff are effective quantities in a general relativistic interpretation
of LDGP expansion history, i.e., they describe the equivalent general relativity model:

H2 = 1
3
(ρ + ρeff), (6)

ρ̇eff + 3H(1 + weff)ρeff = 0. (7)

It follows that

1 + weff =
Ḣ

rcHρeff

(8)

and since Ḣ < 0 by equation (4), we have effective phantom behaviour, weff < −1,
provided that ρeff > 0, i.e., for H < rcΛ/3.

In general relativity with phantom matter, weff < −1 implies that Ḣ eventually
becomes positive, i.e., the universe eventually super-accelerates, which can lead to a ‘big
rip’ singularity. By contrast, in LDGP Ḣ is always negative, and there is no big rip
singularity. In LDGP however, the phantom divide weff = −1 cannot be crossed: weff

is always less than −1 for ρeff > 0. At higher redshifts, when H > rcΛ/3, we have
weff > −1, but weff never passes through −1, so there is no crossing of weff = −1. The
effective phantom picture only holds for ρeff > 0.
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In this paper we generalize the LDGP model by introducing a quintessence field
with wq = const (≥ −1), sometimes called ‘quiessence’. We will call this the QDGP
model. We will show that crossing of the phantom divide does occur in QDGP models,
unlike the LDGP limit. The interesting fact is that in general relativity with a dark
energy component, phantom crossing cannot occur with a single field [7] (unless non-
minimal coupling between dark matter and dark energy is allowed [8]). In the QDGP
model, crossing is possible without resorting to a complicated model with multiple fields
or additional non-gravitational interactions.

2. The QDGP model

The Friedman equation is equation (6), with

ρeff = ρq − 3
H

rc
. (9)

Since wq is constant, the conservation equations give

ρ = ρ0(1 + z)3, ρq = ρq0(1 + z)3(1+wq). (10)

We define dimensionless density parameters,

Ωm =
ρ0

3H2
0

, Ωq =
ρq0

3H2
0

, Ωrc =
1

4r2
cH

2
0

. (11)

Then equations (6) and (9) give

E(z) ≡ H

H0
=

√
Ωrc + Ωm(1 + z)3 + Ωq(1 + z)3(1+wq) −

√
Ωrc , (12)

so that

2
√

Ωrc = Ωm + Ωq − 1 ≥ 0. (13)

Thus the flat QDGP model mimics a closed GR quiessence model in the (Ωm, Ωq) plane,
as in the LDGP case [6].

The evolution of the Hubble parameter is given by

Ė

H0
= −3E(1 + z)3 [Ωm + (1 + wq)Ωq(1 + z)3wq ]

2
(
E +

√
Ωrc

) . (14)

This equation shows that Ė < 0 for all z, as in the LDGP case, and that Ė → 0 as
z → −1 (equivalently, as a → ∞), for all wq ≥ −1. This behaviour is illustrated in
figure 1. Thus there is no super-acceleration, and no big rip singularity in QDGP models.
The purely gravitational phantom behaviour does not produce the pathologies associated
with phantom matter in GR.

Since Ė is always negative, the deceleration parameter, q = −(1 + Ė/H0E
2), can be

never less than −1, as seen in figure 1. Note that the asymptotic future value of q depends
on wq:

q → 3(1 + wq) − 1 as z → −1. (15)
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Figure 1. The deceleration parameter q = −(1 + Ė/H0E
2) against redshift,

for (Ωm,Ωq, wq) = (0.28, 0.8,−1) (solid (black) curve), (0.28, 0.8,−0.99) (dotted
(red) curve), and (0.28, 0.8,−0.95) (dashed (blue) curve).

The transition redshift za at which decelerated expansion turns into accelerated expansion,
is defined by q = 0, i.e.,

Ė(za) = −H0E(za)
2. (16)

For the parameter values in figure 1, za ∼ 0.7.
The QDGP and LDGP models show an important difference in the asymptotic

behaviour of the Hubble rate:

E →
{

0, wq > −1,√
Ωrc + ΩΛ −

√
Ωrc > 0, wq = −1.

(17)

In LDGP models, the de Sitter solution is a stable attractor. This arises because the
vacuum energy does not redshift. By contrast, in QDGP models we have H → 0, since
the quintessence is redshifting away.

The quantities ρeff and weff describe a phantom scalar field φeff in GR which has
the equivalent expansion history to the QDGP model. We can find the self-interaction
potential Veff(φeff) of the equivalent GR phantom field by using the well-known result
that a scalar field and its potential may be determined for any given expansion history as
follows [9]:

Veff(z)

3H2
0

= E2 − Ωm(1 + z)3 − d[E2 − Ωm(1 + z)3]

2 d ln(1 + z)3
, (18)

φeff(z)√
3

= −
∫

dz

(1 + z)E

[
d[E2 − Ωm(1 + z)3]

d ln(1 + z)3

]1/2

. (19)
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Figure 2. The equivalent GR phantom potential Veff(z) for the parameter values
in figure 1.

In principle, these equations lead to Veff = Veff(φeff), but in practice the inversion cannot
be performed analytically because of the integral in equation (19). In figure 2 we show
Veff(z). For the LDGP model, Veff approaches a constant non-zero value as a → ∞. By
contrast, in the QDGP model the potential vanishes asymptotically.

3. Dynamical system analysis

In order to write the cosmological equations in the form of an autonomous system, we
define the following expansion normalized variables:

x =

√
Ωm

a3/2E
, y =

√
Ωq

a3(1+wq)/2E
, v =

√
Ωrc

E
, (20)

so that equation (12) becomes

2v = x2 + y2 − 1. (21)

This constraint means that the phase space is defined by x2 + y2 ≥ 1, since v ≥ 0, and by
x ≥ 1, y ≥ 1. Introducing the new time variable τ = ln a, and eliminating v and E, we
obtain the autonomous system

x′ =
3x [x2 + (1 + 2wq)y

2 − 1]

2(x2 + y2 + 1)
, (22)

y′ =
3y [2x2 + (1 + wq)(y

2 − x2 − 1)]

2(x2 + y2 + 1)
. (23)

The analysis depends on whether wq > −1 or wq = −1.
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Figure 3. Phase plane trajectories for wq = −0.8.

Table 1. Fixed points for 0 > wq > −1.

Point (x, y) Eigenvalues Character

M (1, 0)
(
− 3wq

2 , 3
2

)
Repellor

Q (0, 1)
(

3wq
2 ,

3(1+wq)
2

)
Saddle

For wq > −1, the phase space is 2D. The fixed points and their stability are
summarized in table 1. In this case there are two isolated fixed points located at finite
values of x and y. Combining this fact with a simple examination of the y′ equation
and the open topology of the phase space, we can draw fairly general conclusions about
the properties of the fixed points of the system even before doing the linear analysis.
Since y > 0 and wq > −1, we have y′ > 0, so that the fixed points cannot be stable.
In addition, the fixed points cannot be unstable spirals or centres, so they can only be
unstable nodes (attractors) or saddle points. The linear analysis confirms these findings.
The fixed points M (early time) and Q (late time) are matter- and quintessence-dominated
solutions respectively. The phase plane trajectories are illustrated in figure 3.

For the LDGP limit, wq = −1, we have y ∝ v, leading to a 1D phase space, and the
dynamical equations reduce to

y′ =
3y

(
1 − y2 + 2

√
Ωrc/ΩΛ y

)
2
(
1 +

√
Ωrc/ΩΛ y

) . (24)

There are also two isolated fixed points at finite values of y (see table 2 and figure 4).
It can be seen that y′ > 0 as well, but since the phase space is only a line segment, and
the fixed points are just its end points, it follows that one fixed point will necessarily be
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Figure 4. Phase line trajectories for wq = −1,
√

Ωrc/ΩΛ = 21.

Table 2. Fixed points for wq = −1.

Point y Eigenvalues Character

M 0 3
2 Repellor

dS
√

Ωrc/ΩΛ +
√

1 + Ωrc/ΩΛ −3 Attractor

unstable (the matter-dominated point M), and the other will be forced to be stable (the
de Sitter attractor dS).

4. Crossing the phantom divide

Perhaps the most distinctive feature of the QDGP model is the possibility of crossing the
phantom divide w = −1. This occurs with non-phantom quintessence, via the infrared
gravitational modifications to GR. In the standard GR model, this can be realized only by
introducing additional complicated features like multiple dark energy fields or interactions
between dark energy and CDM.

Equation (7) defines the effective equation of state, which leads to

1 + weff(z) =
(1 + wq)ΩqE(z)(1 + z)3wq+3 −

√
ΩrcΩm(1 + z)3[

E(z) +
√

Ωrc

] [
Ωq(1 + z)3wq+3 − 2

√
ΩrcE(z)

] . (25)

For the LDGP model, i.e., the wq = −1 limit of QDGP, weff is always more negative
than −1, provided that ρeff > 0. When ρeff = 0, at some redshift z∗, we have weff = −∞.
For z > z∗, we have weff > −1, with weff → +∞ as z → z∗. Thus weff never passes
through −1.

For wq > −1, the non-zero term (1 + wq)ΩqE(z)(1 + z)3wq+3 in equation (25) allows
for weff to pass through −1. This is illustrated in figure 5. For wq > −1, smooth crossing
of the phantom divide occurs at a redshift zc that depends on the values of the free
parameters Ωm, Ωq and wq. By equation (25), zc is given by

(1 + zc)
3wqE(zc) =

Ωm

√
Ωrc

(1 + wq)Ωq
. (26)

Note that for LDGP (wq = −1), the solution is zc = −1, i.e., crossing occurs at a = ∞.
At a redshift z∗ > zc, we have ρeff(z∗) = 0, so that the effective phantom GR picture

of QDGP breaks down:

z∗ =

(
4ΩrcΩm

Ω2
q

)1/3(21+wq)

− 1. (27)

As in the LDGP case, we have weff → ∓∞ as z → z∓∗ .
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Figure 5. The effective dark energy equation of state weff(z) for the same
parameter values as in figure 1.

5. Conclusions

The DGP(−) class of braneworld models can lead to phantom-like behaviour of the
effective dark energy, but without the need for any phantom matter, as pointed out by
Sahni and Shtanov [3]. In the simplest LDGP model, the universe contains only cold dark
matter and a cosmological constant. We generalized this by introducing a quintessence
field, to define the QDGP model. QDGP has the same effective phantom behaviour as
LDGP. The Hubble parameter is always decreasing, and there is no big rip singularity in
the future. The key new feature of QDGP is crossing of the phantom divide, w = −1,
which is not possible in the LDGP case.

The avoidance of any big rip is due to H, Ḣ → 0 as a → ∞. This asymptotic
behaviour reflects the fact that the phantom effects never dominate—unlike the case
of a phantom scalar field in GR. The total equation of state parameter, defined by
wtot = ptot/ρtot = weffρeff/(ρ + ρeff), follows from equations (12) and (25),

1 + wtot(z) =
Ωm(1 + z)3 + (1 + wq)Ωq(1 + z)3(1+wq)

E(z)
[√

Ωrc + E(z)
] . (28)

This shows that weff(z) ≥ −1.
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