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In this work, shells are mathematically constructed by applying the cut and paste pro-
cedure to D-dimensional spherically symmetric geometries. The weak energy condition
for the matter on the shells is briefly analyzed. The dynamical evolution is studied, and
the general formalism for the stability of static solutions is presented. Several exam-
ples corresponding to different spacetime dimensions and values of the parameters are
considered.
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1. Introduction

The study of thin shells in general relativity has been developed mainly in the
framework of the formalism introduced by Darmois and Israel.1–4 The central tool
for analyzing the matter characterization and dynamics of surface layers are the
Lanczos equations,1–5 which relate the surface energy–momentum tensor of a shell
with the jump of the extrinsic curvature tensor across it. Apart from cosmological
applications, the Darmois–Israel formalism has been applied to highly symmetric
configurations, as spherical and cylindrical shells. The linearized stability analy-
sis of spherical shells was carried out by several authors (see Refs. 6–10 and the
references included in these works). The formalism was applied to bubbles, shells
around stars and black holes, and in the mathematical construction of traversable
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Lorentzian wormholes (see for example Refs. 11–22 and references therein). Shells in
more than four dimensional backgrounds have been considered in the construction
of wormholes.23–26 The Darmois–Israel formalism was also applied to the collapse of
a spherical dust shell into a Reissner–Nordström black hole in D spacetime dimen-
sions.27 Here we address the characterization and general aspects of the dynamics
of spherical shells in backgrounds of D ≥ 4 dimensions, within the context of D-
dimensional Einstein gravity and Maxwell electromagnetism. In Sec. 2, we present
the general formalism for spherical shells. In Sec. 3, we briefly discuss the weak
energy condition in relation with the masses and charges of the original metrics
from which the construction starts. In Sec. 4, we consider a nonperturbative treat-
ment of the dynamics and discuss some particular cases (an explicit solution is
given in the appendix). In Sec. 5, we present a general perturbative approach of
the dynamics, suitable for a stability analysis of static solutions, and apply it to
different spacetime dimensions; explicit results are shown and compared for four,
five and six spacetime dimensions. Finally, the results are summarized in Sec. 6.
We adopt usual units such that c = 1.

2. Mathematical Construction

We start the construction from two spherically symmetric D-dimensional manifolds
M− and M+ with metrics

ds2
± = −f±(r±)dt2± + f−1

± (r±)dr2
± + r2

±dΩ2
n (1)

(n = D − 2) and boundaries Σ− and Σ+. We identify the boundaries: Σ− = Σ+ =
Σ, and then paste the manifolds M− and M+ at the hypersurface Σ, defined by
F(r, τ) = r − a(τ) = 0, with τ the proper time measured by an observer on the
surface. The resulting manifold M = M− ∪ M+ is geodesically complete and the
corresponding line element is continuous across Σ as long as the coordinates in
each side are related by f−(a)dt2− = f+(a)dt2+. The induced metric on Σ is of
course unique and has the form

ds2
Σ = −dτ2 + a2(τ)dΩ2

n. (2)

The joining of the two D-dimensional metrics implies a matter shell placed at
r = a. Associated with this, we have a jump of the extrinsic curvature Kj

i across
the surface, which is related to the energy–momentum tensor Sj

i on the (D − 1)-
dimensional manifold by the Lanczos equations5

〈Kj
i 〉 − Kδj

i = −8πSj
i , (3)

where 〈Kj
i 〉 ≡ Kj

i +−Kj
i −, K = 〈δi

jK
j
i 〉. The components of the extrinsic curvature

at both sides of the joining surface read

Kθk

θk ± =
1
a

√
f±(a) + ȧ2, (4)

Kτ
τ ± = − ä + f ′±(a)/2√

f±(a) + ȧ2
, (5)
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where θk (0 ≤ k ≤ n) are the angular coordinates, a prime stands for a derivative
with respect to the radius and a dot means d/dτ . The isotropy of the configuration
leads to a simple diagonal surface energy–momentum tensor with energy density
σ = −Sτ

τ and pressure p = Sθk

θk
, given by:

8πσ =
n

a

√
ȧ2 + f−(a) − n

a

√
ȧ2 + f+(a), (6)

8πp = −
(

n − 1
n

)
8πσ − ä + f ′−(a)/2√

ȧ2 + f−(a)
+

ä + f ′
+(a)/2√

ȧ2 + f+(a)
, (7)

where we replaced σ in the second equation for simplicity. These equations or any
of them plus the conservation equation

d

dτ
(σan) + p

dan

dτ
= 0 (8)

are the starting point for the study of the shell dynamics (there is no problem with
starting from a static metric of the embedding, because of the Birkhoff theorem).
Note that as long as the condition f−(a) > f+(a) is fulfilled, the energy density σ

is positive. In what follows we will also explore in detail this point.

3. Weak Energy Condition

We will restrict our general analysis to shells of nonexotic matter. Normal mat-
ter at the shell must fulfill the weak energy condition: σ ≥ 0 and σ + p ≥ 0.
If any of these inequalities is violated, the shell would be constituted by exotic
matter. In this context, it can be convenient to define the auxiliary quantity
Ωn = 2π(n+1)/2/Γ[(n + 1)/2]. Thus, within the Einstein–Maxwell framework, the
general form of the function f(r) for a black hole in D = n + 2 dimensions is (see
Refs. 28 and 29)

f(r) = 1 − 2M
rn−1

+
Q2

r2(n−1)
− Λr2

3
, (9)

where M = 8πGDm/(nΩn) and Q2 = 2q2/[n(n− 1)] with m and q the ADM mass
and charge, and Λ is the cosmological constant; GD is the Newton constant in D

dimensions. Therefore, for static solutions (a = const.) the weak energy condition
to be satisfied by the energy density and the pressure leads to

8πσ =
n

a

√
f−(a) − n

a

√
f+(a) ≥ 0, (10)

8π(σ + p) =
8
n

πσ − f ′
−(a)

2
√

f−(a)
+

f ′
+(a)

2
√

f+(a)
≥ 0. (11)

Note that while in the case q± = 0 and Λ = 0 the weak energy condition is trivially
satisfied if m+ > m−, this is not the situation in general. Normal matter requires
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at least f−(a) > f+(a). Examples in which the weak energy condition would be
violated are easy to find: Consider a charged bubble (m− = 0, q− = 0, m+ > 0,
q+ �= 0) in a five-dimensional background with vanishing cosmological constant.
The condition to be outside the horizon is 8G5m+/(3π) < a2 + q2

+/(3a2); but this
range includes 8G5m+/(3π) < q2

+/(3a2) (note that this does not imply a naked
singularity, because here we are not speaking about a point mass, but about a shell
of finite radius). Now, if this is the case we have f+(a) > 1 = f−(a), which means
that the energy density would be negative if a2 < πq2

+/(8G5m+). Then for given
charges and masses there is a lower bound for the possible bubble radius.

A similar care should be taken in more general cases: if the cosmological constant
is (reasonably) assumed to be equal inside and outside the shell, one should always
start the analysis from a static solution satisfying the necessary condition

2M− −Q2
−a1−n < 2M+ −Q2

+a1−n. (12)

Besides, one should also ensure σ + p ≥ 0. Now, from the conservation equation (8)
it is not difficult to show that

σ + p = −aσ′/n; (13)

in practice, then, for a nontrivial form of f±, the most simple way to deal with
the issue of avoiding exotic matter is to numerically find the intersection of both
conditions σ ≥ 0 and σ′ ≤ 0. This will be the procedure followed in the stability
analysis of Sec. 5.

4. Nonperturbative Approach: Examples

The dynamics of the shell is straightforwardly obtained from the last equations of
Sec. 2. Squaring twice and rearranging expression (6), we have

ȧ2 + V (a) = 0, (14)

which has the form of the energy conservation of a point particle in a one-
dimensional problem, with the function V (a) playing the role of a “potential”.
This potential has the form

V (a) =
f−(a) + f+(a)

2
−
[
n(f−(a) − f+(a))

16πaσ(a)

]2
−
[
4πaσ(a)

n

]2
. (15)

In order to obtain an equation of motion for a, the dependence of σ with the shell
radius should be given. The conservation equation (8) leads to aσ′ + n(σ + p) = 0.
Once an equation of state yielding a relation p = p(σ) is adopted, we can integrate
to obtain

ln a = − 1
n

∫
dσ

σ + p(σ)
+ C1. (16)
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This integral should be inverted to have σ(a). From Eq. (14) one has da/dτ =
∓√−V (a) (recall that from Eq. (14) the function V (a) must be negative along the
allowed range of radii), which once σ(a) is known can be integrated giving

τ = ∓
∫

da√−V (a)
+ C2. (17)

Then this relation must be inverted to obtain the solution a(τ). In brief: for a given
equation of state, Eqs. (15)–(17) give the general solution of the problem. Clearly,
for a general metric function most equations of state will lead to an analytically
nontractable problem. However, a qualitative analysis is possible for some physically
meaningful examples; in the rest of this section we will restrict the discussion to
the case of five spacetime dimensions.

(1) Case Λ = 0, noncharged shell of dust or nonrelativistic matter (p 	 σ) around a
charged object (q+ = q− = q). In this situation σ ∼ a−3. We set M = 4πa3σ/3
and the potential reads

V (a) = 1 − 8G5(m− + m+)
3πa2

− 1
4π2

[
8G5(m− − m+)

3M

]2
+

1
a4

(
q2

3
− M2

)
.

(18)

Assuming that both m− and m+ are positive, then we have a monotonous
potential for q2/3 < M2, and a potential with a minimum for q2/3 > M2.
In the first case an initially static shell can only collapse, while in the second
case an oscillatory motion could, in principle, take place. Note that if q = 0 no
oscillations are possible.

(2) Case Λ = 0, noncharged shell around a noncharged black hole (q− = q+ = 0),
linear equation of state: p = ησ; we assume 0 ≤ η < 1 in order to allow for
the interpretation of η as the squared velocity of sound on the shell. In this
situation the conservation equation leads to the behavior of the energy density
σ(a) ∼ ka−3(1+η), and the potential has the form

V (a) = 1 − 8G5(m− + m+)
3πa2

− 1
4π2

[
2G5(m− − m+)

kπ

]2
a6η −

(
4π

3

)2
k2

a6η+4
.

(19)

Because we assume 0 ≤ η < 1, now we have a positive power of the radius;
however, all the powers appear with a negative coefficient, so that an unbounded
motion is not forbidden.

(3) A charged bubble (m− = q− = 0, m+ = m, q+ = q) of dust or nonrelativistic
matter (p 	 σ). With the definition for M introduced above, the potential
reads

V (a) = 1 − 8G5m

3πa2
+

q2

6a4
− 1

4π2

[
8G5m − πq2/(2a2)

3M

]2
− M2

a4
. (20)
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If the bubble has vanishing charge, the collapse is unavoidable, because the
potential is a monotonically increasing function of the shell radius, and V (a)
goes to −∞ when a goes to zero. For a nonvanishing charge, the presence of
the associated positive term in the potential could allow a different behavior.

(4) A dust shell (p = 0) around a black hole, in a cosmological constant background
(Λ �= 0). The potential for such a model has the form

V (a) = 1 − 8G5(m− + m+)
3πa2

− Λa2

3
− 1

4π2

[
8G5(m− − m+)

3M

]2
− M2

a4
. (21)

Here the interesting situation is that of a negative cosmological constant,
because for Λ < 0 (anti-de Sitter background, no cosmological horizon present)
the potential diverges when a → ∞, and an unbounded evolution is then
excluded.

In the appendix, we will consider another example for which we will give an analyti-
cal solution for the dynamics under certain approximations. In the following section,
instead, we will present a general procedure for studying the stability of static solu-
tions under perturbations preserving the spherical symmetry. The approach will
have the nice feature of being independent of the equation of state for the matter
on the shell.

5. Perturbative Treatment: Stability

As a less general but physically sound approach to the dynamics of the shell we
can consider small perturbations preserving the symmetry around a static solution.
Our procedure will then be similar to the treatment in Refs. 6–10. As noted in
the preceding section, once an equation of state is adopted we can formally take
the potential as a function of the shell radius. For a perturbative treatment of the
stability of static solutions it is enough with the analysis of the first and second
derivatives of V (a) at a radius a0 for which ȧ = 0. Equilibrium satisfies V (a0) = 0
and V ′(a0) = 0, and stability requires V ′′(a0) > 0. We define the functions

S(a) =
f−(a) + f+(a)

2
, R(a) =

f−(a) − f+(a)
2

(22)

and we introduce the relation M = anΩnσ, with M not necessarily a constant but
a function of the radius. By defining ω = nΩn/(4π) the subsequent expressions can
take a simpler form. Then the potential can be written as

V (a) = S(a) − ω2R2

4

(
an−1

M

)2

− 1
ω2

(
M

an−1

)2

. (23)
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The first and second derivatives read

V ′(a) = S′ − ω2R′R
2

(
an−1

M

)2

− ω2R2an−1

2M

(
an−1

M

)′

− 2M

ω2an−1

(
M

an−1

)′
, (24)

V ′′(a) = S′′ − 2
ω2

(
M

an−1

)′2
− 2M

ω2an−1

(
M

an−1

)′′

− ω2R2

2

[(
an−1

M

)′2
+

an−1

M

(
an−1

M

)′′]

− 2ω2R′R
an−1

M

(
an−1

M

)′
− ω2

2

(
an−1

M

)2

[R′2 + RR′′]. (25)

In the equations that follow it must be understood that the functions are evaluated
at an equilibrium radius a0 and the prime means the derivative with respect to a0.
Equilibrium implies V ′(a0) = 0, from what we can express

(
M

an−1
0

)′
=

ω2an−1
0

2M

[
S′ − ω2R′R

2

(
an−1
0

M

)2

− ω2R2an−1
0

2M

(
an−1
0

M

)′ ]
≡ X(a0).

(26)

Stability implies V ′′(a0) > 0, which with this definition leads to

2M

ω2an−1
0

(
M

an−1
0

)′′
+

ω2R2an−1
0

2M

(
an−1
0

M

)′′
< Y (a0) − 2

ω2
X2(a0), (27)

where

Y (a0) ≡ S′′ − ω2R2

2

(
an−1
0

M

)′2
− 2ω2R′R

an−1
0

M

(
an−1
0

M

)′

−ω2

2

(
an−1
0

M

)2

[R′2 + RR′′]. (28)

Second derivatives of M would lead to second derivatives of the energy density. But
with the aid of the conservation equation we can write

σ′′ = − 1
a0

[(n + 1)σ′ + np′]. (29)

This seems to introduce the pressure, and consequently the choice on an equation
of state, in the formalism. However, because the expressions above apply to the
equilibrium, we can define the parameter η ≡ p′/σ′, with both derivatives evaluated
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at the equilibrium radius, so that only the lowest order of the expansion of the
equation of state appears. Then going back from σ to M we obtain(

M

an−1
0

)′′
= −n − 1

a0

[(
M

an−1
0

)′
− M

an
0

](
1 +

n

n − 1
η

)
, (30)

(
an−1
0

M

)′′
= 2

(
an−1
0

M

)3(
M

an−1
0

)′2
+

n − 1
a0

(
an−1
0

M

)2

×
[(

M

an−1
0

)′
− M

an
0

](
1 +

n

n − 1
η

)
. (31)

Introducing the definition

Z(a0) ≡ ω2R2

(
an−1
0

M

)4(
M

an−1
0

)′2
+

n − 1
a0

[
ω2R2

2

(
an−1
0

M

)3

− 2M

ω2an−1
0

]

×
[(

M

an−1
0

)′
− M

an
0

](
1 +

n

n − 1
η

)
(32)
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Fig. 1. Stability regions (gray) for 4D charged shells around vacuum; qc = G4m+.
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Fig. 2. Stability regions (gray) for 4D charged shells around a noncharged black hole; qc = G4m+.

the condition for stable equilibrium can finally be put in the form

Z(a0) < Y (a0) − 2
ω2

X2(a0). (33)

The subsequent analysis needs in general be carried out numerically, and can be
performed in terms of the parameter η, which can be understood as the square of
the velocity of sound on the shell. Then, the preferred range would be 0 ≤ η < 1.

As an application of the formalism, we have studied the stability of charged
bubbles (m− = 0, q− = 0) and charged shells around noncharged black holes
(m− = 0.5m+, q− = 0) in four, five and six spacetime dimensions. We have set
the shell radius beyond the horizon radius of the original outer manifold (so this
horizon is removed); which is given by

rh =
(
c1GDm+ +

√
c2
1G

2
Dm2

+ − c2q2
+

)1/(n−1)

, (34)
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Fig. 3. Stability regions (gray) for 5D charged shells around vacuum; qc = 4G5m+/(π
√

3).

where c1 = 8π/(nΩn) and c2 = 2/[n(n−1)]. We have restricted the analysis to shells
of normal matter, i.e. matter satisfying the weak energy condition. The results are
displayed in Figs. 1–6. We have not restricted the graphics to 0 ≤ η < 1, though
the results within this range are of more physical interest. We can see that in all
cases the stability regions change their shape when the charge reaches the critical
value qc = GDm+c1/

√
c2, from which the horizon in the original outer manifold

disappears. For charges below qc, the regions of stability for bubbles appear to be
slightly larger than those for shells around black holes, while the reverse takes place
for charges beyond qc; however, for q ≥ qc the stability regions begin at a slightly
larger radius as the charge increases. For any number of dimensions, stable bubbles
with η < 0 require q > qc, while stable layers with η < 0 around black holes are
possible for q ≥ qc. The most interesting feature of the results is that the stability
regions for fixed |q+|/qc are larger as the number of dimensions increases. In par-
ticular, as the dimensionality of spacetime increases, for fixed a0(GDm+)−1/(n−1)

stability becomes compatible with smaller values of the parameter η.
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Fig. 4. Stability regions (gray) for 5D charged shells around a noncharged black hole; qc =
4G5m+/(π

√
3).

The procedure above is also valid for wormholes if the outer part of both mani-
folds is taken, and the signs in the expressions of the energy density (6) and pressure
(7) are suitably changed. In particular, if the two manifolds from which the con-
struction starts are equal copies of a five-dimensional spherically symmetric geom-
etry, results including those of Ref. 23 can be recovered. In this sense, this section
constitutes a generalization of the procedure presented before in that work.

6. Summary

We have addressed general aspects of the characterization and dynamics of
spherically symmetric shells within the framework of Einstein gravity and Maxwell
electrodynamics in D-dimensional spacetime. We have applied the Darmois–Israel
formalism extended to D-dimensions to the mathematical construction of the shells,
starting from spherically symmetric geometries associated to, in general, charged
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Fig. 5. Stability regions (gray) for 6D charged shells around vacuum; qc = 3
√

3G6m+/(2π
√

2).

black holes with a cosmological constant background. We have discussed the con-
ditions to be imposed on the parameters in order to ensure that the matter on
static shells is not exotic, i.e. it satisfies the weak energy condition. Then we have
considered the full dynamics preserving the spherical symmetry; we have given the
formal general solution of the problem, and discussed some examples by means
of the analogy of the equations of motion and the potential of a point particle.
An explicit solution is given in the appendix. Finally, we have presented a formal
approach to the study of the stability of static shells under spherically symmetric
perturbations; this is given in a concise fashion suitable for the actual application,
which in general needs to be carried out in a numerical form. We have applied
the formalism to obtain explicit results regarding the stability of charged bubbles
and shells around black holes in four, five and six spacetime dimensions. The most
interesting result seems to be that as the number of spacetime dimensions increases
the stability regions in parameter space become larger.
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Fig. 6. Stability regions (gray) for 6D charged shells around a noncharged black hole; qc =
3
√

3G6m+/(2π
√

2).

Appendix

Consider the five-dimensional metrics with f±(r) = 1 − 2m±/(πr2), in which we
have adopted units such as G5 = 3/4. We assume p = 0, corresponding to the phys-
ically interesting case of a shell of nonrelativistic matter or dust. This assumption
implies an energy density with the dependence

σ =
k

a3
. (35)

This leads to the equation of motion

ȧ2 + 1 − m− + m+

πa2
− 9

(
m− − m+

8π2k

)2

− (4πk/3)2

a4
= 0. (36)
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The time evolution of the shell can be obtained by integrating Eq. (36), which gives
the proper time in terms of the shell radius. Defining α = −1 + 9(m− − m+)2/
(8π2k)2 and β = −(m− + m+)/π we have

τ = ±
∫

a2da√
αa4 − βa2 + (4πk/3)2

+ C. (37)

Inverting the relation given by the solution of this integral yields the shell radius
as a function of the proper time. The integral can be expressed in terms of elliptic
functions; however, a qualitative analysis can be carried out by recalling that the
problem is formally analogous to the dynamics of a point particle in a potential

V (a) = −α +
β

a2
− (4πk/3)2

a4
, (38)

with a null total energy. For β < 0 only an accelerated contraction or a decelerated
expansion are possible; however, for β > 0 the possibility of an unbounded accel-
erated motion exists, for suitable values of the parameters. It is easy to show that
for β > 0 the potential has a maximum for

am =
4
3
πk

√
2
β

, (39)

so that V ′(a) < 0 for a > am. Values of the parameters m− and m+ can be chosen
so that α > 0, β > 0. In this case, depending on the relation of α and β with k > 0,
V (am) can be both positive or negative, while the potential asymptotically tends to
the constant −α < 0 (a simple numerical analysis shows that, taking a scale such
that m+ = 1, for example in the case m− = −2 and k = 0.11 we have a positive
maximum, while for k = 0.1 the maximum is negative; it is also easy to see that
with such values of the parameters the condition am >

√
2m+/π is fulfilled). Thus,

for such sets of parameters and an initial condition ȧi > 0, we have three kinds of
evolution:

(1) If V (am) is negative, for any initial condition ai < am (always beyond the radius√
2m+/π) the shell radius undergoes a decelerated increase until a = am is

reached, and beyond this point the subsequent evolution is accelerated.
(2) If V (am) is negative but ai > am, the shell expands with positive acceleration.
(3) If, instead, V (am) is positive, the potential has two positive real roots, and for

ai above the largest root the shell undergoes an accelerated expansion.

Because the derivative of the “potential” vanishes for a → ∞, in all cases the
positive acceleration decreases as the radius grows. In brief, the model undergoes
an accelerated expansion with decreasing acceleration. This kind of evolution of
the shell radius is possible only if β > 0, which implies a negative mass. But this
condition can be fulfilled without any exotic matter in the (3 + 1)-dimensional
manifold resulting from the cut and paste construction: if m− < 0, m+ > 0 and
|m−| > |m+|, then σ > 0 and also σ + p > 0. The exotic matter — negative mass
m− — is placed under the radius a in the (4+1)-dimensional manifold from which
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we started the construction. Therefore, a (3+1)-dimensional shell with matter in the
form of dust of positive energy density is compatible with an accelerated expansion.
Recall that given the form of the induced (3 +1)-dimensional metric one could
understand the result for the shell as the time evolution of a closed cosmology
which, quite interestingly at present, undergoes an accelerated expansion. This
accelerated toy “universe” would present two positive features: the unusual kind of
matter driving the acceleration is not placed within (3 + 1)-dimensional spacetime,
and the framework in which such kind of evolution is possible is that of classical
general relativity. Of course, this is not to be taken too seriously; i.e. we do not
pretend that this observation has a phenomenological interest.

An approximate explicit solution for the time evolution of the model can be
obtained for the regime in which the radius a is large enough. More precisely, for
α > 0 and as long as αa4 − βa2 � (4πk/3)2, we can expand

[
αa4 − βa2 + (4πk/3)2

]−1/2 � (αa4 − βa2
)−1/2

[
1 − 2(2πk/3)2

αa4 − βa2

]
. (40)

Under this approximation the integral form of the time as a function of the radius is

τ �
∫

a da√
αa2 − β

− 2
(

2
3
πk

)2 ∫
a2da

(αa4 − βa2)3/2
+ C. (41)

The integrals are easily calculated, and the result is

τ � 1√
α

√
a2 − β/α +

2(2πk/3)2

α3/2

×
[

α

β
√

a2 − β/α
+
(

α

β

)3/2

arccos

(√
β/α

a

)]
+ C. (42)

The approximate evolution of the shell radius is obtained inverting this relation.
Note that for very large values of a the evolution is almost linear with time (the
zeroth-order result is given by the first term, and is simply τ ∼√a2 − β/α), which
is consistent with the fact that, as pointed out above, the derivative of the potential
tends to zero when a tends to infinity.
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