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a b s t r a c t

This Letter describes a partitioning of the expectation value hbS2i of an N-electron system (molecule, ion,
radical, etc.) into one- and two-center contributions. The proposal is valid for both independent and cor-
related particle models of the wave function. Our procedure provides local spin results which are phys-
ically reasonable for closed and open shell systems. Numerical results of the electronic spin population
analyses of selected systems in the Hilbert space of atomic orbitals, arising from both single determinant
wave functions and multideterminantal ones are analyzed and compared.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The decomposition of the expectation value of the N-electron
spin-squared operator bS2 into one-center and two-center compo-
nents has received a considerable attention in the last years; like-
wise a great effort has been dedicated to the study of local spins
within a molecule [1–8]. The interest of this concept, comparable
to the partial charge one, arises from its ability to characterize
the spin state of an atom or a molecular fragment embedded in a
molecular system, which provides an important insight into elec-
tronic structures. Besides, the local spin operators allow one to
evaluate the spin couplings between two molecular fragments in
the well-known Heisenberg Hamiltonian model that is used to de-
scribe magnetic interactions. This kind of studies is of paramount
importance in the understanding of systems containing unpaired
electrons or open shell molecules, which play a relevant role in
several areas of chemistry (catalysis and organic syntheses), bio-
chemistry (reactive sites of enzymes), design of new materials (de-
vices to store information) and other disciplines.

Clark and Davidson have proposed a procedure to decompose
the hbS2i quantity corresponding to an N-electron system that uti-
lizes projection operators associated with atomic centers or larger
fragments within a molecule [1–3]. In this framework, the total
spin operator bS is expressed as a sum of atomic operators, bSatomic;
the expectation values of the scalar products of two of these oper-
ators allow one to evaluate the one-center and two-center contri-
butions to the total quantity hbS2i. Although this technique has
proven to be very useful in studies of population analyses [9], its
application to the case of the decomposition of the hbS2i quantity
leads to results difficult to interpret e.g. it can assign nonzero local
ll rights reserved.
spins in systems described by doubly occupied orbitals [4,7]. An
alternative approach has recently been reported by Mayer [7].
The first step of this procedure consists in calculating the total
expectation value hbS2i and then to partition it into one-center
and two-center contributions according to determined criteria.
Although this procedure seems to overcome these drawbacks for
interpreting results [8], its formulation is restricted to the use of
single Slater determinant wave functions. In view of its apparent
better suitability, in this Letter we use this last approach to develop
a general procedure that goes beyond single Slater determinant
wave functions, so that it can be applied to any independent parti-
cle or correlated wave function.

We have organized this Letter as follows. The second section de-
scribes the expressions of the local spins derived from the struc-
ture of the second-order reduced density matrix elements
corresponding to any given wave function. The procedure can be
applied to closed shell or open shell systems of a determined spin
S and generalizes to any wave function the previous single Slater
determinant treatment. The third section reports the computa-
tional aspects and the numerical results found for some selected
open and closed shell molecular systems, in ground and excited
states. A discussion of the results obtained at Hartree-Fock and
configuration interaction levels is also reported in this section. Fi-
nally, in the last section we point out the remarks and conclusions
of this work.

2. The partitioning of hbS2i

We will refer to an N-electron system described by a deter-
mined wave function, W. The elements of the first- and second-or-
der reduced density matrices corresponding to that state will be
denoted by 1Dir

jr and 2Dirkr0

jr lr
0 , respectively, in which i; j; k; l; . . . are

orbitals of an orthogonal basis set and r and r0 are the spin coor-
dinates (r;r0 ¼ a; b). The elements 2Dirkr0

jr lr
0 have been formulated as

[10]
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0 ¼ 1

2
1Dir
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1Dkr0

lr
0 � 1

2
1Dir

lr
0
1Dkr0

jr þ
1
2

Cirkr0

jr lr
0 ð1Þ

where Cirkr0

jr lr
0 are the elements of the cumulant of the second-order

reduced density matrix.
A spin-free version of the elements of the second-order reduced

density matrix, 2Dik
jl ¼

P
r;r0

2Dirkr0

jr lr
0 , can be obtained substituting in

Eq. (1) 1Dia

ja ¼ 1
2

1Di
j þ 1DðsÞ

i

j

� �
and 1Dib

jb ¼ 1
2

1Di
j � 1DðsÞ

i

j

� �
[11]
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in which 1Di
j ¼

P
r

1Dir

jr are the elements of the spin-free first-order
reduced density matrix; 1DðsÞ

i

j ¼ 1Dia

ja � 1Dib

jb are the elements of the
spin density matrix and Cik

jl ¼
P

r;r0C
irkr0

jr lr
0 . The elements 2Dik

jl and
1Di

j are independent of the spin substates of quantum number Sz

corresponding to the state W, as well as those of the sum
� 1

4
1DðsÞ

i
l 1DðsÞ

k

j þ 1
2 Cik

jl in Eq. (2). However, the terms 1DðsÞ
i
l 1DðsÞ

k

j and
Cik

jl separately, are Sz-dependent. In fact, the sum
� 1

4
1DðsÞ

i
l 1DðsÞ

k

j þ 1
2 Cik

jl is the spin-free version of the cumulant of the
second-order reduced density matrix [12–15].

The expectation value of the bS2 operator, corresponding to the
state W, hbS2i ¼ hWjbS2jWi can be calculated by means of the spin-
free second-quantized expression of the operator bS2 [16]

hbS2i ¼ N � N2

4
�
X

ik

2Dik
ki ð3Þ

As is well-known, the trace of the second-order reduced density
matrix isX

ik

2Dik
ik ¼

NðN � 1Þ
2

ð4Þ

A simple manipulation of Eqs. (3) and (4) leads to

hbS2i ¼ 3N2

4
� 2

X
ik

2Dik
ik �

X
ik

2Dik
ki ð5Þ

The substitution of the elements 2Dik
ik and 2Dik

ki in Eq. (5) according to
Eq. (2) allows us to express the expectation value hbS2i as

hbS2i ¼ 1
2

X
i;k

1DðsÞ
i

k
1DðsÞ

k
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X

i;k

Cik
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1
4

X
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X
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Formula (6) can directly be rewritten for the case of a nonorthogo-
nal basis set such as that defined by the atomic functions centered
in each atom l; m; k; c; . . . , resulting

hbS2i ¼ 1
2

X
l;m
ð1DðsÞSÞlm ð1DðsÞSÞml �

X
l;m;k;c

S
l
k C

km
lcS

c
m

þ 1
4

X
l;m
ð1DðsÞSÞllð1DðsÞSÞmm �

1
2

X
l;m;k;c

S
l
k Ckm

clSc
m ð7Þ

in which S denotes the overlap matrix.
As has been mentioned in the Introduction, one of the objec-

tives of this Letter is to extent the approach reported for single Sla-
ter determinant wave functions [7] to a general wave function. The
hbS2i formulation given in Eq. (7) has a general character so that it
turns out to be valid for any single determinant or multidetermi-
nantal wave function, of closed or open shell type. In fact, in the
case that the wave function is a single Slater determinant all the
elements Ckm

lc are zero and consequently expression (7) coincides
with formula (8) in Ref. [7]. In other words, the appearance of
the terms

P
l;m;k;cS

l
k Ckm

lcS
c
m and 1

2

P
l;m;k;cS

l
k Ckm

clSc
m in formula (7)

arises from the use of a wave function beyond a single Slater deter-
minant. We must also highlight that according to formula (7) the
hbS2i quantity is expressed by sums of terms of type

1
2 ð1DðsÞSÞlm ð1DðsÞSÞml �

P
kcS

l
k Ckm

lcS
c
m

h i
and 1

4 ð1DðsÞSÞllð1DðsÞSÞmm�
h

1
2

P
kcS

l
k Ckm

clS
c
m�, which, as has been pointed out above, are Sz-

independent.
The partitioning of the hbS2i quantity into one-center terms,

hbS2iA, and two-center terms, hbS2iAB, is performed assigning the
atomic orbitals l; m; . . . to the nuclei A; B; . . .

hbS2i ¼
X

A

hbS2iA þ
X

A – B

hbS2iAB ð8Þ

The terms
P

l;m
1DðsÞS
� �l

m
1DðsÞS
� �m

l
and

P
l;m

1DðsÞS
� �l

l
1DðsÞS
� �m

m
in

Eq. (7) stand for the exchange and direct terms of the spin density
contributions respectively, leading to one-center and two-center
spin populations according to the indices l and m are assigned to
identical or different nucleus. However, as has been shown in Refs.
[11,17–21], the cumulant terms

P
l;m;k;cS

l
k Ckm

lcS
c
m and

P
l;m;k;cS

l
k Ckm

clS
c
m

have a non-pairing nature and must be assigned to one-center con-
tributions. Likewise, in agreement with our experience in determi-
nation of bond orders, which have been calculated using a similar
methodology [11], we will choose the highest spin projection sub-
state Sz ¼ S to evaluate the elements of the spin density matrix
1DðsÞ and those of the cumulant matrix. Hence, the one-center
hbS2iA and two-center hbS2iAB contributions will be expressed as

hbS2iA ¼
1
2

X
l2A

X
m2A

1DðsÞðSz ¼ SÞS
h il

m
1DðsÞðSz ¼ SÞS
h im

l

�
X
l2A

X
m;k;c

S
l
k C

km
lcðSz ¼ SÞSc

m þ
1
4

X
l2A

X
m2A

1DðsÞðSz ¼ SÞS
h il

l

� 1DðsÞðSz ¼ SÞS
h im

m
� 1

2

X
l2A

X
m;k;c

S
l
k C

km
clðSz ¼ SÞSc

m ð9Þ
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h il
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In the next section we report results arising from formulas (9) and
(10) for single Slater determinant and multideterminantal wave
functions, in order to study the importance of these effects in view
of the spin distribution.
3. Results and discussion

Table 1 reports the results of local spins of one- and two-cen-
ters, hbS2iA and hbS2iAB respectively, for several systems in the ground
and excited states with spin symmetries singlet (H2, HF, NH3 and
H2O), doublet (NO, CH, CH3 and H2NO) and triplet (O2, CH2, C2

and HBBH linear). The numerical calculations were performed at
the experimental equilibrium geometries [22–24] at the restricted
Hartree-Fock (RHF) level for closed shell systems and at the re-
stricted open shell Hartree-Fock (ROHF) level for doublet and trip-
let ones. Besides, we accomplished numerical determinations for
all those systems at the level of single and double excitation con-
figuration interaction approximation (CISD), using as reference
the RFH states (singlets) and ROHF ones (doublets and triplets).
In all the cases the 6-31G basis sets were used. The spin-free first-
and second-order reduced density matrices were obtained with the
PSI3 package [25] whereas the spin density matrices were calcu-
lated for Sz ¼ S, in the molecular basis set, by the modified formula
reported in Refs. [26,27]

1DðsÞ
i

j ðSzÞ ¼
Sz

SðSþ 1Þ
ðN þ 2Þ

2
1Di

j � 2
X

k

ð2Dik
jk þ 2Dik

kjÞ
" #

ð11Þ

and then transformed into the atomic basis set.



Table 1
Local spins of one- and two-centers (hbS2iA and hbS2iAB) arising from RHF and ROHF
single determinant wave functions, CISD correlated wave functions and their
corresponding hbS2icanonical

A ¼ hSziAðhSziA þ 1Þ results using the 6-31G basis sets.

System State Theory level

Single determinant wave
function

Correlated wave
function

Atom hbS2iA hbS2icanonical
A hbS2iA hbS2icanonical

A

[Bond] [hbS2iAB] [hbS2iAB]

H2
1Rþg H 0.000 0.000 0.000 0.000

[HH] [0.000] – [0.000] –
HF 1Rþ F 0.000 0.000 0.000 0.000

H 0.000 0.000 0.000 0.000
[FH] [0.000] – [0.000] –

NH3
1A1 N 0.000 0.000 0.000 0.000

H 0.000 0.000 0.000 0.000
[NH] [0.000] – [0.000] –
[HH] [0.000] – [0.000] –

H2O 1A1 O 0.000 0.000 0.000 0.000
H 0.000 0.000 0.000 0.000
[OH] [0.000] – [0.000] –
[HH] [0.000] – [0.000] –

NO 2P N 0.419 0.513 0.389 0.484
O 0.048 0.142 0.069 0.164
[NO] [0.142] – [0.146] –

CH 2P C 0.750 0.750 0.810 0.809
H 0.000 0.000 �0.027 �0.028
[CH] [0.000] – [�0.017] –

CH3
2A002 C 0.750 0.750 0.990 0.982

H 0.000 0.000 �0.034 �0.035
[CH] [0.000] – [�0.025] –
[HH] [0.000] – [0.002] –

H2NO 2B1 N 0.033 0.116 0.068 0.172
O 0.468 0.551 0.376 0.481
H 0.000 0.000 �0.002 �0.002
[NO] [0.124] – [0.157] –
[NH] [0.000] – [0.000] –
[OH] [0.000] – [�0.001] –
[HH] [0.000] – [0.000] –

O2
3R�g O 0.500 0.750 0.548 0.750

[OO] [0.500] – [0.452] –
CH2

3B1 C 1.944 1.958 2.325 2.329
H 0.000 0.007 �0.052 �0.050
[CH] [0.014] – [�0.056] –
[HH] [0.000] – [�0.003] –

C2
3Rþg C 0.500 0.750 0.526 0.750

[CC] [0.500] – [0.474] –
HBBH 3R�g B 0.500 0.750 0.463 0.696
(linear) H 0.000 0.000 0.029 0.028

[BB] [0.500] – [0.457] –
[BH] [0.000] – [0.012] –
[B. . .H] [0.000] – [0.013] –
[HH] [0.000] – [0.001] –
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Columns 5 and 7 in Table 1 describe expectation values of the
canonical spin-squared population hbS2icanonical

A ¼ hbSziAðhbSziA þ 1Þ
corresponding to each atomic center A, which constitute a refer-
ence to be compared with those obtained from the direct partition-
ing of the hbS2i quantity [8]. Those hbSziA have been calculated
through the spin density matrix elements corresponding to the
highest value of the molecular spin projection Sz ¼ S, that is

hbSziA ¼
1
2

X
l2A

1DðsÞðSz ¼ SÞS
h il

l
¼ 1

2
Na

A � Nb
A

� �
ð12Þ

where Na
A and Nb

A stand for the atomic spin-up and spin-down pop-
ulations on the atomic center A, respectively.

As can be observed in Table 1, zero value is obtained for all one-
center and two-center contributions in singlet state systems, in
both single determinant and correlated CISD wave functions. This
behaviour, which has been predicted in Ref. [7] for closed shell sin-
gle determinant wave functions, is now confirmed and extended to
the multideterminantal correlated case. In fact, for singlet states all
the elements of the spin density matrix are zero and we have
shown that the elements

P
k Cik

jkðS ¼ 0Þ þ 1
2 Cik

kjðS ¼ 0Þ
h i

also turn
out to be zero [28]. Consequently, the quantities hbS2iA and hbS2iAB

in Eqs. (9) and (10) vanish for that spin symmetry. As expected,
the results obtained in open shell systems present a quite different
aspect, showing nonzero one- and two-center local spins. A survey
of Table 1 shows that it is possible to detect the correlation effects
on the local spin, which produces small differences between the
values found for the quantities hbS2iA at single determinant and cor-
related wave function approaches in doublet and triplet state sys-
tems. Likewise, slight differences can also be observed between the
corresponding two-center contributions hbS2iAB at both mentioned
approaches in those open shell systems. Besides, the reported
hbS2iA values turn out to be consistent in general with the corre-
sponding canonical ones obtained with the hbSziA parameters calcu-
lated through the spin density matrix decomposition of Eq. (12).
These results confirm the conclusion reported in Ref. [8] which
shows that this canonical decomposition leads to one-center con-
tributions similar, but not identical, to those arising from the par-
titioning of the total expectation value hbS2i. It is important to
analyze the differences between the local spin populations hbS2iA
values arising from Eq. (9) and their corresponding canonical ones
reported in Table 1. According to Eq. (9) the quantities hbS2iA con-
tain four components; two of them (the first and third terms of
that equation) are functionals of the spin density while the second
and fourth terms are related with the irreducible many-body ef-
fects [11]. Within the independent particle model the cumulant
terms are zero and consequently the difference between the
canonical spin and its local spin counterpart is

hbS2icanonical
A � hbS2iA ¼

1
2

X
l2A

1DðsÞðSz ¼ SÞS
h il

l
� 1

2

X
l2A

�
X
m2A

1DðsÞðSz ¼ SÞS
h il

m
1DðsÞðSz ¼ SÞS
h im

l
ð13Þ

Eq. (13) can be seen as a deviation from the idempotency of the part
of the spin density matrix assigned to a determined center A and
consequently as a degree of delocalization of the electron spin cloud
corresponding to that center over the whole molecule. Therefore,
the more localized electron spin cloud, the better numerical agree-
ment between hbS2icanonical

A and hbS2iA. In the correlated case, the
cumulant terms in Eq. (9) contribute to a higher localization, due
to their one-center nature. In fact, as can be observed in Table 1,
the numerical value of the differences hbS2icanonical

A � hbS2iA are lower
for the correlated case than for the single determinant one. Finally,
we must note that in certain systems (CH, CH3, H2NO and CH2)
some one-center local spin values and their counterpart canonical
ones are slightly greater than the molecular spin value SðSþ 1Þ
while others take small negative ones, compensating each other.
Such spin excesses and deficits are in agreement with experimental
results arising from electron spin resonance and may be interpreted
in terms of spin polarization and spin delocalization mechanisms
[29]. These effects do not appear in the independent particle model
case.

4. Concluding remarks

In this Letter we have described a procedure to evaluate local
spins which can be applied to any N-electron wave function, for
closed or open shell systems. Our proposal, which generalizes pre-
vious treatments limited to single determinant wave function, is
based on an appropriate management of the cumulant of the sec-
ond-order reduced density matrix, whose elements are assigned
to one-center contributions to the total expectation value hbS2i.
The numerical determinations of spin population analyses per-
formed in the Hilbert space of atomic orbitals confirm the suitabil-
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ity of our proposals. Likewise, the differences between the spin
population values and the corresponding canonical ones have been
interpreted as a degree of delocalization of the spin density in the
systems. Our framework can also be applied to partitionings in the
three-dimensional physical space, such as the atoms in molecules
approach [30] or the fuzzy atoms one [31]. In this direction we
are currently working in our laboratories.
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