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We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the
available instantaneous visual information exclusively. The model consists of active particles, with no
memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone
(VC), and lack velocity-velocity alignment. We show that this active system can exhibit—due to the VC that
breaks Newton’s third law—various complex, large-scale, self-organized patterns. Depending on parameter
values, we observe the emergence of aggregates or millinglike patterns, the formation of moving—locally
polar—files with particles at the front of these structures acting as effective leaders, and the self-organization
of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining
simulations and nonlinear field equations, we show that position-based active models, as the one analyzed
here, represent a new class of active systems fundamentally different from other active systems, including
velocity-alignment-based flocking systems. The reported results are of prime importance in the study,
interpretation, and modeling of collective motion patterns in living and nonliving active systems.
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It is believed that complex, self-organized, collective
motion patterns observed in birds, fish, or sheep [1–6] as
well as nonliving active systems [7–10] result from the
presence of a velocity alignment mechanism that mediates
the interactions among the moving individuals. Such a
velocity alignment mechanism is at the core of the so-called
Vicsek-like models [11] extensively used to study flocking
patterns [1,2]. Intrinsically nonequilibrium, these patterns
differ remarkably from those observed in equilibrium
systems by the lack of both Galilean invariance and
momentum conservation, which allows, for instance, the
emergence of long-range orientational order in two dimen-
sions [11–13] and the presence of anomalous density
fluctuations [14,15].
Few recent pioneering works [16–23] have challenged

the wide-spread view that behind each collective motion
pattern of self-propelled entities, there is a velocity align-
ment mechanism at work. Here, we explore the possibility
of observing flocking patterns in the absence of such
alignment. The model we analyze is a minimal cognitive
flocking model that assumes that the moving entities
navigate using exclusively the instantaneous visual infor-
mation they receive. Importantly, the moving particles have
no memory so as to compute the moving direction of
neighboring particles, in sharp contrast to standard flocking
models [1,2,11]. The navigation strategy we investigate is
based on the instantaneous position of neighboring par-
ticles and not on their velocity, which makes the model
simpler from a cognitive point of view and computationally
less intensive, providing an alternative in the design of

robotic navigation algorithms. The model incorporates few
well-known physiological and cognitive concepts. For
instance, we assume that particles are attracted by those
particles located inside the vision cone. The vision cone
(VC) results from two well-documented facts: (i) animals
have a limited field of view [18,24,25]—typically less than
360°—which is parametrized here by the angle β, and
(ii) when navigating, objects located at far distances are
ignored, and the focus is put on those objects located at
distances shorter than the so-called cognitive horizon
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FIG. 1. Depending on vision cone size β (insets), we can
observe the formation of locally polar structures, which we call
“worms,” panel (a)—β ¼ 0.8, or the emergence of aggregates or
millinglike patterns as shown in panel (b) for β ¼ 2.4, and panel
(c) for β ∼ π. Parameters (a)–(c):

ffiffiffiffiffiffiffiffiffi
2Dθ

p ¼ 0.12, L ¼ 100,
N ¼ 104. See [45] for movies.
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[18,24,26] that corresponds in our model to R0. The field of
view (β) is known to vary from species to species, being, for
instance, smaller for predators than for preys [24,25]. In
summary, the field of view (β) combined with the cognitive
horizon (R0) defines the VC, which violates Newton’s third
law for β < π. Notice that alternative mechanisms exist to
break the action-reaction symmetry to the VC [23,27,28],
and that the presence of nonreciprocal interactions also has
a strong impact on the dynamics of flocking models with
velocity alignment [29–32].
Here, we show that this minimal cognitive flocking

model exhibits various large-scale self-organized patterns,
depending on the size of the VC and noise intensity:
aggregates or millinglike patterns of various degrees of
complexity, locally polar dynamical structures which we
call worms (Fig. 1), and nematic bands leading to long-
ranged nematic order. Furthermore, we derive a system of
nonlinear field equations to rationalize agent-based simu-
lation results and show that, in general position-based
active models, as the one studied here, represent a new class
of active systems fundamentally different from other active
systems, including velocity-alignment-based flocking
systems [11–14,33–44].
Model definition.—The equation of motion of the ith

particle is given by

_xi ¼ v0VðθiÞ;
_θi ¼

γ

ni

X
j∈Ωi

sinðαij − θiÞ þ
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ξiðtÞ; ð1Þ

where xi denotes the position of the particle, θi represents
its moving direction, with Vð·Þ≡ ( cosð·Þ; sinð·Þ)T , v0 is
the particle speed, γ the strength of the interactions,
and ξiðtÞ is a noise term such that hξiðtÞi ¼ 0 and
hξiðtÞξjðt0Þi ¼ δi;jδðt − t0Þ, with the noise amplitude given
by Dθ. The sum in Eq. (1) describes the projection on the
“retina” of particle i of the position of all particles inside its
VC, assuming particles are pointlike, with αij the polar
angle of the vector ðxj − xi=∥xj − xi∥Þ ¼ VðαijÞ; a
procedure similar to the one in [19] for long-range
interactions. The symbol Ωi, thus, denotes the set of
neighbors inside the VC of particle i, with ni its cardinal
number. Particles in Ωi are those that satisfy ∥xj−xi∥≤R0

and ðxj − xi=∥xj − xi∥Þ · ð _xi=∥ _xi∥Þ > cosðβÞ, with β the
size of the cone and its orientation given by _xi. For a
definition of the model in 3D and a justification of the term
sinðαij − θiÞ, see [45]. In the following, we fix v0 ¼ 1,
set R0 ¼ 1, γ ¼ 5, and the global density ρ0 ¼ N=L2 ¼ 1,
with N the number of particles and L the linear size of the
system and use periodic boundary conditions. These
parameters are in the range of the ones expected for
vertebrates [48].
Phenomenology.—The system exhibits four distinct

phases—see Fig. 2—which we refer to as (i) gas phase,
(ii) aggregate phase, (iii) worm phase, and (iv) nematic

phase. Phases (ii) to (iv) involve spontaneous phase
separation of the particles, while phase (i) is characterized
by the absence of order and a homogeneous distribution
of particles in space. In the following, we study the
phase-separated phases, i.e., from (ii) to (iv), by performing
two vertical cuts in the phase diagram in Fig. 2. The
emerging macroscopic patterns are characterized by their
level of (global) orientational order through Sq ¼
jPN

j¼1 expðiqθjÞ=Nj, with q ¼ 1 for polar order and
q ¼ 2 for nematic order (and i the imaginary unit).
Clustering properties are analyzed by the normalized
number of clusters M� ¼ hMi=N and normalize cluster
size m� ¼ hmi=N, defining a cluster as a set of connected
particles, where i is connected to j if j is located inside
the VC of i. Finally, transport properties are studied by
looking at the behavior of the diffusion coefficient
Deff ¼ limt→∞

P
N
i¼1 ½xiðtÞ − xiðt0Þ�2=½4Nðt − t0Þ�.

Aggregate phase.—At large values of β, particles self-
organize into aggregates of different complexity, Fig. 1,
with some of these patterns comparable to the ones reported
in [49]. The aggregates result from a phase separation
process (see [45] for movies) fundamentally different from
the one in [50,51]. Figure 3(a) shows the existence of
different nontrivial scalings of M� and m� with time—as
expected for active systems [52]—which suggests that the
phase-separation process is of a different nature at large and
intermediate values of β.
Worm phase.—At lower values of β, we observe the

emergence of a new type of macroscopic structure, which
we call a worm, Fig. 1(a). This structure consists of a file
of active particles that are locally polarly oriented. The
particle at the “head” of the worm—which we label
“H”—ignores all other particles and becomes the effective
leader of the spontaneously formed herd of active particles.
This is evident from the behavior ofDeff as shown in Fig. 3.
During the worm phase, Deff ∼DNAP ¼ v20=ð2DθÞ, with
DNAP the diffusion coefficient of an ensemble of non-
interacting active particles (NAP). This is not due to the

FIG. 2. Phase diagram: vision angle β vs angular noise intensity
Dθ. The color code indicates the value of the average cluster size
m� in simulations with N ¼ 104. Vertical rectangles refer to cuts
of the phase diagram shown in Figs. 3 and 4.
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absence of interaction, but to the fact that all particles in
the worm imitate the behavior of the incidental leader
particle: the position and velocity of particle j is approx-
imately given by xjðtÞ ∼ xHðt − lj;H=v0Þ and V(θjðtÞ)∼
V(θHðt − lj;H=v0Þ), where lj;H is the distance along the
worm between j and H, see Fig. 3(d) and [45] for a movie.
Though worms exhibit local polar order, global polar order
drops for L ≫ v0=Dθ, vanishing in the thermodynamic
limit.
Nematic phase.—For larger values of Dθ and β, see

Figs. 2 and 4, we find macroscopic nematic bands. After a
complex transient where various small nematic bands grow
in size and interconnect, the system reaches a steady state,
with one or several bands, but where only one direction
prevails, see Fig. 4 and [45] for a movie. The described
dynamics leads to the emergence of genuine global nematic
order. Increasing the system sizeN, for a fixed density ρ0, we
observe that the nematic order S2 saturates, Fig. 4(a), inset.
Field equations.—A qualitative understanding of the

large-scale behavior of the system can be obtained in
terms of pðx; θ; tÞ ¼ hPN

i¼1 δðx − xiÞδðθ − θiÞi. The evo-
lution of pðx; θ; tÞ is given by the corresponding nonlinear
Fokker-Planck equation of Eq. (1) [47]

∂tpþ ∇½v0VðθÞp� ¼ Dθ∂θθp − ∂θ½Ip�; ð2Þ

where we have assumed that p2ðx; θ;x0; θ0; tÞ≃
pðx; θ; tÞpðx0; θ0; tÞ in order to define, after some simple
calculations [45], an average interaction term

I ¼ Γ
Z

R0

0

dR
Z

θþβ

θ−β
dαR sinðα − θÞρ½xþ RVðαÞ; t�; ð3Þ

where Γ≃ γ=ð1þ βR2
0ρÞ and ρ½x; t� ¼ L½1� the coarse-

grained one-particle density, with L½ð·Þ� an averaging
operator defined as L½ð·Þ�≡ R

2π
0 dθð·Þpðx; θ; tÞ. To analyze

the behavior of Eq. (2), in addition to ρðx; tÞ, we introduce
the following fields: local polar order P≡ ðPx; PyÞT ¼
L½VðθÞ�, local nematic order Q≡ ðQc;QsÞT ¼ L½Vð2θÞ�,
and higher order fields are denoted byMk≡ ðMkc;MksÞT ¼
L½VðkθÞ� where k > 2 corresponds to the local kth order
field, and recast the equation as

∂tρþ v0∇P ¼ 0; ð4aÞ
∂tPþ v0

2
ð∇ρþ ½∇TMQ�TÞ

¼ −DθP −
ΓgðβÞ
2

½MQ − ρ1�∇ρ −
ΓfðβÞ
2

Mρ1½P −M3�;
ð4bÞ

∂tQþ v0
2
½∇TðM3 þMPÞ�T

¼ −4DθQ − ΓgðβÞ½M3 −M
T
P�∇ρ

− ΓfðβÞ
�
Mρ2M4 þ ρ

�
Φρ

−∂xyρ

��
; ð4cÞ

where the symbols MA denote matrices defined using
the auxiliary matrices E1 ¼ ½1

0
0
−1�, E2 ¼ ½0

1
1
0
�, E3 ¼ ½ 0−1 10�,

and the unity matrix 1 as: MQ ¼ QcE1 þQsE2, M3 ¼
M3cE1 þM3sE2, MP ¼ PxE2 þ PyE3, Mρ1 ¼ Φρ=2E1−
∂xyρ1, and Mρ2 ¼ ∂xyρE2 − Φρ=2E1. In addition, we
have defined Φρ as Φρ ¼ ∂yyρ − ∂xxρ and the terms
gðβÞ and fðβÞ are, respectively, the first and second
nonzero terms in the expansion of I with respect R0,
that read gðβÞ ¼ ðR3

0=3Þ½β − sinð2βÞ=2� and fðβÞ ¼
ðR4

0=6Þ sin3ðβÞ. Equations (4), due to the k > 2 order
fields, require a closure ansatz. This can be done by
providing an ansatz on the local order as explained below.
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FIG. 3. (a) Normalized number of clusters M� (normalized
average cluster size m�, inset) as function of time. Worms
coagulate at a much faster rate than aggregates. (b) The (nor-
malized) diffusion coefficient Deff=DNAP and polar order S1 as a
function of β (see text). (c) Temporal evolution of hx2i=ð4tÞ.
(d) Velocities and positions of particles that form a worm:
particles copy the behavior of the particle at the front, which
we refer to as the incidental leader. See [45] for a movie.
Parameters: N ¼ 104, L ¼ 100,
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p ¼ 0.12.
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FIG. 4. Nematic bands. (a) The nematic order parameter S2 as a
function of β for
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p ¼ 0.84. The inset shows S2 as a function
of N, with error bars obtained using 50 realizations, β ¼ 1.9. (b)
and (c) display simulation snapshots at the steady state for
N ¼ 104, L ¼ 100,
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p ¼ 0.84, and β ¼ 1.9. Insets in (b) and
(c) correspond to magnified views of the bands. See [45] for
movies.
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For β ∼ π, i.e., (quasi)isotropic interactions, f ≃ 0, and
we assume that no local order is possible. Under these
conditions, Eqs. (4) reduce to

∂tρ ¼ −
v0
Dθ

∇
�
−
v0
2
∇ρþ ΓgðβÞρ∇ρþOðR5

0Þ
�
; ð5Þ

where OðR5
0Þ contains spatial third order derivatives with

respect to ρ. From Eq. (5), we learn that a homogenous
spatial distribution of particles—assume ρ ¼ ρ0 þ ϵδρ,
with ρ0 a constant and ϵδρ a small perturbation—becomes
linearly unstable when c1¼ v0ΓgðβÞρ0=ð2DθÞ−DNAP> 0
and the system undergoes phase separation, in absence of
orientational order, that leads to the emergence of aggre-
gates as shown in Fig. 1, panels (b) and (c). For β ¼ π, the
dispersion relation is of the form λ ¼ c1k2 − c2k4, where
c2 ¼ v0ΓπR5

0ρ0=80 > 0 and k, the wave number, associ-
ates to the perturbation.
For intermediate values of β and Dθ, agent-based

simulations display nematic patterns. Let us, then, assume
that, locally, the distribution of θ is given by pðx; θ; tÞ≃
ðρ=2πÞ exp½ð2=ρÞQ · Vð2θÞ� (see [45] for a derivation). As
a direct consequence of this local ansatz, we find that
P¼M3 ¼ 0, M4c ¼ ðQ2

c −Q2
sÞ=ð2ρÞ and M4c ¼ QcQs=ρ.

Since, under this assumption,M4 can be expressed in terms
of ρ and Q, Eqs. (4) define a closed set of equations. Now,
we look for the stationary states of the resulting system.
This implies that all partial temporal derivatives of the
fields vanish. For simplicity, but without loss of generality,
let us assume thatQs ¼ 0 and that the system is invariant in
the x̂ direction as in Fig. 4(c), and thus, derivatives in x
vanish. Inserting all this into Eqs. (4), we arrive at

∂yðρ −QcÞ ¼ −
ΓgðβÞ
v0

∂yρðρþQcÞ ð6aÞ

Qc ¼ −
ΓfðβÞ
8Dθ

∂yyρ

�
ρ −

Q2
c

2ρ

�
; ð6bÞ

where Qc and ρ are functions of y. By linearizing this
system of equations—assume ρ¼ ρ0þ ϵδρ andQc ¼ ϵδQc,
with ρ0 a constant and ϵδρ and ϵδQc perturbations in the
density and nematic order, respectively, and keeping linear
order terms in ϵ—it becomes evident that δQc ∝ ∂yyδρ,
and the system reduces to ðaρ0 − 1Þ=ðbρ0Þz ¼ ∂yyz, with
z ¼ ∂yδρ, a ¼ Γg=v0, and b ¼ Γf=ð8DθÞ, whose solutions
for ρ0 − 1 < 0 correspond to trigonometric functions. All
this means that, by assuming local nematic order, we can
show that: (i) Eqs. (4) exhibit steady state solutions, and
(ii) that these static solutions correspond to elongated high
density regions, nematically ordered, with Qc ∝ ρ, parallel
to each other and equally spaced, i.e., there is a well-
defined wave length. These solutions are consistent with
the nematic bands in Fig. 4.
Finally, we have observed, in agent-based simulations,

locally polar patterns (worms). Let us assume, then, that

pðx; θ; tÞ≃ ðρ=2πÞ exp½ð2=ρÞP · VðθÞ� [45]. Under this
assumption, it is possible to show that static polar
bands—i.e., static straight worms—cannot exist. The field
equations suggest that polar structures never reach a steady
state as observed in simulations, see Figs. 1(a) and 3(c).
Concluding remarks.—The derived field equations,

combined with the presented numerical study, show that
fundamental differences exist between velocity alignment-
based models, including polar fluids [12,13,33,53], active
nematics [14,35,36], and self-propelled rods [37–40,
42–44,54] on the one hand, and position-based models,
such as the one analyzed here, on the other hand. An
evident and fundamental difference, revealed by Eqs. (4)
and confirmed in simulations, is that position-based models
cannot develop either polar or nematic ordered phases that
are spatially homogeneous—cf. with the well reported
spatially homogeneous ordered phases in (velocity-
alignment) flocking models, such as the celebrated
Toner-Tu polar phase [12,13,33,53] and homogeneous
nematic phase [14,38–40,54]. In contrast, in position-based
active models, (orientational) order emerges always, even
at short scales, associated to density instabilities. In
addition, worms display local polar order that is parallel
(locally) to the band, with a highly dynamical center band
line that prevents polar long-range order to emerge, in
striking difference with polar bands in Vicsek models,
where polar order is orthogonal to the band and long ranged
[33,53,55]. On the other hand, it has been argued that
nematic bands, reported in self-propelled rods [40], are
unstable [54]. Again, this is in sharp contrast to the nematic
bands reported here that remain stable in the thermody-
namical limit. In summary, position-based active systems,
such as the one presented here, belong to a new universally
active class fundamentally different to any previously
reported active matter class [11–14,33–44,53].
Our results could be relevant for studying and interpret-

ing collective patterns in animal groups. They indicate that
several flocking patterns observed in nature, such as the
millinglike patterns found in fish [4], the file formation
reported in sheep herds [6], and the emergence of nematic
bands in human crowds and ants [18], could result from
simple navigation strategies that do not require memory,
use exclusively the instantaneous position of neighboring
particles, and limit the interaction neighborhood by a vision
cone. These concepts, that lead to navigation strategies that
are computationally less intensive than those based on
velocity alignment, could help in the design of new robotic
navigation algorithms, for instance, as for phototactic
robots [56]. Extensions of this minimal cognitive model
could find applications in other active systems such as
chemophoretic particles [23,28] and chemotactic colloids
[57–60] and organisms [61–63], among other examples
where aggregation patterns have been reported. This could
require either taking R0 → ∞ or replacing the interaction
cutoff by a slowly decaying function of the distance, as well
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as specializing the model for β ¼ π, which corresponds to
the limit of isotropic interactions, though asymmetric
interactions may also be realistic [23,28,61].
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